The Source and Distribution of Tetracycline Antibiotics in China: A Review
Abstract
:1. Introduction
2. Occurrence of TCs in the Environment
3. Distribution of TC Pollution
3.1. Contamination Status of TCs in Animal Manure
Area | Animal | TC | OTC | CTC | References |
---|---|---|---|---|---|
Three northeastern provinces a (mg/kg) | Dairy cow | 0.43–2.69 | 0.21–10.37 | 0.61–1.94 | [31] |
Chicken | 0.54–4.57 | 0.96–13.39 | 0.57–3.11 | ||
Pig | 0.32–30.55 | 0.73–56.81 | 0.68–22.34 | ||
Shenyang (mg/kg) | Pig and Chicken | 0.06–56.95 | 0.57–47.25 | 1.24–143.97 | [44] |
Shanghai (mg/kg) | Cattle | 12.01 | 21.36 | / | [33] |
Chicken | 10.31 | 21.96 | / | ||
Pig | 12.27 | 18.70 | / | ||
Zhejiang (μg/kg) | Cattle | 1704 | 1120 | 108–778 | [45] |
Chicken | 424–9376 | 5065 | 981–5628 | ||
Pig | 589–4145 | 524–16,280 | 340–15,872 | ||
Eight provinces of China b (μg/kg) | Cattle | 17.30–2495 | 130–1940 | 15.10–65.5 | [46] |
Chicken | 21.40–8675 | 19.0–416,750 | 13.90–129.5 | ||
Pig | 15.90–30,941 | 21.50–43,429 | 20.6–215,346 | ||
Jiangsu (μg/kg) | Cow | 3.41 | 6.20 | 0.85 | [47] |
Swine | 187.70 | 108.70 | 84.60 | ||
Chicken | 3.61 | 290.50 | 125.90 | ||
Eight provinces of China c (mg/kg) | Cow | / | 0.32–59.59 | 0.24–27.59 | [48] |
Pig | / | 0.15–59.06 | 0.16–21.06 | ||
Chicken | / | 0.27–10.56 | 0.16–17.68 |
3.2. Pollution Status of TCs in WWTPs
Area | TC | OTC | CTC | DC | References | |
---|---|---|---|---|---|---|
Guizhou | sewage (ng/L) | 478.64–20.52 | 196.32–24.12 | 254.96–17.76 | 132.66–12.27 | [58] |
sludge (μg/kg) | 120.25 | 80.27 | 77.98 | 65.51 | ||
Xiamen | sewage (ng/L) | 179–18.00 | 293–22.70 | 24.30–4.43 | / | [56] |
sludge (μg/kg) | 4870 | 1710 | 1260 | / | ||
Guangdong | sewage (ng/L) | 39.20–4.85 | 57.70–3.50 | 4.85–0.57 | 3.88–0.17 | [30] |
sludge (μg/kg) | 15 | 20.60 | 4.16 | 3.31 | ||
Eight provinces of China a | sewage (ng/L) | 110.10–25.80 | 626.90–64.50 | 39.40–3.80 | 23.70–4.50 | [59] |
sludge (ng/kg) | 1038.40 | 5115.90 | 276.60 | 112.60 | ||
Guangzhou | sewage (ng/L) | 36.30–3.60 | 87.8–6.79 | 36.4–10.60 | 25.1–7.41 | [60] |
sludge (ng/kg) | 269 | 437 | 57.20 | 29.10 | ||
Beijing | sewage (ng/L) | 490.30–10.69 | 16.50–6.32 | 9.25–nd | / | [27] |
Shenyang | sludge (μg/kg) | 297.12–2174.46 | 174.21–7369.67 | 197.39–3843.79 | 127.45–2104.27 | [48] |
3.3. Contamination Status of TCs in Soil
Area | TC | OTC | CTC | DC | References |
---|---|---|---|---|---|
Fujian (μg/kg) | UQ | 11.30–79.50 | nd–58.80 | / | [79] |
UQ–189.80 | 7.20–613.20 | UQ–2668.90 | / | ||
UQ–45.40 | 8.3–23.10 | UQ–864 | / | ||
UQ–58.10 | 44.7–219.10 | nd–240 | / | ||
Shanghai (mg/kg) | 2.38 | 4.24 | / | / | [33] |
Zhejiang (μg/kg) | nd–40.46 | nd–42.22. | nd–460.80 | / | [80] |
Shenyang (μg/kg) | 29.51–976.17 | 17.62–1398.47 | 8.29–1590.16 | 11.05–870.45 | [44] |
Guangdong (μg/kg) | nd–74.40 | nd–79.70 | nd–104.60 | / | [62] |
Tianjin (μg/kg) | UQ–105 | 2.5–2683 | nd–1079 | / | [39] |
Zhejiang (μg/kg) | (1.50) | 6.72 | 1.70 | 16.40 | [81] |
Beijing (μg/kg) | nd | 1.60 (0.80) | 1.60 (0.60) | nd | [82] |
Beijing (μg/kg) | 2.60–5.40 | 13–42 | 3.90–14 | [62] | |
Four provinces of China a (μg/kg) | 60.44 (11.69) | 415.00 (37.10) | 222.00 (21.46) | 94.10 (12.50) | [83] |
Guangzhou (μg/kg) | 0.16–25.66 | 0.04–31.85 | 0.29–161.50 | 0.87–184.80 | [84] |
Jiangsu (μg/kg) | 1.3–249 | 1–8400 | 101.5 | 1.1–256 | [85] |
Jiangsu (μg/kg) | nd–763 | nd–3511 | nd–4723 | nd–76.5 | [86] |
Four cities in China b (μg/kg) | nd–29.70 | nd–40.27 | 23.84–344.74 | / | [34] |
nd–18.92 | nd–23.26 | 81.33–38.49 | / | ||
nd | nd | nd–31.35 | / | ||
nd–7.34 | n.d–14.34 | nd–107.86 | / |
3.4. Pollution Status of TCs in Water Bodies
3.4.1. TC Accumulation in Surface Water
3.4.2. Accumulation of TCs in Water Sediment
3.4.3. TC Accumulation in Groundwater
Area | TC | OTC | CTC | DC | References | |
---|---|---|---|---|---|---|
Taihu Lake | Water (ng/L) | nd–87.90 (43.20) | nd–72.80 (44.20) | nd–142.50 (67.90) | / | [111] |
Sediment (µg/kg) | nd–112.20 (47.90) | nd–196.7 (52.8) | nd–48.50 (19.00) | / | ||
Dongting Lake | Water (ng/L) Sediment (µg/kg) | nd–21.51nd–3.76 | /nd–1.34 | nd–6.5nd–3.01 | // | [112] |
Honghu Lake | Water (ng/L) | 965.7 (300.50) | 2199.50 (217.90) | 828.90 (301.20) | / | [113] |
Poyang Lake | Water (ng/L) | nd–10.80 | nd–48.70 | nd–18.10 | nd–39.70 | [114] |
Chaohu Lake | Water (ng/L) | 17.80 | 4.90 | 4.00 | 42.30 | [115] |
Baiyangdian Lake | Water (ng/L) | 8.07–85.19 | 4.64–90.30 | / | / | [116] |
Sediment (ng/g) | 4.78–93.36 | 4.28–35.40 | / | / | ||
