The Association of Perfluoroalkyl Substance Exposure and a Serum Liver Function Marker in Korean Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Liver Function Test
2.3. PFAS
2.4. Effect of Potential Confounders
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Fenton, S.E.; Ducatman, A.; Boobis, A.; DeWitt, J.C.; Lau, C.; Ng, C.; Smith, J.S.; Roberts, S.M. Per-and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research. Environ. Toxicol. Chem. 2021, 40, 606–630. [Google Scholar] [CrossRef] [PubMed]
- Kurwadkar, S.; Dane, J.; Kanel, S.R.; Nadagouda, M.N.; Cawdrey, R.W.; Ambade, B.; Struckhoff, G.C.; Wilkin, R. Per-and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Sci. Total Environ. 2022, 809, 151003. [Google Scholar] [CrossRef] [PubMed]
- Glüge, J.; Scheringer, M.; Cousins, I.T.; DeWitt, J.C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Trier, X.; Wang, Z. An overview of the uses of per-and polyfluoroalkyl substances (PFAS). Environ. Sci. Process. Impacts 2020, 22, 2345–2373. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Food and Drug Safety. Integrated Risk Assessment of Perfluorinated Compounds; Ministry of Food and Drug Safety: Cheongju, Republic of Korea, 2022; p. 65.
- Ducatman, A.; Fenton, S.E. Invited perspective: PFAS and liver disease: Bringing all the evidence together. Environ. Health Perspect. 2022, 130, 041303. [Google Scholar] [CrossRef]
- Costello, E.; Rock, S.; Stratakis, N.; Eckel, S.P.; Walker, D.I.; Valvi, D.; Cserbik, D.; Jenkins, T.; Xanthakos, S.A.; Kohli, R. Exposure to per-and polyfluoroalkyl substances and markers of liver injury: A systematic review and meta-analysis. Environ. Health Perspect. 2022, 130, 046001. [Google Scholar] [CrossRef] [PubMed]
- Sen, P.; Qadri, S.; Luukkonen, P.K.; Ragnarsdottir, O.; McGlinchey, A.; Jäntti, S.; Juuti, A.; Arola, J.; Schlezinger, J.J.; Webster, T.F. Exposure to environmental contaminants is associated with altered hepatic lipid metabolism in non-alcoholic fatty liver disease. J. Hepatol. 2022, 76, 283–293. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, L.; Ducatman, A.; Deng, C.; von Stackelberg, K.E.; Danford, C.J.; Zhang, X. Association of per-and polyfluoroalkyl substance exposure with fatty liver disease risk in US adults. JHEP Rep. 2023, 5, 100694. [Google Scholar] [CrossRef]
- Goodrich, J.A.; Walker, D.; Lin, X.; Wang, H.; Lim, T.; McConnell, R.; Conti, D.V.; Chatzi, L.; Setiawan, V.W. Exposure to perfluoroalkyl substances and risk of hepatocellular carcinoma in a multiethnic cohort. JHEP Rep. 2022, 4, 100550. [Google Scholar] [CrossRef]
- Kang, S.H.; Lee, H.W.; Yoo, J.-J.; Cho, Y.; Kim, S.U.; Lee, T.H.; Jang, B.K.; Kim, S.G.; Ahn, S.B.; Kim, H. KASL clinical practice guidelines: Management of non-alcoholic fatty liver disease. Clin. Mol. Hepatol. 2021, 27, 363. [Google Scholar] [CrossRef]
