Multiple Site Dissimilarities of Herbaceous Species Due to Coal Fly Ash Dumping Based Soil Heavy Metal Toxication
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Study Sites
2.3. Sampling of the Soil
2.4. Data Collection
2.5. Data Analyzation
- (1)
- The diversity of species from site II was contrasted with the one from site-I. The frequency, abundance, and density of species that were found in both places were also compared and contrasted. The species found exclusively on-site II and site-I were analyzed and the reasons for such diversity were critically investigated, as shown in Table 1 and Table 2.
- (2)
- The pH of the soil from both the study sites was tested separately for their physical properties and the concentration of metals present in both of them. The pH was measured using a pH meter (Analab, Gujarat, India) which is precise up to ±0.1 pH unit that is accepted to be adequate for field work [24,25]. The electrical conductivity (Analab, Gujarat, India) was measured in a conductivity cell by measuring the electrical resistance of 1:1 soil: water suspension with two electrodes placed 0.01 m apart [26]. The measurement was taken in deciSiemens per meter(dS/m). The organic carbon content of the soil was calculated in percentage by utilizing Walkley and Black’s colorimetric method [27].
- (3)
- The sample soil from both of the sites was collected and labeled separately. Both of the samples weighing 0.5 g each were digested with 15 mL HNO3, H2SO4, and HClO4 in a ratio of 5:1:1 by a hot plate open vessel approach at 80 °C until a transparent solution was obtained. The solution was filtered through Whatman Grade 42 quantitative papers and was diluted to 50 mL. The concentration of heavy metals in each of the samples was then determined with an atomic absorption spectrophotometer (AAS) [Model: ICE3300, Make: Thermo Scientific], USA [28].
2.6. Calculation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bezemer, T.M.; Fountain, M.T.; Barea, J.M.; Christensen, S.; Dekker, S.C.; Duyts, H.; van Hal, R.; Harvey, J.A.; Hedlund, K.; Maraun, M.; et al. Divergent composition but similar function of soil food webs of individual plants: Plant species and community effects. Ecology 2010, 91, 3027–3036. [Google Scholar] [CrossRef] [PubMed]
- Losapio, G.; Montesinos-Navarro, A.; Saiz, H. Perspectives for ecological networks in plant ecology. Plant Ecol. Divers. 2019, 12, 87–102. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Sanaei, A.; Li, M.; Nalivan, O.A.; Ahmadaali, K.; Pour, M.J.; Valipour, A.; Karami, J.; Aminpour, M.; Kaboli, H.; et al. Impacts of climatic and edaphic factors on the diversity, structure and biomass of species-poor and structurally-complex forests. Sci. Total Environ. 2020, 706, 135719. [Google Scholar] [CrossRef]
- Brondízio, E.S.; Settele, J.; Díaz, S.; Ngo, H.T. The Global Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2016. [Google Scholar]