Liao River Basin | Water (ng/L) | nd–28.65 | nd–741.85 | nd–25.05 | / | [13] |
Sediment (µg/kg) | nd–7.97 | nd–384.59 | nd–12.26 | / | ||
Chaobai River | Water (ng/L) | nd–124 (16.90) | nd–553 (176) | nd–32.4 (1.61) | / | [117] |
Sediment (ng/g) | nd–58.3 (13.30) | nd–77.7 (12.00) | nd–89.8 (10.20) | / | ||
Sediment (µg/kg) | nd–7.97 | nd–384.59 | nd–12.26 | / | ||
Karst River | Water (ng/L) | 101.10 | 54.60 | 5.20 | / | [118] |
Yellow River | Water (ng/L) | 18.60–28.50 | 15.80–21.30 | / | / | [119,120] |
Sediment (ng/g) | 18.00 | 184 | / | / | ||
Yellow River Delta | Water (ng/L) | 3.65–64.89 | 4.60–83.54 | / | / | [97] |
Sediment (ng/g) | 3.22–26.78 | 1.18–11.49 | / | / | ||
Weihe River | Water (ng/L) | 2.20–55.50 | nd–32.00 | nd–21.70 | / | [98] |
Sediment (µg/kg) | 2.70–48.80 | 0.80–38.50 | 0.90–16.40 | / | ||
Hai River | Water (ng/L) | 0–4279 | 0–97,434 | 0–13,641 | [115] | |
Sediment (ng/g) | 135 (2.00) | 422 (2.52) | 10.90 | 7.00 | ||
Yangtze River | Water (ng/L) | 0–79.90 | 0–78.30 | 0–40.60 | / | [24] |
Pearl River | Water (ng/L) | / | 0–29.30 | 0–79.40 | / | [121] |
Sediment (µg/kg) | 72.6 | 111 | / | / | ||
Hanjiang River | Water (ng/L) | nd–12 | nd–5.90 | nd–15 | nd–17 | [122] |
Sediment (ng/g) | nd–3.00 | nd–5.60 | nd–11 | nd–14 | ||
Huangpu River | Water (ng/L) | nd–54.30 | nd–219.80 | nd–46.70 | nd–112.30 | [123] |
Sediment (µg/kg) | nd–21.70 | 0.60–18.60 | nd–6.30 | nd–21.30 | ||
Bohai Sea | Water (ng/L) | (16) | (93) | / | / | [124] |
Sediment (µg/kg) | / | 1.6–48.40 | 9.10 | / | ||
Yellow Sea | Water (ng/L) | nd–0.90 | nd–42.63 | / | nd–6.53 | [125] |
Sediment (ng/g) | nd–7.43 | nd–1478.29 | / | nd–0.26 | ||
Guangdong coastal areas | Water (ng/L) | nd–22.40 (3.78) | nd–914.06 (81.54) | nd–102.38 (22.53) | nd–0.77 (0.26) | [126] |
3.5. Pollution Status of TCs in Air Bodies
4. Summary and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Q.; Gao, Y.; Ke, J.; Show, P.; Ge, Y.; Liu, Y. Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods. Bioengineered 2021, 12, 7376–7416. [Google Scholar] [CrossRef] [PubMed]
- Manzetti, S.; Ghisi, R. The environmental release and fate of antibiotics. Mar. Pollut. Bull. 2014, 79, 7–15. [Google Scholar] [CrossRef]
- Kovalakova, P.; Cizmas, L.; Mcdonald, T.J.; Marsalek, B.; Sharma, V.K. Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere 2020, 251, 126351. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K. The science of antibiotic discovery. Cell 2020, 181, 29–45. [Google Scholar] [CrossRef]
- Bacanlı, M.; Başaran, N. Importance of antibiotic residues in animal food. Food Chem. Toxicol. 2019, 125, 462–466. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, X.; Qin, J.; Lu, N.; Cheng, G.; Wu, N.; Pan, Y.; Li, J.; Zhu, L.; Wang, X.; et al. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat. Commun. 2014, 4, 2151–2249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [Green Version]
- Kuppusamy, S.; Kakarla, D.; Venkateswarlu, K.; Megharaj, M.; Yoon, Y.E.; Lee, Y.B. Veterinary antibiotics (VAS) contamination as a global agro-ecological issue: A critical view Agriculture. Ecosyst. Environ. 2018, 257, 47–59. [Google Scholar] [CrossRef]
- Gao, P.; Mao, D.; Luo, Y.; Wang, L.; Xu, B.; Xu, L. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water Res. 2012, 46, 2355–2364. [Google Scholar] [CrossRef]
- González, P.M.; Gonzalo, S.; Rodea, P.I.; Leganés, F.; Rosal, R. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment. Water Res. 2013, 47, 2050–2064. [Google Scholar] [CrossRef]
- Collignon, P.; Voss, A. China, what antibiotics and what volumes are used in food production animals? Antimicrob. Resist. Infect. Control 2015, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Ronquillo, M.G.; Angeles, J.C. Hernandez Antibiotic and synthetic growth promoters in animal diets: Review of impact and analytical methods. Food Control 2017, 72, 47–59. [Google Scholar]
- Bai, Y.; Meng, W.; Xu, J.; Zhang, Y.; Guo, C. Occurrence, distribution and bioaccumulation of antibiotics in the liao river basin in china. Environ. Sci. Process. Impacts 2014, 16, 586–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Jing, L.; Teng, Y.; Wang, J. Characterization of antibiotics in a large-scale river system of China: Occurrence pattern, spatiotemporal distribution and environmental risks. Sci. Total Environ. 2018, 618, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.Z.; Luo, X.J.; Zhao, J.L.; Wang, S.Q.; Mai, B.X. Occurrence and distribution of antibiotics in sediments from black-odor ditches in urban areas from china. Sci. Total Environ. 2021, 787, 147554. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Yu, J.; Li, C.; Zhu, Q.; Zhang, Y.; Lichtfouse, E.; Marmier, N. The Effect Review of Various Biological, Physical and Chemical Methods on the Removal of Antibiotics. Water 2022, 14, 3138. [Google Scholar] [CrossRef]
