Structural Malformations in the Neonatal Rat Brain Accompany Developmental Exposure to Ammonium Perchlorate †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment 1—Developmental Perchlorate Dose Response Assessment
2.2. Experiment 2—Postnatal Dosing with Perchlorate
2.3. Experiment 3—Dietary Iodine Deficiency and Drinking Water Exposure to Perchlorate
2.4. Perchlorate Analysis in Serum
2.5. Serum and Brain Hormone Analysis
2.6. Gene Expression in PVH Region by Quantitative Real-Time PCR
2.7. Periventricular Heterotopia Assessment
2.8. Statistical Analysis
3. Results and Discussion
3.1. Experiment 1: Dose–Response—Serum and Brain Thyroid Hormones and Heterotopia
3.2. Experiment 2: Direct Postnatal Dosing—Thyroid Hormones and Heterotopia
3.3. Experiment 3—Dietary Iodine Deficiency and Perchlorate Exposure
4. General Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodman, J.H.; Gilbert, M.E. Modest thyroid hormone insufficiency during development induces a cellular malformation in the corpus callosum: A model of cortical dysplasia. Endocrinology 2007, 148, 2593–2597. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.E.; Ramos, R.L.; McCloskey, D.P.; Goodman, J.H. Subcortical band heterotopia in rat offspring following maternal hypothyroxinaemia: Structural and functional characteristics. J. Neuroendocrinol. 2014, 26, 528–541. [Google Scholar] [CrossRef] [PubMed]
- O’Shaughnessy, K.L.; Kosian, P.A.; Ford, J.L.; Oshiro, W.M.; Degitz, S.J.; Gilbert, M.E. Developmental Thyroid Hormone Insufficiency Induces a Cortical Brain Malformation and Learning Impairments: A Cross-Fostering Study. Toxicol. Sci. 2018, 163, 101–115. [Google Scholar] [CrossRef] [PubMed]
- O’Shaughnessy, K.L.; Thomas, S.E.; Spring, S.R.; Ford, J.L.; Ford, R.L.; Gilbert, M.E. A transient window of hypothyroidism alters neural progenitor cells and results in abnormal brain development. Sci. Rep. 2019, 9, 4662. [Google Scholar] [CrossRef] [PubMed]
- O’Shaughnessy, K.L.; McMichael, B.D.; Sasser, A.L.; Bell, K.S.; Riutta, C.; Ford, J.L.; Stoker, T.E.; Grindstaff, R.D.; Pandiri, A.R.; Gilbert, M.E. Thyroid hormone action controls multiple components of cell junctions at the ventricular zone in the newborn rat brain. Front. Endocrinol. 2023, 14, 1090081. [Google Scholar] [CrossRef] [PubMed]
- Minami, K.; Suto, H.; Sato, A.; Ogata, K.; Kosaka, T.; Hojo, H.; Takahashi, N.; Tomiyama, N.; Fukuda, T.; Iwashita, K.; et al. Feasibility study for a downsized comparative thyroid assay with measurement of brain thyroid hormones and histopathology in rats: Case study with 6-propylthiouracil and sodium phenobarbital at high dose. Regul. Toxicol. Pharmacol. 2023, 137, 105283. [Google Scholar] [CrossRef] [PubMed]
- Ramhøj, L.; Frädrich, C.; Svingen, T.; Scholze, M.; Wirth, E.K.; Rijntjes, E.; Köhrle, J.; Kortenkamp, A.; Axelstad, M. Testing for heterotopia formation in rats after developmental exposure to selected in vitro inhibitors of thyroperoxidase. Environ. Pollut. 2021, 283, 117135. [Google Scholar] [CrossRef]
- Navarro, D.; Alvarado, M.; Navarrete, F.; Giner, M.; Obregon, M.J.; Manzanares, J.; Berbel, P. Gestational and early postnatal hypothyroidism alters VGluT1 and VGAT bouton distribution in the neocortex and hippocampus, and behavior in rats. Front. Neuroanat. 2015, 9, 9. [Google Scholar] [CrossRef]