- Tincopa, M.A.; Loomba, R. Non-invasive diagnosis and monitoring of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Lancet Gastroenterol. Hepatol. 2023. [Google Scholar] [CrossRef]
- Kim, B.H.; Park, J.-W. Epidemiology of liver cancer in South Korea. Clin. Mol. Hepatol. 2018, 24, 1. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.-J.; Kim, S.; Park, E.Y.; Oh, J.K.; Jung, S.K.; Park, S.; Hong, S.; Jeon, H.L.; Kim, H.-J.; Park, B. Exposure to serum perfluoroalkyl substances and biomarkers of liver function: The Korean national environmental health survey 2015–2017. Chemosphere 2023, 322, 138208. [Google Scholar] [CrossRef] [PubMed]
- Lala, V.; Zubair, M.; Minter, D.A. Liver function tests. In StatPearls [Internet]; StatPearls Publishing: Tampa, FL, USA, 2022. [Google Scholar]
- Prati, D.; Taioli, E.; Zanella, A.; Torre, E.D.; Butelli, S.; Del Vecchio, E.; Vianello, L.; Zanuso, F.; Mozzi, F.; Milani, S. Updated definitions of healthy ranges for serum alanine aminotransferase levels. Ann. Intern. Med. 2002, 137, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Sumon, A.H.; Fariha, K.A.; Asaduzzaman, M.; Kathak, R.R.; Molla, N.H.; Mou, A.D.; Barman, Z.; Hasan, M.; Miah, R. Assessment of the relationship of serum liver enzymes activity with general and abdominal obesity in an urban Bangladeshi population. Sci. Rep. 2021, 11, 6640. [Google Scholar] [CrossRef] [PubMed]
- NIER. The Korean National Environmental Health Survey Cycle 4—The Manual for Environmental Chemical Analysis Using Biological Sample—Organic Compound; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Nuttall, F.Q. Body mass index: Obesity, BMI, and health: A critical review. Nutr. Today 2015, 50, 117. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Nagalli, S. Chronic liver disease. In StatPearls [Internet]; StatPearls Publishing: Tampa, FL, USA, 2022. [Google Scholar]
- Ma, X.; Fisher, J.A.; VoPham, T.; Vasiliou, V.; Jones, R.R. Associations between per-and polyfluoroalkyl substances, liver function, and daily alcohol consumption in a sample of US adults. Environ. Res. 2023, 235, 116651. [Google Scholar] [CrossRef]
- Cakmak, S.; Lukina, A.; Karthikeyan, S.; Atlas, E.; Dales, R. The association between blood PFAS concentrations and clinical biochemical measures of organ function and metabolism in participants of the Canadian Health Measures Survey (CHMS). Sci. Total Environ. 2022, 827, 153900. [Google Scholar] [CrossRef]
- Borghese, M.M.; Liang, C.L.; Owen, J.; Fisher, M. Individual and mixture associations of perfluoroalkyl substances on liver function biomarkers in the Canadian Health Measures Survey. Environ. Health 2022, 21, 85. [Google Scholar] [CrossRef]
- Attanasio, R. Sex differences in the association between perfluoroalkyl acids and liver function in US adolescents: Analyses of NHANES 2013–2016. Environ. Pollut. 2019, 254, 113061. [Google Scholar] [CrossRef]