- Rhoades, J.D.; Shouse, P.J.; Alves, W.J.; Manteghi, N.A.; Lesch, S.M. Determining Soil Salinity from Soil Electrical Conductivity using Different Models and Estimates. Soil Sci. Soc. Am. J. 1990, 54, 46–54. [Google Scholar] [CrossRef]
- Van der Watt, H.V.H.; Barnard, R.O.; Cronje, I.J.; Dekker, J.; Croft, G.J.B.; Van der Walt, M.M. Amelioration of subsoil acidity by application of a coal-derived calcium fulvate to the soil surface. Nature 1991, 350, 146–148. [Google Scholar] [CrossRef]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Rafieizonooz, M.; Khankhaje, E.; Rezania, S. Assessment of environmental and chemical properties of coal ashes including fly ash and bottom ash, and coal ash concrete. J. Build. Eng. 2022, 49, 104040. [Google Scholar] [CrossRef]
- Adewuyi, Y.G. Recent Advances in Fly-Ash-Based Geopolymers: Potential on the Utilization for Sustainable Environmental Remediation. ACS Omega 2021, 6, 15532–15542. [Google Scholar] [CrossRef]
- Ankrah, A.F.; Tokay, B.; Snape, C.E. Heavy Metal Removal from Aqueous Solutions Using Fly-Ash Derived Zeolite NaP1. Int. J. Environ. Res. 2022, 16, 17. [Google Scholar] [CrossRef]
- Yadav, V.K.; Fulekar, M.H. Advances in methods for recovery of ferrous, alumina, and silica nanoparticles from fly ash waste. Ceramics 2020, 3, 384–420. [Google Scholar] [CrossRef]
- Yadav, V.K.; Pandita, P.R. Fly Ash Properties and Their Applications as a Soil Ameliorant. In Amelioration Technology for Soil Sustainability; Rathoure, A.K., Ed.; IGI Global: Hershey, PA, USA, 2019; pp. 59–89. [Google Scholar] [CrossRef] [Green Version]
- Yadav, V.K.; Gnanamoorthy, G.; Cabral-Pinto, M.; Alam, J.; Ahamed, M.; Gupta, N.; Singh, B.; Choudhary, N.; Inwati, G.K.; Yadav, K.K. Variations and similarities in structural, chemical, and elemental properties on the ashes derived from the coal due to their combustion in open and controlled manner. Environ. Sci. Pollut. Res. 2021, 28, 32609–32625. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.K.; Saxena, P.; Lal, C.; Gnanamoorthy, G.; Choudhary, N.; Singh, B.; Tavker, N.; Kalasariya, H.; Kumar, P. Synthesis and Characterization of Mullites From Silicoaluminous Fly Ash Waste. Int. J. Appl. Nanotechnol. Res. 2020, 5, 10–25. [Google Scholar] [CrossRef]
- Yadav, V.K.; Fulekar, M.H. Green synthesis and characterization of amorphous silica nanoparticles from fly ash. Mater. Today Proc. 2019, 18, 4351–4359. [Google Scholar] [CrossRef]
- Imoisili, P.E.; Nwanna, E.C.; Jen, T.-C. Facile Preparation and Characterization of Silica Nanoparticles from South Africa Fly Ash Using a Sol–Gel Hydrothermal Method. Processes 2022, 10, 2440. [Google Scholar] [CrossRef]
- Yadav, V.K.; Gacem, A.; Choudhary, N.; Rai, A.; Kumar, P.; Yadav, K.K.; Abbas, M.; Khedher, N.B.; Awwad, N.S.; Barik, D.; et al. Status of Coal-Based Thermal Power Plants, Coal Fly Ash Production, Utilization in India and Their Emerging Applications. Minerals 2022, 12, 1503. [Google Scholar] [CrossRef]