- Martinez-Galan, J.R.; Escobar del Rey, F.; Morreale de Escobar, G.; Santacana, M.; Ruiz-Marcos, A. Hypothyroidism alters the development of radial glial cells in the term fetal and postnatal neocortex of the rat. Brain Res. Dev. Brain Res. 2004, 153, 109–114. [Google Scholar] [CrossRef]
- Martinez-Galan, J.R.; Pedraza, P.; Santacana, M.; Escobar del Ray, F.; Morreale de Escobar, G.; Ruiz-Marcos, A. Early effects of iodine deficiency on radial glial cells of the hippocampus of the rat fetus. A model of neurological cretinism. J. Clin. Investig. 1997, 99, 2701–2709. [Google Scholar] [CrossRef]
- Axelstad, M.; Ramhøj, L.; Scholze, M.; Martin, O.; Köhrle, J.; Kortenkamp, A.; Research Group for Molecular and Reproductive Toxicology, National Food Institute. Development of a Study Protocol for Thyroid Disruptor Testing in the Mammalian System: Deliverable 17: Revised Study Protocol with Recommendations for Follow-Up Activities; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Kortenkamp, A.; Axelstad, M.; Baig, A.H.; Bergman, Å.; Bornehag, C.G.; Cenijn, P.; Christiansen, S.; Demeneix, B.; Derakhshan, A.; Fini, J.B.; et al. Removing Critical Gaps in Chemical Test Methods by Developing New Assays for the Identification of Thyroid Hormone System-Disrupting Chemicals-The ATHENA Project. Int. J. Mol. Sci. 2020, 21, 3123. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.E.; O’Shaughnessy, K.L.; Axelstad, M. Regulation of Thyroid-disrupting Chemicals to Protect the Developing Brain. Endocrinology 2020, 161, 10. [Google Scholar] [CrossRef] [PubMed]
- O’Shaughnessy, K.L.; Gilbert, M.E. Thyroid disrupting chemicals and developmental neurotoxicity—New tools and approaches to evaluate hormone action. Mol. Cell Endocrinol. 2019, 518, 110663. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.E.; Hassan, I.; Wood, C.; O’Shaughnessy, K.L.; Spring, S.; Thomas, S.; Ford, J. Gestational Exposure to Perchlorate in the Rat: Thyroid Hormones in Fetal Thyroid Gland, Serum, and Brain. Toxicol. Sci. 2022, 188, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Hassan, I.; El-Masri, H.; Kosian, P.A.; Ford, J.; Degitz, S.J.; Gilbert, M.E. Neurodevelopment and Thyroid Hormone Synthesis Inhibition in the Rat: Quantitative Understanding Within the Adverse Outcome Pathway Framework. Toxicol. Sci. 2017, 160, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Ramhøj, L.; Svingen, T.; Frädrich, C.; Rijntjes, E.; Wirth, E.K.; Pedersen, K.; Köhrle, J.; Axelstad, M. Perinatal exposure to the thyroperoxidase inhibitors methimazole and amitrole perturbs thyroid hormone system signaling and alters motor activity in rat offspring. Toxicol. Lett. 2022, 354, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Dohán, O.; Portulano, C.; Basquin, C.; Reyna-Neyra, A.; Amzel, L.M.; Carrasco, N. The Na+/I symporter (NIS) mediates electroneutral active transport of the environmental pollutant perchlorate. Proc. Natl. Acad. Sci. USA 2007, 104, 20250–20255. [Google Scholar] [CrossRef]
- Llorente-Esteban, A.; Manville, R.W.; Reyna-Neyra, A.; Abbott, G.W.; Amzel, L.M.; Carrasco, N. Allosteric regulation of mammalian Na(+)/I(-) symporter activity by perchlorate. Nat. Struct. Mol. Biol. 2020, 27, 533–539. [Google Scholar] [CrossRef]
- Ravera, S.; Reyna-Neyra, A.; Ferrandino, G.; Amzel, L.M.; Carrasco, N. The Sodium/Iodide Symporter (NIS): Molecular Physiology and Preclinical and Clinical Applications. Annu. Rev. Physiol. 2017, 79, 261–289. [Google Scholar] [CrossRef]
