Neonatal AVPR1a Methylation and In-Utero Exposure to Maternal Smoking
Abstract
:1. Introduction
2. Methods
2.1. DNA Methylation
2.2. Array Processing and Quality Control
2.3. Statistical Analysis
3. Results
Individual CpG Sites DNAm
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, T.W.; Asman, K.; Gentzke, A.S.; Cullen, K.A.; Holder-Hayes, E.; Reyes-Guzman, C.; Jamal, A.; Neff, L.; King, B.A. Tobacco Product Use Among Adults—United States, 2017. MMWR Morb. Mortal Wkly. Rep. 2018, 67, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Kondracki, A.J. Prevalence and patterns of cigarette smoking before and during early and late pregnancy according to maternal characteristics: The first national data based on the 2003 birth certificate revision, United States, 2016. Reprod. Health 2019, 16, 142. [Google Scholar] [CrossRef] [PubMed]
- Robbins, C.; Boulet, S.L.; Morgan, I.; D’Angelo, D.V.; Zapata, L.B.; Morrow, B.; Sharma, A.; Kroelinger, C.D. Disparities in Preconception Health Indicators—Behavioral Risk Factor Surveillance System, 2013–2015, and Pregnancy Risk Assessment Monitoring System, 2013–2014. MMWR Surveill. Summ. 2018, 67, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Cornelius, M.E.; Loretan, C.G.; Wang, T.W.; Jamal, A.; Homa, D.M. Tobacco Product Use Among Adults—United States, 2020. MMWR Morb. Mortal Wkly. Rep. 2022, 71, 397–405. [Google Scholar] [CrossRef]
- America’s Health Rankings. 2021. Available online: https://assets.americashealthrankings.org/app/uploads/americashealthrankings-2021annualreport.pdf (accessed on 1 September 2022).
- Centers for Disease Control and Prevention; National Center for Chronic Disease Prevention and Health Promotion; Office on Smoking and Health. Publications and Reports of the Surgeon General. In How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease: A Report of the Surgeon General; Centers for Disease Control and Prevention (US): Atlanta, GA, USA, 2010. [Google Scholar]
- McGrath-Morrow, S.A.; Gorzkowski, J.; Groner, J.A.; Rule, A.M.; Wilson, K.; Tanski, S.E.; Collaco, J.M.; Klein, J.D. The Effects of Nicotine on Development. Pediatrics 2020, 145, e20191346. [Google Scholar] [CrossRef]
- Cnattingius, S. The epidemiology of smoking during pregnancy: Smoking prevalence, maternal characteristics, and pregnancy outcomes. Nicotine Tob. Res. 2004, 6, S125–S140. [Google Scholar] [CrossRef]
- Zheng, W.; Suzuki, K.; Shinohara, R.; Sato, M.; Yokomichi, H.; Yamagata, Z. Maternal smoking during pregnancy and growth in infancy: A covariance structure analysis. J. Epidemiol. 2015, 25, 44–49. [Google Scholar] [CrossRef]
- Abraham, M.; Alramadhan, S.; Iniguez, C.; Duijts, L.; Jaddoe, V.W.; Den Dekker, H.T.; Crozier, S.; Godfrey, K.M.; Hindmarsh, P.; Vik, T.; et al. A systematic review of maternal smoking during pregnancy and fetal measurements with meta-analysis. PLoS ONE 2017, 12, e0170946. [Google Scholar] [CrossRef]
- Inoue, S.; Naruse, H.; Yorifuji, T.; Kato, T.; Murakoshi, T.; Doi, H.; Subramanian, S.V. Impact of maternal and paternal smoking on birth outcomes. J. Public Health 2017, 39, 1–10. [Google Scholar] [CrossRef]