- Yadav, V.K.; Singh, B.; Gacem, A.; Yadav, K.K.; Gnanamoorthy, G.; Alsufyani, T.; Hussein, H.S.; Awwad, N.S.; Verma, R.; Inwati, G.K.; et al. Development of Novel Microcomposite Materials from Coal Fly Ash and Incense Sticks Ash Waste and Their Application for Remediation of Malachite Green Dye from Aqueous Solutions. Water 2022, 14, 3871. [Google Scholar] [CrossRef]
- Alam, J.; Yadav, V.K.; Yadav, K.K.; Cabral-Pinto, M.M.; Tavker, N.; Choudhary, N.; Shukla, A.K.; Ali, F.A.A.; Alhoshan, M.; Hamid, A.A. Recent advances in methods for the recovery of carbon nanominerals and polyaromatic hydrocarbons from coal fly ash and their emerging applications. Crystals 2021, 11, 88. [Google Scholar] [CrossRef]
- Singh, D.; Yadav, V.K.; Ali, D.; Soni, S.; Kumar, G.; Dawane, V.; Chaurasia, T.P. Isolation and Characterization of Siderophores Producing Chemolithotrophic Bacteria from the Coal Samples of the Aluminum Industry. Geomicrobiol. J. 2022, 1–7. [Google Scholar] [CrossRef]
- Shukla, S. Ethnomedicinal plants used by Korwa tribe of Korba district, Chhattisgarh-India. Curr. Bot. 2018, 9, 22–25. [Google Scholar] [CrossRef]
- Bhaskar, M.; Dixit, A.K. Water Quality Appraisal of Hasdeo River at Korba in Chhattisgarh, India. Int. J. Sci. Res. 2015, 4, 1252–1258. [Google Scholar]
- Bhatt, R.P.; Khanal, S.; Prasad Bhatt, R.; Nath Khanal, S. Vegetation analysis and differences in local environment variables in indrawati hydropower project areas in Nepal. Int. Res. J. Plant Sci. 2010, 1, 84–93. [Google Scholar]
- Thomas, G.W. Soil pH and Soil Acidity. Methods Soil Anal. 1996, 475–490. [Google Scholar] [CrossRef] [Green Version]
- Wei, B.; Peng, Y.; Jeyakumar, P.; Lin, L.; Zhang, D.; Yang, M.; Zhu, J.; Lin, C.S.K.; Wang, H.; Wang, Z.; et al. Soil pH restricts the ability of biochar to passivate cadmium: A meta-analysis. Environ. Res. 2023, 219, 115110. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.L.; Doran, J.W. Measurement and Use of pH and Electrical Conductivity for Soil Quality Analysis. Methods Assess. Soil Qual. 1997, 49, 169–185. [Google Scholar] [CrossRef]
- Allison, L.E. Organic Carbon. Methods Soil Anal. 1965, 9, 1367–1378. [Google Scholar] [CrossRef]
- Beaty, R.D.; Kerber, J.D. Concepts, Instrumentation and Techniques in Atomic Absorption Spectrophotometry, 2nd ed.; The Perkin-Elmer Corporation: Waltham, MA, USA, 1993. [Google Scholar]
- Yadav, V.K.; Fulekar, M.H. Biogenic synthesis of maghemite nanoparticles (γ-Fe2O3) using Tridax leaf extract and its application for removal of fly ash heavy metals (Pb, Cd). Mater. Today Proc. 2018, 5, 20704–20710. [Google Scholar] [CrossRef]
- Yadav, V.K.; Inwati, G.K.; Ali, D.; Gnanamoorthy, G.; Bera, S.P.; Khan, S.H.; Choudhary, N.; Kumar, G.; Chaurasia, T.P.; Basnet, A. Remediation of Azure A Dye from Aqueous Solution by Using Surface-Modified Coal Fly Ash Extracted Ferrospheres by Mineral Acids and Toxicity Assessment. Adsorpt. Sci. Technol. 2022, 2022, 7012889. [Google Scholar] [CrossRef]