- Jurado, A.; Walther, M.; Díaz-Cruz, M.S. Occurrence, fate and environmental risk assessment of the organic microcontaminants included in the Watch Lists set by EU Decisions 2015/495 and 2018/840 in the groundwater of Spain. Sci. Total Environ. 2019, 663, 285–296. [Google Scholar] [CrossRef]
- Meritxell, G.; Josep, M.P.; Alexandre, S.M.; Mira, Č.; Marc, C.; Sara, R.M.; Carles, M.B.; José, L.B.; Mira, P. Antibiotics, antibiotic resistance and associated risk in natural springs from an agroecosystem environment. Sci. Total Environ. 2023, 857, 159202. [Google Scholar]
- Nelson, M.L.; Levy, S.B. The history of the tetracyclines New York Academy of Sciences. N. Y. Acad. Sci. 2011, 1241, 17–32. [Google Scholar] [CrossRef]
- Nonaka, L.; Ikeno, K.; Suzuki, S. Distribution of Tetracycline Resistance Gene, tet (M), in Gram-Positive and Gram-Negative Bacteria Isolated from Sediment and Seawater at a Coastal Aquaculture Site in Japan. Microbes Environ. 2007, 22, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Guo, X.; Hua, G.; Li, G.; Feng, R.; Liu, X. Migration and degradation of swine farm tetracyclines at the river catchment scale: Can the multi-pond system mitigate pollution risk to receiving rivers? Environ. Pollut. 2017, 220, 1301–1310. [Google Scholar] [CrossRef] [PubMed]
- Ozumchelouei, E.J.; Hamidian, A.H.; Zhang, Y.; Yang, M. Physicochemical properties of antibiotics: A review with an emphasis on detection in the aquatic environment. Water Environ. Res. 2020, 92, 177–188. [Google Scholar] [CrossRef]
- Lundström, S.V.; Östman, M.; Bengtsson, P.J.; Rutgersson, C.; Thoudal, M.; Sircar, T.; Blanck, H.; Martin, E.K.; Tysklind, M.; Flach, C.; et al. Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms. Sci. Total Environ. 2016, 553, 587–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Cuasquer, G.J.P.; Li, Z.; Mang, H.P.; Lv, Y. Occurrence of typical antibiotics, representative antibiotic-resistant bacteria, and genes in fresh and stored source-separated human urine. Environ. Int. 2021, 146, 106280. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Wang, C.; Mao, D.; Luo, Y. The occurrence and fate of tetracyclines in two pharmaceutical wastewater treatment plants of northern China. Environ. Sci. Pollut. Res. Int. 2016, 23, 1722–1731. [Google Scholar] [CrossRef]
- Shokoohi, R.; Ghobadi, N.; Godini, K.; Hadi, M.; Atashzaban, Z. Antibiotic detection in a hospital wastewater and comparison of their removal rate by activated sludge and earthworm-based vermifilteration: Environmental risk assessment Process. Saf. Environ. Prot. 2020, 134, 169–177. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, G.; Liu, Y.; Lu, S.; Qin, P.; Guo, X.; Bi, B.; Wang, L.; Xi, B.; Wu, F.; et al. Occurrence and fate of antibiotics and antibiotic resistance genes in typical urban water of Beijing, China. Environ. Pollut. 2019, 246, 163–173. [Google Scholar] [CrossRef]
- Song, L.; Li, L.; Yang, S.; Lan, J.; He, H.; McElmurry, S.P.; Zhao, Y. Sulfamethoxazole, tetracycline and oxytetracycline and related antibiotic resistance genes in a large-scale landfill, China. Sci. Total Environ. 2016, 551–552, 9–15. [Google Scholar] [CrossRef]
- Sun, M.; Ye, M.; Schwab, A.P.; Li, X.; Wan, J.; Wei, Z.; Wu, J.; Friman, V.P.; Liu, K.; Tian, D.; et al. Human migration activities drive the fluctuation of ARGs: Case study of landfills in Nanjing, eastern China. J. Hazard. Mater. 2016, 315, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Ying, G.; Liu, S.; Zhang, R.; Lai, H.; Chen, Z.; Pan, C. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China. Sci. Total Environ. 2013, 444, 83–95. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Li, W.; Lu, X.; Liu, B.; Wang, J. The residues and environmental risks of multiple veterinary antibiotics in animal faeces. Environ. Monit. Assess. 2013, 185, 2211–2220. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Ryu, H.D.; Chung, E.G.; Kim, Y. Determination of 18 veterinary antibiotics in environmental water using high-performance liquid chromatography-q-orbitrap combined with on-line solid-phase extraction. J. Chromatogr. B 2018, 1084, 158–165. [Google Scholar] [CrossRef]