- Haslinger, C.; Bamert, H.; Rauh, M.; Burkhardt, T.; Schaffer, L. Effect of maternal smoking on stress physiology in healthy neonates. J. Perinatol. 2018, 38, 132–136. [Google Scholar] [CrossRef]
- Huang, L.; Wang, Y.; Zhang, L.; Zheng, Z.; Zhu, T.; Qu, Y.; Mu, D. Maternal Smoking and Attention-Deficit/Hyperactivity Disorder in Offspring: A Meta-analysis. Pediatrics 2018, 141, e20172465. [Google Scholar] [CrossRef] [PubMed]
- Hamoen, M.; Welten, M.; Nieboer, D.; Bai, G.; Heymans, M.W.; Twisk, J.W.R.; Raat, H.; Vergouwe, Y.; Wijga, A.H.; de Kroon, M.L.A. Development of a prediction model to target screening for high blood pressure in children. Prev. Med. 2020, 132, 105997. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Zheng, S.; Xu, S.; Yang, M.; Yang, B.; Dong, G. Correlation between childhood hypertension and passive smoking before and after birth. Wei Sheng Yan Jiu 2019, 48, 751–756. [Google Scholar] [PubMed]
- Cabral, M.; Fonseca, M.J.; Gonzalez-Beiras, C.; Santos, A.C.; Correia-Costa, L.; Barros, H. Maternal Smoking: A Life Course Blood Pressure Determinant? Nicotine Tob. Res. 2018, 20, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Banderali, G.; Martelli, A.; Landi, M.; Moretti, F.; Betti, F.; Radaelli, G.; Lassandro, C.; Verduci, E. Short and long term health effects of parental tobacco smoking during pregnancy and lactation: A descriptive review. J. Transl. Med. 2015, 13, 327. [Google Scholar] [CrossRef]
- Joubert, B.R.; Felix, J.F.; Yousefi, P.; Bakulski, K.M.; Just, A.C.; Breton, C.; Reese, S.E.; Markunas, C.A.; Richmond, R.C.; Xu, C.J.; et al. DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. Am. J. Hum. Genet. 2016, 98, 680–696. [Google Scholar] [CrossRef]
- Lutfy, K.; Aimiuwu, O.; Mangubat, M.; Shin, C.S.; Nerio, N.; Gomez, R.; Liu, Y.; Friedman, T.C. Nicotine stimulates secretion of corticosterone via both CRH and AVP receptors. J. Neurochem. 2012, 120, 1108–1116. [Google Scholar] [CrossRef]
- Mavani, G.P.; DeVita, M.V.; Michelis, M.F. A review of the nonpressor and nonantidiuretic actions of the hormone vasopressin. Front. Med. 2015, 2, 19. [Google Scholar] [CrossRef]
- Ebstein, R.P.; Israel, S.; Chew, S.H.; Zhong, S.; Knafo, A. Genetics of human social behavior. Neuron 2010, 65, 831–844. [Google Scholar] [CrossRef]
- Thibonnier, M.; Graves, M.K.; Wagner, M.S.; Auzan, C.; Clauser, E.; Willard, H.F. Structure, sequence, expression, and chromosomal localization of the human V1a vasopressin receptor gene. Genomics 1996, 31, 327–334. [Google Scholar] [CrossRef]
- Lambers, D.S.; Clark, K.E. The maternal and fetal physiologic effects of nicotine. Semin. Perinatol. 1996, 20, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Picciotto, M.R.; Zoli, M.; Rimondini, R.; Lena, C.; Marubio, L.M.; Pich, E.M.; Fuxe, K.; Changeux, J.P. Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 1998, 391, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Hellstrom-Lindahl, E.; Gorbounova, O.; Seiger, A.; Mousavi, M.; Nordberg, A. Regional distribution of nicotinic receptors during prenatal development of human brain and spinal cord. Brain Res. Dev. Brain Res. 1998, 108, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Koshimizu, T.A.; Nakamura, K.; Egashira, N.; Hiroyama, M.; Nonoguchi, H.; Tanoue, A. Vasopressin V1a and V1b receptors: From molecules to physiological systems. Physiol. Rev. 2012, 92, 1813–1864. [Google Scholar] [CrossRef]