- Yadav, V.K.; Yadav, K.K.; Tirth, V.; Gnanamoorthy, G.; Gupta, N.; Algahtani, A.; Islam, S.; Choudhary, N.; Modi, S.; Jeon, B.-H. Extraction of Value-Added Minerals from Various Agricultural, Industrial and Domestic Wastes. Materials 2021, 14, 6333. [Google Scholar] [CrossRef]
- Yadav, V.K.; Fulekar, M.H. Isolation and Charcterization of Iron Nanoparticles From Coal Fly Ash From Gandhinagar (Gujarat) Thermal Power Plant (A Mechanical Method of Isolation). Int. J. Eng. Res. 2014, 3. [Google Scholar]
- Yadav, V.K.; Suriyaprabha, R.; Inwati, G.K.; Gupta, N.; Singh, B.; Lal, C.; Kumar, P.; Godha, M.; Kalasariya, H. A Noble and Economical Method for the Synthesis of Low Cost Zeolites From Coal Fly Ash Waste. Adv. Mater. Process. Technol. 2021, 8. [Google Scholar] [CrossRef]
- Yadav, V.K.; Yadav, K.K.; Tirth, V.; Jangid, A.; Gnanamoorthy, G.; Choudhary, N.; Islam, S.; Gupta, N.; Son, C.T.; Jeon, B.H. Recent advances in methods for recovery of cenospheres from fly ash and their emerging applications in ceramics, composites, polymers and environmental cleanup. Crystals 2021, 11, 1067. [Google Scholar] [CrossRef]
- Yadav, V.K.; Suriyaprabha, R.; Khan, S.H.; Singh, B.; Gnanamoorthy, G.; Choudhary, N.; Yadav, A.K.; Kalasariya, H. A novel and efficient method for the synthesis of amorphous nanosilica from fly ash tiles. Mater. Today Proc. 2019, 26, 701–705. [Google Scholar] [CrossRef]
- Choudhary, N.; Yadav, V.K.; Malik, P.; Khan, S.H.; Inwati, G.K.; Suriyaprabha, R.; Singh, B.; Yadav, A.K.; Ravi, R.K. Recovery of natural nanostructured minerals: Ferrospheres, plerospheres, cenospheres, and carbonaceous particles from fly ash. In Handbook of Research on Emerging Developments and Environmental Impacts of Ecological Chemistry; IGI Global: Hershey, PA, USA, 2020; pp. 450–470. [Google Scholar]
- Imoisili, P.E.; Jen, T.C. Microwave-assisted sol–gel template-free synthesis and characterization of silica nanoparticles obtained from South African coal fly ash. Nanotechnol. Rev. 2022, 11, 3042–3052. [Google Scholar] [CrossRef]
- Chen, H.; Khalili, N. Fly-Ash-Modified Calcium-Based Sorbents Tailored to CO2 Capture. Ind. Eng. Chem. Res. 2017, 56, 1888–1894. [Google Scholar] [CrossRef]
- Zarębska, K.; Zabierowski, P.; Gazda-Grzywacz, M.; Czuma, N.; Baran, P. Fly ash-based geopolymers with refractoriness properties. Clean Technol. Environ. Policy 2022, 24, 2161–2175. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, N. Influence of recycled concrete aggregates and Coal Bottom Ash on various properties of high volume fly ash-self compacting concrete. J. Build. Eng. 2020, 32, 101491. [Google Scholar] [CrossRef]
- Khan, M.A.; Memon, S.A.; Farooq, F.; Javed, M.F.; Aslam, F.; Alyousef, R. Compressive Strength of Fly-Ash-Based Geopolymer Concrete by Gene Expression Programming and Random Forest. Adv. Civ. Eng. 2021, 2021, 6618407. [Google Scholar] [CrossRef]