- Gilbert, M.; Sui, L. Developmental exposure to perchlorate alters synaptic transmission in hippocampus of the adult rat. Environ. Health Perspect. 2008, 116, 752–760. [Google Scholar] [CrossRef]
- York, R.G.; Barnett, J., Jr.; Brown, W.R.; Garman, R.H.; Mattie, D.R.; Dodd, D. A rat neurodevelopmental evaluation of offspring, including evaluation of adult and neonatal thyroid, from mothers treated with ammonium perchlorate in drinking water. Int. J. Toxicol. 2004, 23, 191–214. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.E.; Hedge, J.M.; Valentin-Blasini, L.; Blount, B.C.; Kannan, K.; Tietge, J.; Zoeller, R.T.; Crofton, K.M.; Jarrett, J.M.; Fisher, J.W. An animal model of marginal iodine deficiency during development: The thyroid axis and neurodevelopmental outcome. Toxicol. Sci. 2013, 132, 177–195. [Google Scholar] [CrossRef] [PubMed]
- Oldi, J.F.; Kannan, K. Perchlorate in human blood serum and plasma: Relationship to concentrations in saliva. Chemosphere 2009, 77, 43–47. [Google Scholar] [CrossRef] [PubMed]
- O’Shaughnessy, K.L.; Wood, C.R.; Ford, R.L.; Kosian, P.A.; Hotchkiss, M.G.; Degitz, S.J.; Gilbert, M.E. Thyroid Hormone Disruption in the Fetal and Neonatal Rat: Predictive Hormone Measures and Bioindicators of Hormone Action in the Developing Cortex. Toxicol. Sci. 2018, 166, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Ford, J.; Riutta, C.; Kosian, P.A.; O’Shaughessy, K.; Gilbert, M. Reducing uncertainties in quantitative adverse outcome pathways by analysis of thyroid hormone in the neonatal rat brain. Toxicol. Sci. 2023, 193, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 2nd ed.; Academic Press: New York, NY, USA, 1986. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Spring, S.R.; Bastian, T.W.; Wang, Y.; Kosian, P.; Anderson, G.W.; Gilbert, M.E. Thyroid hormone-dependent formation of a subcortical band heterotopia (SBH) in the neonatal brain is not exacerbated under conditions of low dietary iron (FeD). Neurotoxicol. Teratol. 2016, 56, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.E.; O’Shaughnessy, K.L.; Thomas, S.E.; Riutta, C.; Wood, C.R.; Smith, A.; Oshiro, W.O.; Ford, R.L.; Hotchkiss, M.G.; Hassan, I.; et al. Thyroid Disruptors: Extrathyroidal Sites of Chemical Action and Neurodevelopmental Outcome-An Examination Using Triclosan and Perfluorohexane Sulfonate. Toxicol. Sci. 2021, 183, 195–213. [Google Scholar] [CrossRef]
- Axelstad, M.; Boberg, J.; Hougaard, K.S.; Christiansen, S.; Jacobsen, P.R.; Mandrup, K.R.; Nellemann, C.; Lund, S.P.; Hass, U. Effects of pre- and postnatal exposure to the UV-filter octyl methoxycinnamate (OMC) on the reproductive, auditory and neurological development of rat offspring. Toxicol. Appl. Pharmacol. 2011, 250, 278–290. [Google Scholar] [CrossRef]
- Axelstad, M.; Boberg, J.; Nellemann, C.; Kiersgaard, M.; Jacobsen, P.R.; Christiansen, S.; Hougaard, K.S.; Hass, U. Exposure to the widely used fungicide mancozeb causes thyroid hormone disruption in rat dams but no behavioral effects in the offspring. Toxicol. Sci. 2011, 120, 439–446. [Google Scholar] [CrossRef]