- Stratakis, N.; Conti, D.V.; Jin, R.; Margetaki, K.; Valvi, D.; Siskos, A.P.; Maitre, L.; Garcia, E.; Varo, N.; Zhao, Y. Prenatal exposure to perfluoroalkyl substances associated with increased susceptibility to liver injury in children. Hepatology 2020, 72, 1758–1770. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, X. Association between perfluoroalkyl substances exposure and the prevalence of non-alcoholic fatty liver disease in the different sexes: A study from the National Health and Nutrition Examination Survey 2005–2018. Environ. Sci. Pollut. Res. 2023, 30, 44292–44303. [Google Scholar]
- Waxman, D.J.; Holloway, M.G. Sex differences in the expression of hepatic drug metabolizing enzymes. Mol. Pharmacol. 2009, 76, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, M.; Wierman, M.E.; Angus, P.; Handelsman, D.J. Reproductive endocrinology of non-alcoholic fatty liver disease. Endocr. Rev. 2019, 40, 417–446. [Google Scholar] [CrossRef] [PubMed]
- Roth, K.; Yang, Z.; Agarwal, M.; Liu, W.; Peng, Z.; Long, Z.; Birbeck, J.; Westrick, J.; Liu, W.; Petriello, M.C. Exposure to a mixture of legacy, alternative, and replacement per-and polyfluoroalkyl substances (PFAS) results in sex-dependent modulation of cholesterol metabolism and liver injury. Environ. Int. 2021, 157, 106843. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Lin, L.-Y.; Chiang, C.-K.; Wang, W.-J.; Su, Y.-N.; Hung, K.-Y.; Chen, P.-C. Investigation of the associations between low-dose serum perfluorinated chemicals and liver enzymes in US adults. Off. J. Am. Coll. Gastroenterol. ACG 2010, 105, 1354–1363. [Google Scholar] [CrossRef] [PubMed]
- Gallo, V.; Leonardi, G.; Genser, B.; Lopez-Espinosa, M.-J.; Frisbee, S.J.; Karlsson, L.; Ducatman, A.M.; Fletcher, T. Serum perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) concentrations and liver function biomarkers in a population with elevated PFOA exposure. Environ. Health Perspect. 2012, 120, 655–660. [Google Scholar] [CrossRef]
- Jain, R.B.; Ducatman, A. Selective associations of recent low concentrations of perfluoroalkyl substances with liver function biomarkers: NHANES 2011 to 2014 data on US adults aged ≥20 years. J. Occup. Environ. Med. 2019, 61, 293–302. [Google Scholar] [CrossRef]
- Fabbrini, E.; Sullivan, S.; Klein, S. Obesity and non-alcoholic fatty liver disease: Biochemical, metabolic, and clinical implications. Hepatology 2010, 51, 679–689. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Arisawa, K.; Uemura, H.; Katsuura-Kamano, S.; Takami, H.; Sawachika, F.; Nakamoto, M.; Juta, T.; Toda, E.; Mori, K. Consumption of seafood, serum liver enzymes, and blood levels of PFOS and PFOA in the Japanese population. J. Occup. Health 2013, 55, 184–194. [Google Scholar] [CrossRef]
- Nian, M.; Li, Q.-Q.; Bloom, M.; Qian, Z.M.; Syberg, K.M.; Vaughn, M.G.; Wang, S.-Q.; Wei, Q.; Zeeshan, M.; Gurram, N. Liver function biomarkers disorder is associated with exposure to perfluoroalkyl acids in adults: Isomers of C8 Health Project in China. Environ. Res. 2019, 172, 81–88. [Google Scholar] [CrossRef]