- Ji, X.; Shen, Q.; Liu, F.; Ma, J.; Xu, G.; Wang, Y.; Wu, M. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. J. Hazard. Mater. 2012, 235–236, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Lou, C.; Wang, S.; Lu, Y.; Liu, M.; Hashmi, M.Z.; Liang, X.; Li, Z.; Liao, Y.; Qin, W.; et al. Effects of long-term manure applications on the occurrence of antibiotics and antibiotic resistance genes (ARGs) in paddy soils: Evidence from four field experiments in south of China. Soil Biol. Biochem. 2015, 90, 179–187. [Google Scholar] [CrossRef]
- Yan, X.; Zhai, Y.; Cai, Y.; Guo, Z.; Zhang, Q.; Ying, G. Hypothetical scenarios estimating and simulating the fate of antibiotics: Implications for antibiotic environmental pollution caused by manure application. Sci. Total Environ. 2022, 822, 153177. [Google Scholar] [CrossRef]
- Ezzariai, A.; Hafidi, M.; Khadra, A.; Aemig, Q.; Pinelli, E. Human and veterinary antibiotics during composting of sludge or manure: Global perspectives on persistence, degradation, and resistance genes. J. Hazard. Mater. 2018, 359, 465–481. [Google Scholar] [CrossRef]
- Wang, H.; Chu, Y.; Fang, C. Occurrence of veterinary antibiotics in swine manure from large-scale feedlots in Zhejiang province, China. Bull. Environ. Contam. Toxicol. 2017, 98, 472–477. [Google Scholar] [CrossRef]
- Berendsen, B.J.A.; Lahr, J.; Nibbeling, C.; Jansen, L.J.M.; Bongers, I.E.A.; Wipfler, E.L.; Schans, M.G.M. The persistence of a broad range of antibiotics during calve, pig and broiler manure storage. Chemosphere 2018, 204, 267–276. [Google Scholar] [CrossRef]
- Hu, X.; Zhou, Q.; Luo, Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ. Pollut. 2010, 158, 2992–2998. [Google Scholar] [CrossRef]
- Liu, C.; Chen, Y.; Li, X.; Zhang, Y.; Ye, J.; Huang, H.; Zhu, C. Temporal effects of repeated application of biogas slurry on soil antibiotic resistance genes and their potential bacterial hosts. Environ. Pollut. 2020, 258, 113652. [Google Scholar] [CrossRef]
- Lu, Y.; Li, J.; Jin, J.M.; Zhuang, Z.; Zheng, G.; Xie, W.; Ping, L.; Shan, S. Long-term biogas slurry application increased antibiotics accumulation and antibiotic resistance genes (ARGs) spread in agricultural soils with different properties. Sci. Total Environ. 2021, 759, 143473. [Google Scholar] [CrossRef] [PubMed]
- Kyselková, M.; Jirout, J.; Chroňáková, A.; Vrchotová, N.; Bradley, R.; Schmitt, H.; Elhottová, D. Cow excrements enhance the occurrence of tetracycline resistance genes in soil regardless of their oxytetracycline content. Chemosphere 2013, 93, 2413–2418. [Google Scholar] [CrossRef] [PubMed]
- Jechalke, S.; Heuer, H.; Siemens, J.; Amelung, W.; Smalla, K. Fate and effects of veterinary antibiotics in soil. Trends Microbiol. 2014, 22, 536–545. [Google Scholar] [CrossRef]
- An, J.; Chen, H.; Wei, S.; Gu, J. Antibiotic contamination in animal manure, soil, and sewage sludge in Shenyang, northeast China. Environ. Earth Sci. 2015, 74, 5077–5086. [Google Scholar] [CrossRef]
- Qian, M.; Wu, H.; Wang, J.; Zhang, H.; Zhang, Z.; Zhang, Y.; Lin, H.; Ma, J. Occurrence of trace elements and antibiotics in manure-based fertilizers from the Zhejiang Province of China. Sci. Total Environ. 2016, 559, 174–181. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, Y.; Wu, L.; Huang, Y.; Christie, P. Residues and potential ecological risks of veterinary antibiotics in manures and composts associated with protected vegetable farming. Environ. Sci. Pollut. Res. Int. 2015, 22, 5908–5918. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, J.; Lu, C.; Liao, Q.; Gudda, F.O.; Ling, W. Antibiotics in animal manure and manure-based fertilizers: Occurrence and ecological risk assessment. Chemosphere 2020, 255, 127006. [Google Scholar] [CrossRef]
- Zhao, L.; Dong, Y.; Wang, H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci. Total Environ. 2010, 408, 1069–1075. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, G.; Wang, H. Current state of sludge production, management, treatment and disposal in China. Water Res. 2015, 78, 60–73. [Google Scholar] [CrossRef]
- Lin, Y.C.; Zhuang, G.L.; Tasi, P.F.; Tseng, H.H. Removal of protein, histological dye and tetracycline from simulated bioindustrial wastewater with a dual pore size PPSU membrane. J. Hazard. Mater. 2022, 431, 128525. [Google Scholar] [CrossRef]