- Kalombe, R.M.; Ojumu, V.T.; Eze, C.P.; Nyale, S.M.; Kevern, J.; Petrik, L.F. Fly Ash-Based Geopolymer Building Materials for Green and Sustainable Development. Materials 2020, 13, 5699. [Google Scholar] [CrossRef]
- Gadore, V.; Ahmaruzzaman, M. Fly ash–based nanocomposites: A potential material for effective photocatalytic degradation/elimination of emerging organic pollutants from aqueous stream. Environ. Sci. Pollut. Res. 2021, 28, 46910–46933. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Liu, L.; Shen, B. Preparation and characterization of glass-ceramics via co-sintering of coal fly ash and oil shale ash-derived amorphous slag. Ceram. Int. 2019, 45, 20058–20065. [Google Scholar] [CrossRef]
- Wang, T.; Wang, K.; Ye, F.; Ren, Y.; Xu, C. Characterization and thermal properties of a shape-stable Na2CO3-K2CO3/coal fly ash/expanded graphite composite phase change materials for high-temperature thermal energy storage. J. Energy Storage 2021, 33, 102123. [Google Scholar] [CrossRef]
- Ngondya, I.B.; Munishi, L.K. Managing invasive plants through a nature-based approach in complex landscapes. Trends Ecol. Evol. 2022, 37, 284–288. [Google Scholar] [CrossRef]
- Sandilyan, S.; van’t Klooster, C.I.E.A. The other sides of invasive alien plants of India—With special reference to medicinal values. J. Nat. Conserv. 2016, 31, 16–21. [Google Scholar] [CrossRef]
- Subpiramaniyam, S. Portulaca oleracea L. for phytoremediation and biomonitoring in metal-contaminated environments. Chemosphere 2021, 280, 130784. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sreedharan, S.; Kashyap, A.K.; Singh, P.; Ramchiary, N. A review on bioactive phytochemicals and ethnopharmacological potential of purslane (Portulaca oleracea L.). Heliyon 2022, 8, e08669. [Google Scholar] [CrossRef] [PubMed]
- Yaashikaa, P.R.; Senthil Kumar, P.; Varjani, S.; Saravanan, A. Rhizoremediation of Cu(II) ions from contaminated soil using plant growth promoting bacteria: An outlook on pyrolysis conditions on plant residues for methylene orange dye biosorption. Bioengineered 2020, 11, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Tablang, J.O.; Temanel, F.B.; Campos, R.P.C.; Ramos, H.C. Bioaccumulation of lead by pepper elder (Peperomia pellucida (L.) kunth) in a lead-contaminated hydroponic system. Environ. Nat. Resour. J. 2021, 19, 282–291. [Google Scholar] [CrossRef]
- González-Chávez, M.C.A.; Santiago-Martínez, M.E.; Corona-Sánchez, J.E.; Ruiz-Olivares, A.; Carrillo-González, R. Wild plants canopies may adsorb dust particles eroded from mine tailings, decreasing potentially toxic elements dispersion. Int. J. Environ. Sci. Technol. 2022. [Google Scholar] [CrossRef]
S.no | Species Name | Frequency | Density | Abundance | Relative Frequency | Relative Density | Relative Abundance | IVI |
---|---|---|---|---|---|---|---|---|
1 | Poa annua | 13.3 | 1.77 | 13.33 | 2.37 | 5.16 | 2.91 | 10.4 |
2 | Digitaria cilaris | 2.22 | 0.733 | 33 | 0.396 | 0.73 | 7.22 | 8.346 |