- Li, C.-H.; Ren, X.-M.; Cao, L.-Y.; Qin, W.-P.; Guo, L.-H. Investigation of binding and activity of perfluoroalkyl substances to the human peroxisome proliferator-activated receptor β/δ. Environ. Sci. Process. Impacts 2019, 21, 1908–1914. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, G.; Heiger-Bernays, W.J.; Schlezinger, J.J.; Webster, T.F. Predicting the effects of per-and polyfluoroalkyl substance mixtures on peroxisome proliferator-activated receptor alpha activity in vitro. Toxicology 2022, 465, 153024. [Google Scholar] [CrossRef] [PubMed]
- Evans, N.; Conley, J.M.; Cardon, M.; Hartig, P.; Medlock-Kakaley, E.; Gray, L.E., Jr. In vitro activity of a panel of per-and polyfluoroalkyl substances (PFAS), fatty acids, and pharmaceuticals in peroxisome proliferator-activated receptor (PPAR) alpha, PPAR gamma, and estrogen receptor assays. Toxicol. Appl. Pharmacol. 2022, 449, 116136. [Google Scholar] [CrossRef] [PubMed]
- Beggs, K.M.; McGreal, S.R.; McCarthy, A.; Gunewardena, S.; Lampe, J.N.; Lau, C.; Apte, U. The role of hepatocyte nuclear factor 4-alpha in perfluorooctanoic acid-and perfluorooctanesulfonic acid-induced hepatocellular dysfunction. Toxicol. Appl. Pharmacol. 2016, 304, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, L.E.; Guo, G.L. Understanding environmental contaminants’ direct effects on non-alcoholic fatty liver disease progression. Curr. Environ. Health Rep. 2019, 6, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Nie, X.; Mao, J.; Zhang, Y.; Yin, K.; Sun, P.; Luo, J.; Liu, Y.; Jiang, S.; Sun, L. Perfluorooctane sulfonate mediates secretion of IL-1β through PI3K/AKT NF-κB pathway in astrocytes. Neurotoxicol. Teratol. 2018, 67, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Taibl, K.R.; Schantz, S.; Aung, M.T.; Padula, A.; Geiger, S.; Smith, S.; Park, J.-S.; Milne, G.L.; Robinson, J.F.; Woodruff, T.J. Associations of per-and polyfluoroalkyl substances (PFAS) and their mixture with oxidative stress biomarkers during pregnancy. Environ. Int. 2022, 169, 107541. [Google Scholar] [CrossRef]
- Weng, Z.; Xu, C.; Zhang, X.; Pang, L.; Xu, J.; Liu, Q.; Zhang, L.; Xu, S.; Gu, A. Autophagy mediates perfluorooctanoic acid-induced lipid metabolism disorder and NLRP3 inflammasome activation in hepatocytes. Environ. Pollut. 2020, 267, 115655. [Google Scholar] [CrossRef]
- Ahmed, Z.; Ahmed, U.; Walayat, S.; Ren, J.; Martin, D.K.; Moole, H.; Koppe, S.; Yong, S.; Dhillon, S. Liver function tests in identifying patients with liver disease. Clin. Exp. Gastroenterol. 2018, 11, 301–307. [Google Scholar] [CrossRef]
- Blake, B.E.; Cope, H.A.; Hall, S.M.; Keys, R.D.; Mahler, B.W.; McCord, J.; Scott, B.; Stapleton, H.M.; Strynar, M.J.; Elmore, S.A. Evaluation of maternal, embryo, and placental effects in CD-1 mice following gestational exposure to perfluorooctanoic acid (PFOA) or hexafluoropropylene oxide dimer acid (HFPO-DA or GenX). Environ. Health Perspect. 2020, 128, 027006. [Google Scholar] [CrossRef]