- Chen, H.; Fu, Y.; Sharp, B.M. Chronic nicotine self-administration augments hypothalamic-pituitary-adrenal responses to mild acute stress. Neuropsychopharmacology 2008, 33, 721–730. [Google Scholar] [CrossRef]
- Pomerleau, O.F.; Pomerleau, C.S. Cortisol response to a psychological stressor and/or nicotine. Pharmacol. Biochem. Behav. 1990, 36, 211–213. [Google Scholar] [CrossRef]
- Stroud, L.R.; Papandonatos, G.D.; Rodriguez, D.; McCallum, M.; Salisbury, A.L.; Phipps, M.G.; Lester, B.; Huestis, M.A.; Niaura, R.; Padbury, J.F.; et al. Maternal smoking during pregnancy and infant stress response: Test of a prenatal programming hypothesis. Psychoneuroendocrinology 2014, 48, 29–40. [Google Scholar] [CrossRef]
- McDonald, S.D.; Walker, M.; Perkins, S.L.; Beyene, J.; Murphy, K.; Gibb, W.; Ohlsson, A. The effect of tobacco exposure on the fetal hypothalamic-pituitary-adrenal axis. BJOG Int. J. Obstet. Gynaecol. 2006, 113, 1289–1295. [Google Scholar] [CrossRef]
- Gentner, M.B.; Leppert, M.L.O. Environmental influences on health and development: Nutrition, substance exposure, and adverse childhood experiences. Dev. Med. Child Neurol. 2019, 61, 1008–1014. [Google Scholar] [CrossRef]
- Suter, M.A.; Anders, A.M.; Aagaard, K.M. Maternal smoking as a model for environmental epigenetic changes affecting birthweight and fetal programming. Mol. Hum. Reprod. 2013, 19, 1–6. [Google Scholar] [CrossRef]
- Sikdar, S.; Joehanes, R.; Joubert, B.R.; Xu, C.J.; Vives-Usano, M.; Rezwan, F.I.; Felix, J.F.; Ward, J.M.; Guan, W.; Richmond, R.C.; et al. Comparison of smoking-related DNA methylation between newborns from prenatal exposure and adults from personal smoking. Epigenomics 2019, 11, 1487–1500. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, A.; Lutz, S.M.; Everson, T.M.; Perron, P.; Bouchard, L.; Hivert, M.F. Mediation by Placental DNA Methylation of the Association of Prenatal Maternal Smoking and Birth Weight. Am. J. Epidemiol. 2019, 188, 1878–1886. [Google Scholar] [CrossRef] [PubMed]
- Martin, E.M.; Fry, R.C. Environmental Influences on the Epigenome: Exposure- Associated DNA Methylation in Human Populations. Annu. Rev. Public Health 2018, 39, 309–333. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.M. Smoking and pregnancy: Epigenetics and developmental origins of the metabolic syndrome. Birth Defects Res. 2019, 111, 1259–1269. [Google Scholar] [CrossRef]
- Knopik, V.S.; Maccani, M.A.; Francazio, S.; McGeary, J.E. The epigenetics of maternal cigarette smoking during pregnancy and effects on child development. Dev. Psychopathol. 2012, 24, 1377–1390. [Google Scholar] [CrossRef]
- Li, G.; Wang, H.; Wang, K.; Wang, W.; Dong, F.; Qian, Y.; Gong, H.; Hui, C.; Xu, G.; Li, Y.; et al. The association between smoking and blood pressure in men: A cross-sectional study. BMC Public Health 2017, 17, 797. [Google Scholar] [CrossRef] [PubMed]