- Axelstad, M.; Boberg, J.; Vinggaard, A.M.; Christiansen, S.; Hass, U. Triclosan exposure reduces thyroxine levels in pregnant and lactating rat dams and in directly exposed offspring. Food Chem. Toxicol. 2013, 59, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Paul, K.B.; Hedge, J.M.; Bansal, R.; Zoeller, R.T.; Peter, R.; DeVito, M.J.; Crofton, K.M. Developmental triclosan exposure decreases maternal, fetal, and early neonatal thyroxine: A dynamic and kinetic evaluation of a putative mode-of-action. Toxicology 2012, 300, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Paul, K.B.; Hedge, J.M.; Devito, M.J.; Crofton, K.M. Developmental triclosan exposure decreases maternal and neonatal thyroxine in rats. Environ. Toxicol. Chem. 2010, 29, 2840–2844. [Google Scholar] [CrossRef] [PubMed]
- Clewell, R.A.; Merrill, E.A.; Gearhart, J.M.; Robinson, P.J.; Sterner, T.R.; Mattie, D.R.; Clewell, H.J. Perchlorate and Radioiodide Kinetics Across Life Stages in the Human: Using PBPK Models to Predict Dosimetry and Thyroid Inhibition and Sensitive Subpopulations Based on Developmental Stage. J. Toxicol. Environ. Health Part A 2007, 70, 408–428. [Google Scholar] [CrossRef] [PubMed]
- Clewell, R.A.; Merrill, E.A.; Yu, K.O.; Mahle, D.A.; Sterner, T.R.; Fisher, J.W.; Gearhart, J.M. Predicting Neonatal Perchlorate Dose and Inhibition of Iodide Uptake in the Rat during Lactation Using Physiologically-Based Pharmacokinetic Modeling. Toxicol. Sci. 2003, 74, 416–436. [Google Scholar] [CrossRef] [PubMed]
- Clewell, R.A.; Merrill, E.A.; Yu, K.O.; Mahle, D.A.; Sterner, T.R.; Mattie, D.R.; Robinson, P.J.; Fisher, J.W.; Gearhart, J.M. Predicting Fetal Perchlorate Dose and Inhibition of Iodide Kinetics during Gestation: A Physiologically-Based Pharmacokinetic Analysis of Perchlorate and Iodide Kinetics in the Rat. Toxicol. Sci. 2003, 73, 235–255. [Google Scholar] [CrossRef] [PubMed]
- Merrill, E.A.; Clewell, R.A.; Robinson, P.J.; Jarabek, A.M.; Gearhart, J.M.; Sterner, T.R.; Fisher, J.W. PBPK Model for Radioactive Iodide and Perchlorate Kinetics and Perchlorate-Induced Inhibition of Iodide Uptake in Humans. Toxicol. Sci. 2004, 83, 25–43. [Google Scholar] [CrossRef]
- Lumen, A.; Mattie, D.R.; Fisher, J.W. Evaluation of perturbations in serum thyroid hormones during human pregnancy due to dietary iodide and perchlorate exposure using a biologically based dose-response model. Toxicol. Sci. 2013, 133, 320–341. [Google Scholar] [CrossRef]
- Fisher, J.; Housand, C.; Mattie, D.; Nong, A.; Moreau, M.; Gilbert, M. Towards translating in vitro measures of thyroid hormone system disruption to in vivo responses in the pregnant rat via a biologically based dose response (BBDR) model. Toxicol. Appl. Pharmacol. 2023, 479, 116733. [Google Scholar] [CrossRef]
- Fisher, J.W.; Li, S.; Crofton, K.; Zoeller, R.T.; McLanahan, E.D.; Lumen, A.; Gilbert, M.E. Evaluation of iodide deficiency in the lactating rat and pup using a biologically based dose-response model. Toxicol. Sci. 2013, 132, 75–86. [Google Scholar] [CrossRef]
- Gilbert, M.E.; McLanahan, E.D.; Hedge, J.; Crofton, K.M.; Fisher, J.W.; Valentin-Blasini, L.; Blount, B.C. Marginal iodide deficiency and thyroid function: Dose-response analysis for quantitative pharmacokinetic modeling. Toxicology 2011, 283, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.E.; Goodman, J.H.; Gomez, J.; Johnstone, A.F.M.; Ramos, R.L. Adult hippocampal neurogenesis is impaired by transient and moderate developmental thyroid hormone disruption. Neurotoxicology 2017, 59, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.E.; Hassan, I.; O’Shaughnessy, K.L.; Wood, C.; Stoker, T.E.; Riutta, C.; Ford, J.L. Ammonium Perchlorate: Serum Dosimetry, Neurotoxicity and Resilience of the Neonatal Rat Thyroid System. Toxicol. Sci. 2023; under review. [Google Scholar]