- Bagley, B.D.; Chang, S.-C.; Ehresman, D.J.; Eveland, A.; Zitzow, J.D.; Parker, G.A.; Peters, J.M.; Wallace, K.B.; Butenhoff, J.L. Perfluorooctane sulfonate-induced hepatic steatosis in male Sprague Dawley rats is not attenuated by dietary choline supplementation. Toxicol. Sci. 2017, 160, 284–298. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Chu, H.; Lee, S. Factors influencing on health-related quality of life in South Korean with chronic liver disease. Health Qual. Life Outcomes 2018, 16, 142. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Plank, L.D.; Suk, K.T.; Park, Y.E.; Lee, J.; Choi, J.H.; Heo, N.Y.; Park, J.; Kim, T.O.; Moon, Y.S. Trends in the prevalence of chronic liver disease in the Korean adult population, 1998–2017. Clin. Mol. Hepatol. 2020, 26, 209. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Yang, Y.; Wen, C.; Liu, W.; Cao, L.; Feng, X.; Chen, J.; Wang, H.; Tang, Y.; Tian, L. Effects of environmental contaminants in water resources on non-alcoholic fatty liver disease. Environ. Int. 2021, 154, 106555. [Google Scholar] [CrossRef]
Characteristics | Total | Men | Women |
---|---|---|---|
N | 2961 | 1279 | 1682 |
Age | |||
19–29 | 238 (8.0) | 102 (8.0) | 136 (8.1) |
30–39 | 393 (13.3) | 169 (13.2) | 224 (13.3) |
40–49 | 573 (19.4) | 247 (19.3) | 326 (19.4) |
50–59 | 650 (22.0) | 250 (19.5) | 400 (23.8) |
60–69 | 719 (24.3) | 319 (24.9) | 400 (23.8) |
70 | 388 (13.1) | 192 (15.0) | 196 (11.7) |
Mean age | 52.45 ± 14.74 | 52.94 ± 15.14 | 52.08 ± 14.42 |
Smoking status | |||
Never | 1913 (64.6) | 321 (25.1) | 1592 (94.6) |
Former | 589 (19.9) | 545 (42.6) | 44 (2.6) |
Current | 459 (15.5) | 413 (32.3) | 46 (2.7) |
Alcohol intake a | |||
No | 2655 (89.7) | 1034 (80.8) | 1621 (96.4) |
Yes | 306 (10.3) | 245 (19.2) | 61 (3.6) |
Regular exercise b | |||
No | 2062 (69.6) | 890 (69.6) | 1172 (69.7) |
Yes | 899 (30.4) | 389 (30.4) | 510 (30.3) |
BMI (kg/m2) | |||
<25 | 1563 (52.8) | 587 (45.9) | 976 (58.0) |
≥25 | 1398 (47.2) | 692 (54.1) | 706 (42.0) |
AST (U/L) | ALT (U/L) | GGT (U/L) | ||||
---|---|---|---|---|---|---|
Characteristics | Men | Women | Men | Women | Men | Women |
Age | ||||||
19–29 | 23 (20, 29) | 20 (18, 23) | 23.5 (17, 42) | 14 (12, 17.5) | 22 (15, 37) | 11.5 (9, 16) |
30–39 | 25 (21, 31) | 21 (18, 24) | 29 (20, 48) | 16 (13, 22.5) | 30 (18, 53) | 13 (10, 19) |
40–49 | 26 (22, 30 | 21 (19, 24) | 28 (20, 39) | 16 (13, 21) | 33 (22, 50.5) | 13 (10, 21) |
50–59 | 26 (22, 29) | 24 (21, 28) | 25 (20, 32) | 20 (16, 27) | 32.5 (21, 59) | 17 (12, 27) |
60–69 | 27 (23, 31) | 25 (22, 29) | 25 (19, 31) | 21 (17, 27) | 29 (20, 47) | 17 (12, 24) |
>70 | 26 (22, 30) | 25 (22, 30) | 21.5 (17, 30) | 20 (16, 25) | 24 (17, 38) | 16 (12, 24.5) |
Smoking status | ||||||
Never | 25 (22, 29) | 23 (22, 27) | 25 (20, 35) | 19 (15, 25) | 25 (17, 38) | 15 (11, 23) |