3 | Alternanthera sessilis | 22.2 | 0.97 | 4.4 | 3.96 | 2.11 | 0.96 | 7.03 |
4 | Oxalis corniculata | 15.55 | 2.31 | 14.8 | 2.78 | 5.03 | 3.23 | 11.04 |
5 | Cyperus rotundus | 2.22 | 0.11 | 5 | 0.39 | 0.23 | 1.09 | 1.71 |
6 | Parthenium hysterophorus | 46.6 | 4.48 | 9.61 | 8.33 | 9.76 | 2.1 | 20.19 |
7 | Desmodium triflorum | 13.3 | 2.17 | 16.5 | 2.37 | 4.73 | 3.61 | 10.71 |
8 | Cynodon dactylon L. | 68.8 | 12.17 | 17.67 | 12.3 | 26.53 | 3.86 | 42.69 |
9 | Digitaria sanguinalis | 26.6 | 2.4 | 9 | 4.75 | 5.23 | 1.96 | 11.94 |
10 | Richardia brasiliensis | 4.44 | 0.088 | 2 | 0.79 | 0.191 | 0.43 | 1.411 |
11 | Chrozophora plicata | 2.22 | 0.11 | 5 | 0.396 | 0.23 | 1.093 | 1.719 |
12 | Acmella uliginosa | 8.88 | 0.177 | 2 | 1.58 | 0.38 | 0.43 | 2.39 |
13 | Ammannia baccifera | 2.22 | 0.022 | 1 | 0.396 | 0.047 | 0.21 | 0.653 |
14 | Menthera piperita | 6.66 | 0.622 | 9.3 | 1.19 | 1.35 | 2.03 | 4.57 |
15 | Erigeron floribundus` | 20 | 1.24 | 6.2 | 3.57 | 2.7 | 1.35 | 7.62 |
16 | Malvastrum coromandelianum | 2.22 | 0.06 | 3 | 0.396 | 0.13 | 0.65 | 1.176 |
17 | Cyanthillium cinereum | 15.55 | 0.71 | 4.5 | 2.78 | 1.54 | 0.98 | 5.3 |
18 | Evolvulus nummularius L. | 20 | 2.15 | 10.77 | 3.57 | 4.68 | 2.35 | 10.6 |
19 | Alternanthera paronychioides | 17.77 | 1.11 | 6.25 | 3.17 | 2.41 | 1.36 | 6.94 |
20 | Chloris virgata | 11.11 | 1.28 | 11.6 | 1.98 | 2.79 | 2.46 | 7.23 |
21 | Paspallum setaceum | 2.22 | 0.2 | 9 | 0.396 | 0.43 | 1.96 | 2.786 |
22 | Paspallum conjugetum | 2.22 | 0.24 | 11 | 0.39 | 0.52 | 2.4 | 3.31 |
23 | Carex blanda | 2.22 | 0.13 | 6 | 0.39 | 0.28 | 1.31 | 1.98 |
24 | Eriophyes cynodoniensis | 2.22 | 0.51 | 23 | 0.39 | 1.11 | 5.03 | 6.53 |
25 | Elusine indica | 2.22 | 0.08 | 4 | 0.39 | 0.17 | 0.87 | 1.43 |
26 | Blumea lacera L. | 6.66 | 0.26 | 4 | 1.19 | 0.56 | 0.87 | 2.62 |
27 | Lolium perenne | 2.22 | 0.04 | 2 | 0.39 | 0.08 | 0.43 | 0.9 |
28 | Paspallum notanum | 2.22 | 0.42 | 19 | 0.39 | 0.91 | 4.15 | 5.45 |
29 | Senecio vulgaris | 2.22 | 0.04 | 2 | 0.39 | 0.08 | 0.43 | 0.9 |
30 | Gnaphalium polycaulon | 4.44 | 0.13 | 3 | 0.79 | 0.28 | 0.65 | 1.72 |
31 | Eragrostis amabilis | 4.44 | 0.26 | 6 | 0.799 | 0.56 | 1.31 | 2.669 |
32 | Eragrostis hirta | 6.66 | 0.28 | 4.3 | 1.19 | 0.61 | 0.94 | 2.74 |
33 | Cyperus alulatus | 2.22 | 0.17 | 8 | 0.39 | 0.37 | 1.75 | 2.51 |
34 | Zoyria matrella | 2.22 | 0.68 | 31 | 0.39 | 1.48 | 6.78 | 8.65 |
35 | Sporobolus indicus | 2.22 | 0.22 | 10 | 0.39 | 0.47 | 2.18 | 3.04 |
36 | Brachiaria reptans | 6.66 | 0.511 | 7.6 | 1.19 | 1.11 | 1.66 | 3.96 |
37 | Cassia tora | 11.11 | 0.822 | 5.4 | 1.98 | 1.787 | 1.81 | 5.57 |
38 | Chamaesyce uspidat | 4.44 | 0.4 | 9 | 0.799 | 0.87 | 1.96 | 3.62 |
39 | Chromoleana odorata | 4.44 | 0.2 | 4.5 | 0.799 | 0.43 | 0.98 | 2.20 |
40 | Euphorbia prostrata | 2.22 | 0.11 | 5 | 0.39 | 0.24 | 1.09 | 1.72 |
41 | Hieracium | 26.6 | 0.288 | 1.083 | 4.75 | 0.611 | 0.23 | 5.59 |
42 | Laggera aurita | 42.22 | 0.44 | 1.05 | 7.54 | 0.96 | 0.22 | 8.72 |