- Barez-Lopez, S.; Obregon, M.J.; Bernal, J.; Guadano-Ferraz, A. Thyroid Hormone Economy in the Perinatal Mouse Brain: Implications for Cerebral Cortex Development. Cereb. Cortex 2017, 28, 1783–1793. [Google Scholar] [CrossRef] [PubMed]
- Loosen, P.T. Effects of thyroid hormones on central nervous system in aging. Psychoneuroendocrinology 1992, 17, 355–374. [Google Scholar] [CrossRef] [PubMed]
- Bernal, J. Thyroid hormone regulated genes in cerebral cortex development. J. Endocrinol. 2017, 232, R83–R97. [Google Scholar] [CrossRef] [PubMed]
- Rovet, J. Personal Communication. 2012. [Google Scholar]
- Li, A.; Makris, S.L.; Marty, M.S.; Strauss, V.; Gilbert, M.E.; Blacker, A.; Zorrilla, L.M.; Coder, P.S.; Hannas, B.; Lordi, S.; et al. Practical considerations for developmental thyroid toxicity assessments: What’s working, what’s not, and how can we do better? Regul. Toxicol. Pharmacol. 2019, 106, 111–136. [Google Scholar] [CrossRef] [PubMed]
- Browne, P.; Van Der Wal, L.; Gourmelon, A. OECD approaches and considerations for regulatory evaluation of endocrine disruptors. Mol. Cell Endocrinol. 2020, 504, 110675. [Google Scholar] [CrossRef]
- US EPA. Guidance for Thyroid Assays in Pregnant Animals, Fetuses and Postnatal Animals, and Adult Animals; Office of Pesticide Programs, Health Effects Division: Washington DC, USA, 2005. Available online: https://www.epa.gov/sites/production/files/2015-06/documents/thyroid_guidance_assay.pdf (accessed on 8 December 2023).
PVH Area Transcripts—PN6 | Gene Name | ID | |
---|---|---|---|
Direct TH Target | Hr | Hairless, HR Lysine Demethylase and Nuclear Receptor Corepressor | Rn00577605_m1 |
Shh | Sonic hedge hog | Rn00568129_m1 | |
Klf9 (Bteb1) | Kruppel-like factor 9, Basic transcription element binding protein | Rn00589498_m1 | |
TH-Responsive | Bdnftotal | Brain-derived neurotropic factor | Rn02531967_s1 |
Bmp7 | Bone morphogenetic protein 7 | Rn01528889_m1 | |
PVH-Associated Transcripts | Spred1 | Sprouty-related, EVH1 domain-containing protein 1 | Rn01486390_m1 |
Pax6 | Paired box protein Pax-6 | Rn00689608_m1 | |
Reference Gene | B2m | Beta 2-microglobulin | Rn00560865_m1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gilbert, M.E.; O’Shaughnessy, K.L.; Bell, K.S.; Ford, J.L. Structural Malformations in the Neonatal Rat Brain Accompany Developmental Exposure to Ammonium Perchlorate. Toxics 2023, 11, 1027. https://doi.org/10.3390/toxics11121027
Gilbert ME, O’Shaughnessy KL, Bell KS, Ford JL. Structural Malformations in the Neonatal Rat Brain Accompany Developmental Exposure to Ammonium Perchlorate. Toxics. 2023; 11(12):1027. https://doi.org/10.3390/toxics11121027
Chicago/Turabian StyleGilbert, Mary E., Katherine L. O’Shaughnessy, Kiersten S. Bell, and Jermaine L. Ford. 2023. "Structural Malformations in the Neonatal Rat Brain Accompany Developmental Exposure to Ammonium Perchlorate" Toxics 11, no. 12: 1027. https://doi.org/10.3390/toxics11121027
APA StyleGilbert, M. E., O’Shaughnessy, K. L., Bell, K. S., & Ford, J. L. (2023). Structural Malformations in the Neonatal Rat Brain Accompany Developmental Exposure to Ammonium Perchlorate. Toxics, 11(12), 1027. https://doi.org/10.3390/toxics11121027