Former | 26 (23, 31) | 22.5 (19, 26.5) | 25 (19, 34) | 17 (14, 25.5) | 29 (19, 47) | 14 (10, 20) |
Current | 25 (21, 31) | 22 (19, 24) | 25 (18, 35) | 17 (14, 21) | 34 (22, 60) | 20.5 (13, 33) |
Alcohol intake a | ||||||
No | 25 (22, 30) | 23 (20, 27) | 25 (19, 34) | 19 (15, 25) | 26 (18, 42) | 15 (11, 23) |
Yes | 27 (24, 33) | 22 (19, 25) | 26 (19, 36) | 16 (15, 23) | 49 (30, 97) | 18 (12, 33) |
Regular exercise b | ||||||
No | 26 (22, 31) | 23 (20, 27) | 26 (19, 36) | 18 (14, 25) | 30 (20, 53) | 15 (11, 23) |
Yes | 26 (22, 29) | 24 (21, 27) | 24 (18, 31) | 19 (15, 25) | 26 (17, 41) | 14 (11, 22) |
BMI (kg/m2) | ||||||
<25 | 25 (21, 29) | 22 (20, 26) | 22 (17, 29) | 16 (13, 22) | 25 (17, 42) | 14 (10, 19) |
≥25 | 26 (23, 32) | 24 (21, 28) | 28 (22, 40) | 21 (17, 28) | 33 (22, 55.5) | 18 (13, 28) |
PFOA (μg/L) | PFOS (μg/L) | PFHxS (μg/L) | ||||
---|---|---|---|---|---|---|
Characteristics | Men | Women | Men | Women | Men | Women |
Age | ||||||
19–29 | 4.24 (3.05, 5.58) | 3.74 (2.70, 5.00) | 8.96 (6.50, 11.78) | 7.19 (5.04, 10.06) | 2.79 (2.08, 4.02) | 1.83 (1.31, 2.66) |
30–39 | 6.24 (4.40, 8.05) | 4.33 (3.24, 5.70) | 12.64 (9.02, 17.17) | 9.74 (7.28, 13.26) | 4.08 (2.93, 5.81) | 2.45 (1.69, 3.96) |
40–49 | 7.17 (5.34, 9.50) | 5.26 (3.96, 7.32) | 14.57 (10.89, 19.35) | 11.82 (8.47, 15.83) | 4.71 (3.32, 6.88) | 3.04 (2.03, 4.53) |
50–59 | 8.85 (6.16, 11.95) | 8.01 (5.90, 11.62) | 19.09 (14.75, 26.89) | 18.77 (13.97, 24.61) | 5.77 (3.82, 9.67) | 4.44 (3.08, 7.07) |
60–69 | 8.69 (6.44, 12.71) | 9.00 (6.61, 12.37) | 25.80 (17.62, 34.02) | 23.55 (17.72, 30.81) | 5.50 (3.81, 8.10) | 5.38 (3.52, 7.32) |
>70 | 8.23 (5.86, 11.07) | 8.32 (6.40, 11.70) | 25.01 (17.57, 33.28) | 22.87 (16.92, 30.68) | 5.34 (3.58, 8.44) | 5.24 (3.08, 8.20) |
Smoking status | ||||||
Never | 6.85 (4.65, 9.32) | 6.82 (4.59, 9.98) | 16.61 (10.81, 25.68) | 16.71 (10.55, 24.19) | 4.25 (2.80, 6.87) | 3.89 (2.41, 6.36) |
Former | 8.23 (5.92, 11.49) | 5.13 (3.68, 7.36) | 20.71 (14.71, 29.61) | 11.73 (6.93, 16.19) | 5.38 (3.52, 8.30) | 2.96 (2.23, 6.37) |
Current | 7.13 (5.14, 9.63) | 5.71 (3.89, 7.52) | 15.15 (10.79, 24.43) | 12.04 (6.38, 18.61) | 4.95 (3.40, 7.38) | 3.73 (2.23, 5.63) |
Alcohol intake a | ||||||
No | 7.39 (5.12, 10.31) | 6.75 (4.58, 9.87) | 17.62 (11.96, 27.09) | 16.58 (10.48, 24.11) | 4.80 (3.18, 7.64) | 3.88 (2.42, 6.31) |
Yes | 8.16 (6.12, 11.31) | 5.76 (3.73, 7.66) | 18.99 (13.51, 28.19) | 11.41 (6.74, 16.44) | 5.45 (3.55, 8.15) | 3.49 (1.88, 6.84) |
Regular exercise b | ||||||
No | 7.35 (5.16, 10.16) | 6.41 (4.28, 9.19) | 17.01 (11.54, 26.43) | 15.38 (9.73, 22.73) | 4.84 (3.21, 7.38) | 3.70 (2.28, 6.13) |
Yes | 7.90 (5.71, 11.03) | 7.83 (5.13, 11.43) | 20.26 (14.36, 28.61) | 18.64 (12.37, 26.41) | 5.36 (3.41, 8.38) | 4.13 (2.69, 6.68) |
BMI (kg/m2) | ||||||
<25 | 7.26 (5.34, 10.27) | 6.34 (4.30, 9.31) | 17.66 (12.16, 26.61) | 15.05 (9.70, 22.40) | 4.86 (3.15, 7.61) | 3.53 (2.22, 6.10) |