43 | Lapidegathis uspidate Nees. | 2.22 | 0.044 | 2 | 0.39 | 0.096 | 0.43 | 0.91 |
44 | Oplismenus hirtellus | 13.33 | 0.15 | 1.16 | 2.38 | 0.32 | 0.25 | 2.95 |
45 | Phyllanthus maderaspatensis | 4.44 | 0.066 | 1.5 | 0.79 | 0.144 | 0.32 | 1.25 |
46 | Sarghastrum nutans | 11.11 | 0.133 | 1.2 | 1.98 | 0.29 | 0.26 | 2.53 |
47 | Tridax procumbens | 13.33 | 0.93 | 7 | 2.38 | 2.03 | 1.53 | 5.94 |
48 | Choprosoma abconia | 2.22 | 0.044 | 2 | 0.39 | 0.096 | 0.43 | 0.91 |
49 | Chrozophora tinctoria | 2.22 | 0.17 | 8 | 0.39 | 0.37 | 1.75 | 2.51 |
50 | Eleusine indica L. | 8.8 | 0.4 | 4.5 | 1.57 | 0.87 | 0.98 | 3.42 |
51 | Indigo feratinctoria L. | 2.22 | 0.066 | 3 | 0.39 | 0.144 | 0.65 | 1.18 |
52 | Malvestrum coromandelianum | 4.44 | 0.266 | 6 | 0.79 | 0.56 | 1.31 | 2.66 |
53 | Medicago | 2.22 | 0.15 | 7 | 0.39 | 0.32 | 1.53 | 2.24 |
54 | Panicum brevifolium L. | 2.22 | 0.11 | 5 | 0.39 | 0.24 | 1.093 | 1.72 |
55 | Platylobium rotundrum | 6.66 | 0.75 | 11.33 | 1.19 | 1.63 | 2.47 | 5.29 |
56 | Rungia pectinata | 8.8 | 0.8 | 9 | 1.57 | 1.74 | 1.96 | 5.27 |
57 | Scenecio vulgaris | 2.22 | 0.044 | 2 | 0.39 | 0.096 | 0.43 | 0.91 |
58 | Sida cardifolia | 4.44 | 0.155 | 3.5 | 0.79 | 0.33 | 0.76 | 1.88 |
59 | Urochloa platyphylla | 2.22 | 0.488 | 22 | 0.39 | 1.04 | 4.81 | 6.24 |
Total- | 559.28 | 99.737 | 100.192 | 100.256 | ||||
Mean and Standard deviation- | 9.47 ± 149.21 | 0.77 ± 2.85 | 7.74 ± 47.79 | 1.71 ± 4.80 | 1.72 ± 13.93 | 1.72 ± 2.28 |
S.no. | Species Name | Frequency | Density | Abundance | Relative Frequency | Relative Density | Relative Abundance | IVI |
---|---|---|---|---|---|---|---|---|
1 | Cynodon dactylon | 37.5 | 3.95 | 10.53 | 11.36 | 17.09 | 6.01 | 34.46 |
2 | Alternanthera sessilis | 12.5 | 1.22 | 9.8 | 3.78 | 5.28 | 5.59 | 14.65 |
3 | Cleome viscosa | 10 | 0.3 | 3 | 3.03 | 1.29 | 1.71 | 6.03 |
4 | Tridax procumbens | 10 | 1.1 | 11 | 3.03 | 4.76 | 6.28 | 14.07 |
5 | Euphorbia hirta | 12.5 | 1.52 | 12.2 | 3.78 | 6.58 | 6.96 | 17.32 |
6 | Portulaca oleracea | 5 | 0.07 | 1.5 | 1.51 | 0.30 | 0.85 | 2.66 |
7 | Hyptis suaveolens | 2.5 | 0.05 | 2 | 0.75 | 0.21 | 1.14 | 2.1 |
8 | Cyperus rotundus | 37.5 | 1.22 | 9.8 | 11.36 | 5.28 | 5.59 | 22.23 |
9 | Catharanthus roseus | 7.5 | 0.25 | 3.33 | 2.27 | 1.08 | 1.90 | 5.25 |
10 | Grangea maderaspatana L. | 12.5 | 1.85 | 14.8 | 3.78 | 8.00 | 8.45 | 20.23 |
11 | Sphaeranthus indicus | 15 | 1.25 | 8.33 | 4.54 | 5.41 | 4.75 | 14.7 |
12 | Barleria prionitis | 5 | 0.15 | 3 | 1.51 | 0.64 | 1.71 | 3.86 |
13 | Peperomia pellucida | 5 | 0.07 | 1.5 | 1.51 | 0.30 | 0.85 | 2.66 |
14 | Setaria verticillata | 7.5 | 0.62 | 8.33 | 2.27 | 2.68 | 4.75 | 9.7 |
15 | Hygrophylla auriculata | 12.5 | 0.57 | 4.6 | 3.78 | 2.46 | 2.62 | 8.86 |
16 | Tephrosia sp. | 7.5 | 0.27 | 3.66 | 2.27 | 1.16 | 2.09 | 5.52 |
17 | Ocimum sp. | 10 | 0.67 | 6.75 | 3.03 | 2.90 | 3.85 | 9.78 |
18 | Argemone mexicana | 10 | 0.5 | 5 | 3.03 | 2.16 | 2.85 | 8.04 |
19 | Solanum xanthocarpum | 20 | 0.5 | 2.5 | 6.06 | 2.16 | 1.42 | 9.64 |