- Liu, W.; Xia, R.; Ding, X.; Cui, W.; Li, T.; Li, V.; Luo, W. Impacts of nano-zero-valent iron on antibiotic removal by anaerobic membrane bioreactor for swine wastewater treatment. J. Membr. Sci. 2022, 659, 120762. [Google Scholar] [CrossRef]
- Dou, Y.; Cheng, X.; Miao, M.; Wang, T.; Hao, T.; Zhang, Y.; Li, Y.; Ning, X.; Wang, Q. The impact of chlorination on the tetracycline sorption behavior of microplastics in aqueous solution. Sci. Total Environ. 2022, 849, 157800. [Google Scholar] [CrossRef] [PubMed]
- Fonts, I.; Gea, G.; Azuara, M.; Ábrego, J.; Arauzo, J. Sewage sludge pyrolysis for liquid production: A review. Renew. Sustain. Energy Rev. 2012, 16, 2781–2805. [Google Scholar] [CrossRef]
- Zwane, B.N.; Orimolade, B.O.; Koiki, B.A.; Mabuba, N.; Gomri, C.; Petit, E.; Bonniol, V.; Lesage, G.; Rivallin, M.; Cretin, M.; et al. Combined Electro-Fenton and Anodic Oxidation Processes at a Sub-Stoichiometric Titanium Oxide (Ti4O7) Ceramic Electrode for the Degradation of Tetracycline in Water. Water 2021, 13, 2772. [Google Scholar] [CrossRef]
- Wang, K.; Zheng, Y.; Zhu, X.; Brewer, C.E.; Brown, R.C. Ex-situ catalytic pyrolysis of wastewater sewage sludge—A micro-pyrolysis study. Bioresour. Technol. 2017, 232, 229–234. [Google Scholar] [CrossRef]
- Ashfaq, M.; Li, Y.; Wang, Y.; Chen, W.; Wang, H.; Chen, X.; Wu, W.; Huang, Z.; Yu, C.; Sun, Q. Occurrence, fate, and mass balance of different classes of pharmaceuticals and personal care products in an anaerobic-anoxic-oxic wastewater treatment plant in xiamen, china. Water Res. 2017, 123, 655–667. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Ying, G.; Liu, S.; Zhao, J.; Yang, B.; Chen, Z.; Lai, H. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. Sci. Total Environ. 2013, 452–453, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhou, J.; Zhou, S.; Wu, P.; Tsang, Y. Occurrence and fate of antibiotics in a wastewater treatment plant and their biological effects on receiving waters in Guizhou. Process Saf. Environ. Prot. 2018, 113, 483–490. [Google Scholar] [CrossRef]
- Ben, W.; Zhu, B.; Yuan, X.; Zhang, Y.; Yang, M.; Qiang, Z. Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: Comparison of wastewater treatment processes. Water Res. 2018, 130, 38–46. [Google Scholar] [CrossRef]
- Zhong, S.; Yang, B.; Lei, H.; Xiong, Q.; Zhang, Q.; Liu, F.; Ying, G. Transformation products of tetracyclines in three typical municipal wastewater treatment plants. Sci. Total Environ. 2022, 830, 154647. [Google Scholar] [CrossRef]
- Agga, G.E.; Couch, M.; Parekh, R.R.; Mahmoudi, F.; Appala, K.; Kasumba, J.; Loughrin, J.H.; Conte, E.D. Lagoon, Anaerobic Digestion, and Composting of Animal Manure Treatments Impact on Tetracycline Resistance Genes. Antibiotics 2022, 11, 391. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, J.; Wang, J.; Ma, Z.; Han, P.; Luan, Y.; Lu, A. Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment. Sci. Total Environ. 2015, 521–522, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.; Gu, J.; Wang, X.; Li, Y.; Zhang, R.; Hu, T.; Zhou, B. Factors that affect the occurrence and distribution of antibiotic resistance genes in soils from livestock and poultry farms. Ecotoxicol. Environ. Saf. 2019, 180, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Spielmeyer, A.; Petri, M.S.; Höper, H.; Hamscher, G. Long-term monitoring of sulfonamides and tetracyclines in manure amended soils and leachate samples—A follow-up study. Heliyon 2020, 6, 04656. [Google Scholar] [CrossRef]
- Conde, C.M.; Ferreira, C.G.; Núñez, D.A.; Fernández, C.D.; Arias, E.M.; Álvarez, R.E.; Fernández, S.M.J. Competitive adsorption of tetracycline, oxytetracycline and chlortetracycline on soils with different pH value and organic matter content. Environ. Res. 2019, 178, 108669. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, C.; Deng, D.; Li, Y.; Luo, L. Factors affecting sorption behaviors of tetracycline to soils: Importance of soil organic carbon, pH and Cd contamination. Ecotoxicol. Environ. Saf. 2020, 197, 110572. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Chen, L.; Yang, L.; Li, S.; Sun, L.; Yu, X. Distribution, dynamics and determinants of antibiotics in soils in a peri-urban area of Yangtze River Delta, Eastern China. Chemosphere 2018, 211, 261–270. [Google Scholar] [CrossRef]
- Min, P.; Chu, L.M. Fate of antibiotics in soil and their uptake by edible crops. Sci. Total Environ. 2017, 599–600, 500–512. [Google Scholar]
- Zhao, Z.; Nie, T.; Yang, Z.; Zhou, W. The role of soil components in the sorption of tetracycline and heavy metals in soils. RSC Adv. 2018, 8, 32178–32187. [Google Scholar] [CrossRef] [Green Version]