≥25 | 7.82 (5.32, 10.77) | 7.41 (4.92, 11.03) | 18.02 (12.24, 27.84) | 18.59 (12.01, 26.41) | 5.01 (3.38, 7.90) | 4.15 (2.70, 6.60) |
PFNA (μg/L) | PFDeA (μg/L) | |||||
Characteristics | Men | Women | Men | Women | ||
Age | ||||||
19–29 | 1.19 (0.88, 1.56) | 1.03 (0.75, 1.33) | 0.52 (0.41, 0.70) | 0.52 (0.40, 0.70) | ||
30–39 | 1.81 (1.30, 2.43) | 1.26 (0.92, 1.70) | 0.78 (0.58, 1.04) | 0.63 (0.51, 0.83) | ||
40–49 | 2.24 (1.66, 3.02) | 1.61 (1.17, 2.41) | 0.90 (0.67, 1.27) | 0.76 (0.60, 1.09) | ||
50–59 | 3.16 (2.31, 4.22) | 2.76 (2.04, 3.79) | 1.31 (0.91, 1.69) | 1.14 (0.84, 1.55) | ||
60–69 | 3.54 (2.42, 4.91) | 3.31 (2.44, 4.49) | 1.46 (1.01, 2.13) | 1.32 (1.02, 1.72) | ||
>70 | 3.12 (2.34, 4.59) | 3.30 (2.32, 4.36) | 1.38 (1.04, 2.12) | 1.25 (0.88, 1.77) | ||
Smoking status | ||||||
Never | 2.24 (1.48, 3.28) | 2.33 (1.45, 3.52) | 0.96 (0.64, 1.38) | 0.99 (0.69, 1.43) | ||
Former | 3.06 (2.16, 4.38) | 1.66 (1.14, 2.39) | 1.27 (0.91, 1.85) | 0.75 (0.53, 1.24) | ||
Current | 2.46 (1.66, 3.37) | 1.90 (1.17, 2.81) | 0.98 (0.66, 1.46) | 0.82 (0.60, 1.20) | ||
Alcohol intake a | ||||||
No | 2.57 (1.72, 3.72) | 2.31 (1.45, 3.50) | 1.07 (0.70, 1.55) | 0.99 (0.68, 1.42) | ||
Yes | 2.94 (2.18, 4.05) | 1.89 (1.02, 3.01) | 1.24 (0.85, 1.77) | 0.84 (0.56, 1.23) | ||
Regular exercise b | ||||||
No | 2.55 (1.72, 3.64) | 2.16 (1.30, 3.34) | 1.06 (0.70, 1.56) | 0.93 (0.64, 1.36) | ||
Yes | 2.85 (1.96, 4.11) | 2.57 (1.72, 3.80) | 1.19 (0.84, 1.66) | 1.08 (0.77, 1.51) | ||
BMI (kg/m2) | ||||||
<25 | 2.58 (1.80, 3.72) | 2.09 (1.29, 3.13) | 1.12 (0.75, 1.53) | 0.93 (0.65, 1.34) | ||
≥25 | 2.70 (1.77, 3.92) | 2.64 (1.62, 3.91) | 1.09 (0.72, 1.64) | 1.08 (0.72, 1.52) |
| ||||||||
Total | Men | Women | BMI | |||||
Crude | Adjusted model a | Crude | Adjusted model b | Crude | Adjusted model b | <25 (n = 1563) c | ≥25 (n = 1398) c | |
lnPFOA | 0.09(0.07–0.11) *** | 0.04(0.02–0.05) *** | 0.04(0.01–0.07) ** | 0.02(−0.01–0.05) | 0.11(0.09–0.13) *** | 0.03(0.01–0.06) * | 0.05(0.02–0.07) *** | 0.02(−0.01–0.05) |
lnPFOS | 0.10(0.08–0.12) *** | 0.04(0.02–0.06) *** | 0.05(0.03–0.08) *** | 0.04(0.01–0.07) * | 0.12(0.10–0.14) *** | 0.04(0.01–0.06) ** | 0.05(0.03–0.08) *** | 0.03(0.00–0.07) * |
lnPFHxS | 0.05(0.04–0.06) *** | 0.01(0.00–0.03) * | 0.01(−0.01–0.03) | 0.00(−0.02–0.02) | 0.06(0.04–0.08) *** | 0.02(−0.00–0.03) | 0.01(−0.00–0.03) | 0.01(−0.01–0.03) |
lnPFNA | 0.10(0.08–0.12) *** | 0.04(0.02–0.06) *** | 0.05(0.02–0.07) ** | 0.02(−0.01–0.05) | 0.12(0.10–0.14) *** | 0.04(0.02–0.07) ** | 0.06(0.03–0.08) *** | 0.02(−0.01–0.06) |
lnPFDeA | 0.10(0.08–0.11) *** | 0.03(0.01–0.05) ** | 0.05(0.02–0.07) ** | 0.02(−0.01–0.05) | 0.13(0.10–0.15) *** | 0.04(0.01–0.07) ** | 0.06(0.03–0.08) *** | 0.02(−0.02–0.05) |
| ||||||||
Crude | Adjusted model a | Crude | Adjusted model b | Crude | Adjusted model | <25 (n = 1563) c | >=25 c | |
lnPFOA | 0.12(0.09–0.15) *** | 0.07(0.04–0.10) *** | −0.01(−0.06–0.04) | 0.02(−0.03–0.07) | 0.17(0.14–0.21) *** | 0.07(0.03–0.11) *** | 0.09(0.05–0.13) *** | 0.05(0.00–0.10) * |