- Breton, C.V.; Byun, H.M.; Wenten, M.; Pan, F.; Yang, A.; Gilliland, F.D. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am. J. Respir. Crit. Care Med. 2009, 180, 462–467. [Google Scholar] [CrossRef]
- Folger, A.T.; Ding, L.; Ji, H.; Yolton, K.; Ammerman, R.T.; Van Ginkel, J.B.; Bowers, K. Neonatal NR3C1 Methylation and Social-Emotional Development at 6 and 18 Months of Age. Front. Behav. Neurosci. 2019, 13, 14. [Google Scholar] [CrossRef]
- Fortin, J.P.; Triche, T.J., Jr.; Hansen, K.D. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics 2017, 33, 558–560. [Google Scholar] [CrossRef]
- Aryee, M.J.; Jaffe, A.E.; Corrada-Bravo, H.; Ladd-Acosta, C.; Feinberg, A.P.; Hansen, K.D.; Irizarry, R.A. Minfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 2014, 30, 1363–1369. [Google Scholar] [CrossRef]
- Triche, T.J., Jr.; Weisenberger, D.J.; Van Den Berg, D.; Laird, P.W.; Siegmund, K.D. Low-level processing of Illumina Infinium DNA Methylation BeadArrays. Nucleic Acids Res. 2013, 41, e90. [Google Scholar] [CrossRef]
- Niu, L.; Xu, Z.; Taylor, J.A. RCP: A novel probe design bias correction method for Illumina Methylation BeadChip. Bioinformatics 2016, 32, 2659–2663. [Google Scholar] [CrossRef]
- Du, P.; Zhang, X.; Huang, C.-C.; Jafari, N.; Kibbe, W.A.; Hou, L.; Lin, S.M. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinform. 2010, 11, 587. [Google Scholar] [CrossRef] [PubMed]
- Kent, W.J.; Sugnet, C.W.; Furey, T.S.; Roskin, K.M.; Pringle, T.H.; Zahler, A.M.; Haussler, D. The human genome browser at UCSC. Genome Res. 2002, 12, 996–1006. [Google Scholar] [CrossRef] [PubMed]
- Tehranifar, P.; Wu, H.C.; McDonald, J.A.; Jasmine, F.; Santella, R.M.; Gurvich, I.; Flom, J.D.; Terry, M.B. Maternal cigarette smoking during pregnancy and offspring DNA methylation in midlife. Epigenetics 2018, 13, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Rzehak, P.; Saffery, R.; Reischl, E.; Covic, M.; Wahl, S.; Grote, V.; Xhonneux, A.; Langhendries, J.P.; Ferre, N.; Closa-Monasterolo, R.; et al. Maternal Smoking during Pregnancy and DNA-Methylation in Children at Age 5.5 Years: Epigenome-Wide-Analysis in the European Childhood Obesity Project (CHOP)-Study. PLoS ONE 2016, 11, e0155554. [Google Scholar] [CrossRef]
- Imamura, T.; Kinugawa, K.; Hatano, M.; Fujino, T.; Inaba, T.; Maki, H.; Kinoshita, O.; Nawata, K.; Kyo, S.; Ono, M.; et al. Low cardiac output stimulates vasopressin release in patients with stage d heart failure. Circ. J. 2014, 78, 2259–2267. [Google Scholar] [CrossRef]
- Pausova, Z.; Paus, T.; Sedova, L.; Berube, J. Prenatal exposure to nicotine modifies kidney weight and blood pressure in genetically susceptible rats: A case of gene-environment interaction. Kidney Int. 2003, 64, 829–835. [Google Scholar] [CrossRef]
- Richmond, R.C.; Simpkin, A.J.; Woodward, G.; Gaunt, T.R.; Lyttleton, O.; McArdle, W.L.; Ring, S.M.; Smith, A.D.; Timpson, N.J.; Tilling, K.; et al. Prenatal exposure to maternal smoking and offspring DNA methylation across the lifecourse: Findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Hum. Mol. Genet. 2015, 24, 2201–2217. [Google Scholar] [CrossRef]