- Topp, E.; Chapman, R.; Devers, L.M.; Hartmann, A.; Marti, R.; Martin, L.F.; Sabourin, L.; Scott, A.; Sumarah, M. Accelerated Biodegradation of Veterinary Antibiotics in Agricultural Soil following Long-Term Exposure, and Isolation of a Sulfamethazinedegrading Microbacterium sp. J. Environ. Qual. 2013, 42, 173–178. [Google Scholar] [CrossRef]
- Xu, B.; Liu, F.; Brookes, P.C.; Xu, J. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter. Environ. Pollut. 2018, 240, 87–94. [Google Scholar] [CrossRef]
- Heuer, H.; Schmitt, H.; Smalla, K. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr. Opin. Microbiol. 2011, 14, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Santás, M.V.; Rodríguez, G.L.; Núñez, D.A.; Álvarez, R.E.; Díaz, R.M.; Arias, E.M.; Fernández, C.D. Time-course evolution of bacterial community tolerance to tetracycline antibiotics in agricultural soils: A laboratory experiment. Chemosphere 2022, 291, 132758. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Chu, L. Adsorption and degradation of five selected antibiotics in agricultural soil. Sci. Total Environ. 2016, 545–546, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Ji, D.; Wang, C. Interaction between earthworms and arbuscular mycorrhizal fungi on the degradation of oxytetracycline in soils. Soil Biol. Biochem. 2015, 90, 283–292. [Google Scholar] [CrossRef]
- Ma, T.; Pan, X.; Chen, L.; Liu, W.; Christie, P.; Luo, Y.; Wu, L. Effects of different concentrations and application frequencies of oxytetracycline on soil enzyme activities and microbial community diversity European. J. Soil Biol. 2016, 76, 53–60. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, J.; Gao, L.; Kong, F.; Shen, G.; Wang, R.; Gao, J. The effects of tetracycline residues on the microbial community structure of tobacco soil in pot. Exp. Sci. Rep. 2020, 10, 8804. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Yang, L.; Zhang, L.; Ye, B.; Wang, L. Antibiotics in soil and water in China-a systematic review and source analysis. Environ. Pollut. 2021, 266, 115147. [Google Scholar] [CrossRef]
- Huang, X.; Liu, C.; Li, K.; Liu, F.; Liao, D.; Liu, L.; Zhu, G.; Liao, J. Occurrence and distribution of veterinary antibiotics and tetracycline resistance genes in farmland soils around swine feedlots in Fujian Province, China. Environ. Sci. Pollut. Res. Int. 2013, 20, 9066–9074. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Lou, C.; Zhai, W.; Tang, X.; Hashmi, M.Z.; Murtaza, R.; Li, Y.; Liu, X.; Xu, J. Increased occurrence of heavy metals, antibiotics and resistance genes in surface soil after long-term application of manure. Sci. Total Environ. 2018, 635, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Pan, X.; Chen, L.; Huang, Y.; Teng, Y.; Luo, Y.; Christie, P. Occurrence and distribution of heavy metals and tetracyclines in agricultural soils after typical land use change in east China. Environ. Sci. Pollut. Res. Int. 2013, 20, 8342–8354. [Google Scholar] [CrossRef] [PubMed]
- Qiao, M.; Chen, W.; Su, J.; Zhang, B.; Zhang, C. Fate of tetracyclines in swine manure of three selected swine farms in China. J. Environ. Sci. 2012, 24, 1047–1052. [Google Scholar] [CrossRef]
- Wei, R.; He, T.; Zhang, S.; Zhu, L.; Shang, B.; Li, Z.; Wang, R. Occurrence of seventeen veterinary antibiotics and resistant bacterias in manure-fertilized vegetable farm soil in four provinces of China. Chemosphere 2019, 215, 234–240. [Google Scholar] [CrossRef]
- Xiang, L.; Wu, X.; Jiang, Y.; Yan, Q.; Li, Y.; Huang, X.; Cai, Q.; Mo, C. Occurrence and risk assessment of tetracycline antibiotics in soil from organic vegetable farms in a subtropical city, south China. Environ. Sci. Pollut. Res. Int. 2016, 23, 13984–13995. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Y.; Huang, Y.; Wu, L.; Liu, X.; Luo, Y. Residues and risks of veterinary antibiotics in protected vegetable soils following application of different manures. Chemosphere 2016, 152, 229–237. [Google Scholar] [CrossRef]
- Wei, R.; Ge, F.; Zhang, L.; Hou, X.; Cao, Y.; Gong, L.; Chen, M.; Wang, R.; Bao, E. Occurrence of 13 veterinary drugs in animal manure-amended soils in Eastern China. Chemosphere 2016, 144, 2377–2383. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Huang, S.; Wang, Y.; Liu, H.; Li, M. Occurrence of antibiotics in the aquatic environment of Jianghan Plain, central China. Sci. Total Environ. 2014, 497, 180–187. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, H.; Xiong, P.; Zhu, Q.; Liao, C.; Jiang, G. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Sci. Total Environ. 2021, 753, 141975. [Google Scholar] [CrossRef]