20 | Acmispon brachycarpus | 7.5 | 0.3 | 4 | 2.27 | 1.29 | 2.28 | 5.84 |
21 | Parthenium hysterophorus | 40 | 4.1 | 10.25 | 12.12 | 17.74 | 5.85 | 35.71 |
22 | Achranthes aspera | 5 | 0.17 | 3.5 | 1.51 | 0.73 | 1.99 | 4.23 |
23 | Eleusina indica | 7.5 | 1.32 | 17.66 | 2.27 | 5.71 | 10.08 | 18.06 |
24 | Clarkia amoena | 7.5 | 0.22 | 3 | 2.27 | 0.95 | 1.71 | 4.93 |
25 | Lysimachia nummularia | 7.5 | 0.37 | 5 | 2.27 | 1.60 | 2.85 | 6.72 |
26 | Dichondra argentea | 5 | 0.1 | 2 | 1.51 | 0.4 | 1.14 | 3.05 |
27 | Jatropha curcas | 5 | 0.07 | 1.5 | 1.51 | 0.30 | 0.85 | 2.66 |
28 | Celosia | 5 | 0.32 | 6.5 | 1.51 | 1.38 | 3.71 | 6.6 |
Total- | 330 | 23.1 | 175.04 | 99.81 | 99.84 | 99.83 | 299.56 | |
Mean and standard deviation- | 11.78 ± 98.15 | 0.825 ± 1.07 | 6.25 ± 19.0 | 3.56 ± 70.91 | 3.69 ± 20.08 | 3.56 ± 6.19 |
GGV (Site- I) | NTPC(Site-II) | Mean and Standard Deviation | |
---|---|---|---|
pH | 7.0 | 6.7 (non-saline) | 6.8 ± 0.4 |
Electrical conductivity | 0.6 dS/m | 0.4 dS/m | 0.5 ± 0.01 |
Specific gravity | 2.75 | 2.30 | 2.52 ± 0.1 |
Organic carbon | 11% | 0.45 % | |
Nitrogen(N) | 270 kg/ha | 163 kg/ha | |
Phosphorus(P) | 20 kg/ha | 11.64 kg/ha | |
Potassium(K) | 218.65 kg/ha | 212 kg/ha | |
Sulfur(S) | 14 kg/ha | 13.75 kg/ha | |
Zinc(Zn) | 9.8 kg/ha | 0.412 kg/ha | |
Boron(B) | 2.0 kg/ha | 5.0 | |
Iron (Fe) | 15.12 mg/ha | 39.46 mg/ha | |
Manganese (Mn) | 40 mg/ha | 42.13 mg/ha | |
Copper (Cu) | 1.87 µg/g | 2.003 µg/g | |
Lead (Pb) | Non-detectable. | 3.001 µg/g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, D.K.; Singh, A.; Gacem, A.; Kashyap, S.; Yadav, V.K.; Yadav, K.K.; Hussein, H.S.; Shukla, N.K.; Alsuhaibani, A.M.; Abdellattif, M.H.; et al. Multiple Site Dissimilarities of Herbaceous Species Due to Coal Fly Ash Dumping Based Soil Heavy Metal Toxication. Toxics 2023, 11, 90. https://doi.org/10.3390/toxics11020090
Singh DK, Singh A, Gacem A, Kashyap S, Yadav VK, Yadav KK, Hussein HS, Shukla NK, Alsuhaibani AM, Abdellattif MH, et al. Multiple Site Dissimilarities of Herbaceous Species Due to Coal Fly Ash Dumping Based Soil Heavy Metal Toxication. Toxics. 2023; 11(2):90. https://doi.org/10.3390/toxics11020090
Chicago/Turabian StyleSingh, Deepak Kumar, Anushka Singh, Amel Gacem, Shruti Kashyap, Virendra Kumar Yadav, Krishna Kumar Yadav, Hany S. Hussein, Neeraj Kumar Shukla, Amnah Mohammed Alsuhaibani, Magda H. Abdellattif, and et al. 2023. "Multiple Site Dissimilarities of Herbaceous Species Due to Coal Fly Ash Dumping Based Soil Heavy Metal Toxication" Toxics 11, no. 2: 90. https://doi.org/10.3390/toxics11020090
APA StyleSingh, D. K., Singh, A., Gacem, A., Kashyap, S., Yadav, V. K., Yadav, K. K., Hussein, H. S., Shukla, N. K., Alsuhaibani, A. M., Abdellattif, M. H., Lee, C., Lee, W., Modi, T., & Jeon, B.-H. (2023). Multiple Site Dissimilarities of Herbaceous Species Due to Coal Fly Ash Dumping Based Soil Heavy Metal Toxication. Toxics, 11(2), 90. https://doi.org/10.3390/toxics11020090