- Olstad, E.W.; Nordeng, H.M.E.; Gervin, K. Prenatal medication exposure and epigenetic outcomes: A systematic literature review and recommendations for prenatal pharmacoepigenetic studies. Epigenetics 2022, 17, 357–380. [Google Scholar] [CrossRef]
Non-Smoker (N = 42) | Smoker (N = 10) | p Value | |
---|---|---|---|
N (%) | N (%) | ||
Age | 0.3 | ||
18–20 | 20 (47.6) | 2 (20.0) | |
21–24 | 17 (40.5) | 6 (60.0) | |
25–34 | 5 (11.9) | 2 (20.0) | |
Substance Use | 0.04 | ||
No | 40 (95.2) | 7 (70.0) | |
Yes | 2 (4.8) | 3 (30.0) | |
Race | |||
Non-White | 30 (71.4) | 5 (50.0) | 0.26 |
White | 12 (28.6) | 5 (50.0) | |
Low Income | |||
No | 1 (2.6) | 0 (0.0) | 1 |
Yes | 38 (97.4) | 10 (100.0) | |
Education | 0.5 | ||
Bachelor’s Degree | 1(2.4) | 0 (0) | |
GED | 2 (4.8) | 2 (20.0) | |
High School Diploma | 27 (64.3) | 6 (60.0) | |
Some College or 2 yr. degree | 8 (19.1) | 1 (10.0) | |
Some High School | 2 (4.8) | 1 (10.0) | |
Technical or Trade School | 2 (4.8) | 0 (0.0) | |
Breastfed | 0.05 | ||
No | 3 (7.3) | 3 (37.5) | |
Yes | 38 (92.7) | 5 (62.5) | |
Infant Sex | |||
Female | 22 (52.4) | 6 (60.0) | 0.74 |
Male | 20 (47.6) | 4 (40.0) | |
Preterm Birth | 0.02 | ||
No | 39 (92.9) | 6 (60.0) | |
Yes | 3 (7.1) | 4 (40.0) | |
Medicaid | 1 | ||
No | 2 (5.0) | 0 (0.0) | |
Yes | 38 (95.0) | 10 (100.0) |
Maternal Smoking DNAm by CpG Site | Adjusted Model Coefficient * (95% CI) | p Value ** | Bonferroni | FDR | Location | CPG | Enhancer |
---|---|---|---|---|---|---|---|
cpg12807275 | −0.12 (−0.19, −0.05) | 0.00 | 0.01 | 0.01 | Body | N_Shore | No |
cpg04827692 | −0.04 (−0.06, −0.01) | 0.01 | 0.03 | 0.01 | 1stExon | Island | No |
cpg16668728 | −0.00 (−0.01, 0.01) | 0.72 | 1.00 | 0.81 | 1stExon | Island | Yes |
cpg16352140 | −0.00 (−0.01, 0.01) | 0.40 | 1.00 | 0.53 | 1stExon | Island | Yes |
cpg24501701 | −0.00 (−0.02, 0.01) | 0.81 | 1.00 | 0.81 | 1stExon | Island | Yes |
cpg26727693 | −0.01 (−0.02, 0.01) | 0.29 | 1.00 | 0.47 | 1stExon | Island | Yes |
cpg09208611 | −0.01 (−0.02, −0.00) | 0.00 | 0.03 | 0.01 | 1stExon | Island | Yes |
cpg10906284 | −0.00 (−0.01, 0.00) | 0.13 | 0.65 | 0.26 | 1stExon | Island | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nidey, N.; Bowers, K.; Ding, L.; Ji, H.; Ammerman, R.T.; Yolton, K.; Mahabee-Gittens, E.M.; Folger, A.T. Neonatal AVPR1a Methylation and In-Utero Exposure to Maternal Smoking. Toxics 2023, 11, 855. https://doi.org/10.3390/toxics11100855
Nidey N, Bowers K, Ding L, Ji H, Ammerman RT, Yolton K, Mahabee-Gittens EM, Folger AT. Neonatal AVPR1a Methylation and In-Utero Exposure to Maternal Smoking. Toxics. 2023; 11(10):855. https://doi.org/10.3390/toxics11100855
Chicago/Turabian StyleNidey, Nichole, Katherine Bowers, Lili Ding, Hong Ji, Robert T. Ammerman, Kimberly Yolton, E. Melinda Mahabee-Gittens, and Alonzo T. Folger. 2023. "Neonatal AVPR1a Methylation and In-Utero Exposure to Maternal Smoking" Toxics 11, no. 10: 855. https://doi.org/10.3390/toxics11100855
APA StyleNidey, N., Bowers, K., Ding, L., Ji, H., Ammerman, R. T., Yolton, K., Mahabee-Gittens, E. M., & Folger, A. T. (2023). Neonatal AVPR1a Methylation and In-Utero Exposure to Maternal Smoking. Toxics, 11(10), 855. https://doi.org/10.3390/toxics11100855