- Bai, L.; Cao, C.; Wang, C.; Wang, C.; Zhang, H.; Jiang, H. Roles of phytoplankton- and macrophyte-derived dissolved organic matter in sulfamethazine adsorption on goethite. Environ. Pollut. 2017, 230, 87–95. [Google Scholar] [CrossRef]
- Tang, J.; Wang, S.; Tai, Y.; Tam, N.F.; Su, L.; Shi, Y.; Luo, B.; Tao, R.; Yang, Y.; Zhang, X. Evaluation of factors influencing annual occurrence, bioaccumulation, and biomagnification of antibiotics in planktonic food webs of a large subtropical river in South China. Water Res. 2020, 170, 115302. [Google Scholar] [CrossRef] [PubMed]
- Gothwal, R.; Shashidhar, T. Antibiotic Pollution in the Environment: A Review. CLEAN—Soil Air Water 2015, 43, 479–489. [Google Scholar] [CrossRef]
- Hong, W.; Jia, H.; Li, Y.; Sun, Y.; Liu, X.; Wang, L. Polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs in the coastal seawater, surface sediment and oyster from Dalian, Northeast China. Ecotoxicol. Environ. Saf. 2016, 128, 11–20. [Google Scholar] [CrossRef]
- Siedlewicz, G.; Białk-Bielińska, A.; Borecka, M.; Winogradow, A.; Stepnowski, P.; Pazdro, K. Presence, concentrations and risk assessment of selected antibiotic residues in sediments and near-bottom waters collected from the Polish coastal zone in the southern Baltic Sea—Summary of 3 years of studies. Mar. Pollut. Bull. 2018, 129, 787–801. [Google Scholar] [CrossRef] [PubMed]
- Bu, Q.; Wang, B.; Huang, J.; Deng, S.; Yu, G. Pharmaceuticals and personal care products in the aquatic environment in China: A review. J. Hazard. Mater. 2013, 262, 189–211. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Shi, W.; Liu, W.; Li, H.; Zhang, W.; Hu, J.; Ke, Y.; Sun, W.; Ni, J. A duodecennial national synthesis of antibiotics in China’s major rivers and seas (2005–2016). Sci. Total Environ. 2018, 615, 906–917. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Liu, X.; Cheng, D.; Liu, G.; Liang, B.; Cui, B.; Bai, J. Temporal-spatial variation and partitioning prediction of antibiotics in surface water and sediments from the intertidal zones of the Yellow River Delta China. Sci. Total Environ. 2016, 569, 1350–1358. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ding, J.; Zhang, L.; Liu, X.; Wang, G. Occurrence and ranking of pharmaceuticals in the major rivers of China. Sci. Total Environ. 2019, 696, 133991. [Google Scholar] [CrossRef]
- Li, Q.; Gao, J.; Zhang, Q.; Liang, L.; Tao, H. Distribution and risk assessment of antibiotics in a typical river in north china plain. Bull. Environ. Contam. Toxicol. 2017, 98, 478–483. [Google Scholar] [CrossRef]
- Xu, X.; Li, X. Sorption and desorption of antibiotic tetracycline on marine sediments. Chemosphere 2010, 78, 430–436. [Google Scholar] [CrossRef]
- Hernández, V.M.; Meffe, R.; Herrera, S.; Arranz, E.; Bustamante, I. Sorption/desorption of non-hydrophobic and ionisable pharmaceutical and personal care products from reclaimed water onto/from a natural sediment. Sci. Total Environ. 2014, 472, 273–281. [Google Scholar] [CrossRef]
- Yang, J.; Huang, Y.; Chen, Y.; Hassan, M.; Zhang, X.; Zhang, B.; Gin, K.Y.; He, Y. Multi-phase distribution, spatiotemporal variation and risk assessment of antibiotics in a typical urban-rural watershed. Ecotoxicol. Environ. Saf. 2020, 206, 111156. [Google Scholar] [CrossRef]
- Li, J.; Zhang, K.; Zhang, H. Adsorption of antibiotics on microplastics. Environ. Pollut. 2018, 237, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Qu, W.; Wang, C.; Wang, Z.; Huang, Q.; Jin, J.; Tan, J. Occurrence and ecological potential of pharmaceuticals and personal care products in groundwater and reservoirs in the vicinity of municipal landfills in China. Sci. Total Environ. 2014, 490, 889–898. [Google Scholar] [CrossRef]
- Dong, W.; Huang, Z.; Yang, K.; Graham, D.; Bing, X. Relationships between antibiotics and antibiotic resistance gene levels in municipal solid waste leachates in Shanghai, China. Environ. Sci. Technol. 2015, 49, 4122–4128. [Google Scholar]
- Zainab, S.M.; Junaid, M.; Xu, N.; Malik, R.N. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks. Water Res. 2020, 187, 116455. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zheng, W.; Wang, Y.; Li, B.; Wang, Y. Spatiotemporal variations in the association between particulate matter and airborne bacteria based on the size-resolved respiratory tract deposition in concentrated layer feeding operations. Environ. Int. 2021, 150, 106413. [Google Scholar] [CrossRef]