lnPFOS | 0.13(0.10–0.16) *** | 0.09(0.06–0.12) *** | 0.00(−0.04–0.05) | 0.08(0.03–0.13) ** | 0.18(0.15–0.22) *** | 0.08(0.04–0.12) *** | 0.12(0.08–0.16) *** | 0.06(0.01–0.11) * |
lnPFHxS | 0.08(0.06–0.11) *** | 0.04(0.01–0.06) ** | −0.01(−0.04–0.03) | 0.00(−0.03–0.04) | 0.10(0.07–0.12) *** | 0.04(0.01–0.06) ** | 0.04(0.01–0.06) ** | 0.03(−0.01–0.06) |
lnPFNA | 0.14(0.11–0.17) *** | 0.10(0.07–0.13) *** | −0.01(−0.06–0.03) | 0.06(0.01–0.11) * | 0.20(0.17–0.23) *** | 0.11(0.07–0.15) *** | 0.14(0.10–0.18) *** | 0.07(0.02–0.12) * |
lnPFDeA | 0.11(0.08–0.14) *** | 0.06(0.03–0.10) *** | −0.03(−0.07–0.01) | 0.04(−0.01–0.09) | 0.19(0.15–0.23) *** | 0.08(0.03–0.12) ** | 0.12(0.08–0.17) *** | 0.02(−0.04–0.07) |
| ||||||||
Crude | Adjusted model a | Crude | Adjusted model b | Crude | Adjusted model | <25 (n = 1563) c | >=25 c | |
lnPFOA | 0.21(0.16–0.26) *** | 0.10(0.05–0.14) *** | 0.13(0.06–0.20) *** | 0.07(−0.00–0.14) | 0.19(0.14–0.24) *** | 0.10(0.04–0.16) ** | 0.13(0.07–0.19) *** | 0.07(0.00–0.13) * |
lnPFOS | 0.18(0.13–0.22) *** | 0.06(0.01–0.10) * | 0.07(0.01–0.14) * | 0.06(−0.01–0.13) | 0.15(0.10–0.19) *** | 0.04(−0.03–0.10) | 0.06(−0.00–0.12) | 0.06(−0.01–0.13) |
lnPFHxS | 0.17(0.14–0.21) *** | 0.06(0.03–0.09) *** | 0.06(0.01–0.12) * | 0.03(−0.02–0.08) | 0.13(0.10–0.17) *** | 0.08(0.04–0.12) *** | 0.07(0.03–0.11) ** | 0.06(0.01–0.10) * |
lnPFNA | 0.23(0.18–0.27) *** | 0.10(0.05–0.14) *** | 0.07(0.01–0.14) * | 0.07(−0.00–0.15) | 0.19(0.14–0.23) *** | 0.09(0.03–0.15) ** | 0.13(0.07–0.20) *** | 0.06(−0.01–0.13) |
lnPFDeA | 0.18(0.14–0.23) *** | 0.04(−0.01–0.09) | 0.13(0.06–0.20) *** | 0.01(−0.06–0.09) | 0.17(0.12–0.23) *** | 0.06(−0.01–0.12) | 0.08(0.02–0.15) * | 0.02(−0.06–0.09) |
NHANES 2017–2018 (n = 1929) | KoNEHS 2018–2020 (n = 2961) | |
---|---|---|
PFOA (ng/mL) | 1.45 (1.35–1.56) | 7.01 (6.87–7.15) |
PFOS (ng/mL) | 4.50 (4.15–4.89) | 16.67 (16.31–17.04) |
PFHxS (ng/mL) | 1.11 (1.03–1.21) | 4.47 (4.35–4.60) |
PFNA (ng/mL) | 0.42 (0.37–0.47) | 2.36 (2.31–2.42) |
PFDeA (ng/mL) | 0.20 (0.18–0.22) | 1.03 (1.01–1.05) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, J.; Kwon, S.-C. The Association of Perfluoroalkyl Substance Exposure and a Serum Liver Function Marker in Korean Adults. Toxics 2023, 11, 965. https://doi.org/10.3390/toxics11120965
Yun J, Kwon S-C. The Association of Perfluoroalkyl Substance Exposure and a Serum Liver Function Marker in Korean Adults. Toxics. 2023; 11(12):965. https://doi.org/10.3390/toxics11120965
Chicago/Turabian StyleYun, Jisuk, and Soon-Chan Kwon. 2023. "The Association of Perfluoroalkyl Substance Exposure and a Serum Liver Function Marker in Korean Adults" Toxics 11, no. 12: 965. https://doi.org/10.3390/toxics11120965
APA StyleYun, J., & Kwon, S. -C. (2023). The Association of Perfluoroalkyl Substance Exposure and a Serum Liver Function Marker in Korean Adults. Toxics, 11(12), 965. https://doi.org/10.3390/toxics11120965