- Ma, Y.; Li, M.; Wu, M.; Li, Z.; Liu, X. Occurrences and regional distributions of 20 antibiotics in water bodies during groundwater recharge. Sci. Total Environ. 2015, 518–519, 498–506. [Google Scholar] [CrossRef]
- Chen, L.; Lang, H.; Liu, F.; Jin, S.; Yan, T. Presence of antibiotics in shallow groundwater in the northern and southwestern regions of China. Ground Water 2017, 56, 451–457. [Google Scholar] [CrossRef]
- Ma, N.; Tong, L.; Li, Y.; Yang, C.; Tan, Q.; He, J. Distribution of antibiotics in lake water-groundwater—Sediment system in Chenhu Lake area. Environ. Res. 2022, 204, 112343. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Chen, Y.; Huang, H.; Ren, T. Antibiotic residues in liquid manure fromswine feedlot and their effects on nearby groundwater in regions of North China. Environ. Sci. Pollut. Res. Int. 2018, 25, 11565–11575. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Zhou, C.; Guo, C.; Wang, D.; Du, P.; Luo, Y.; Wan, J.; Meng, W. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China. Sci. Total Environ. 2014, 497–498, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lu, S.; Guo, W.; Xi, B.; Wang, W. Antibiotics in the aquatic environments: A review of lakes, China. Sci. Total Environ. 2018, 627, 1195–1208. [Google Scholar] [CrossRef] [PubMed]
- Zhi, W.; Yun, D.; Chao, Y.; Xi, L.; Zhang, J.; Li, E.; Zhang, Q.; Wang, X. Occurrence and ecological hazard assessment of selected antibiotics in the surface waters in and around Lake Honghu, China. Sci. Total Environ. 2017, 609, 1423–1432. [Google Scholar]
- Ding, H.; Wu, Y.; Zhang, W.; Zhong, J.; Lou, Q.; Yang, P.; Fang, Y. Occurrence, distribution, and risk assessment of antibiotics in the surface water of Poyang Lake, the largest freshwater lake in China. Chemosphere 2017, 184, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Shi, T.; Wu, X.; Cao, H.; Li, X.; Hua, R.; Feng, T.; Yue, Y. The occurrence and distribution of antibiotics in Lake Chaohu, China: Seasonal variation, potential source and risk assessment. Chemosphere 2015, 122, 154–161. [Google Scholar] [CrossRef]
- Cheng, D.; Liu, X.; Liang, W.; Gong, W.; Liu, G.; Fu, W.; Ming, C. Seasonal variation and sediment-water exchange of antibiotics in a shallower large lake in North China. Sci. Total Environ. 2014, 476–477, 266–275. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Jing, L.; Teng, Y. Ecotoxicological risk assessment and source apportionment of antibiotics in the waters and sediments of a peri-urban river. Sci. Total Environ. 2020, 731, 139128. [Google Scholar] [CrossRef]
- Huang, F.; Zou, S.; Deng, D.; Lang, H.; Liu, F. Antibiotics in a typical karst river system in China: Spatiotemporal variation and environmental risks. Sci. Total Environ. 2019, 650, 1348–1355. [Google Scholar] [CrossRef]
- Dai, C.; Li, S.; Duan, Y.; Leong, K.H.; Tu, Y.; Zhou, L. Human health risk assessment of selected pharmaceuticals in the five major river basins, China. Sci. Total Environ. 2021, 801, 149730. [Google Scholar] [CrossRef]
- Zhou, L.; Ying, G.; Zhao, J.; Yang, J.; Wang, L.; Yang, B.; Shan, L. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environ. Pollut. 2011, 159, 1877–1885. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ying, G.; Zhao, J.; Tao, R.; Su, H.; Chen, F. Simultaneous determination of four classes of antibiotics in sediments of the Pearl Rivers using RRLC-MS/MS. Sci. Total Environ. 2010, 408, 3424–3432. [Google Scholar] [CrossRef]
- Hu, Y.; Yan, X.; Shen, Y.; Di, M.; Wang, J. Antibiotics in surface water and sediments from Hanjiang River, Central China: Occurrence, behavior and risk assessment. Ecotoxicol. Environ. Saf. 2018, 157, 150–158. [Google Scholar] [CrossRef]
- Chen, K.; Zhou, J.L. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China. Chemosphere 2014, 95, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, H.; Li, L.; Fu, C.; Tu, C.; Huang, Y.; Wu, L.; Tang, J.; Luo, Y.; Christie, P. Levels, distributions and sources of veterinary antibiotics in the sediments of the Bohai Sea in China and surrounding estuaries. Mar. Pollut Bull. 2016, 109, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Wang, J.; Gong, H.; Li, Y.; Zhou, L.; Yan, M. Occurrence of antibiotics and their associations with antibiotic resistance genes and bacterial communities in Guangdong coastal areas. Ecotoxicol. Environ. Saf. 2019, 186, 109796. [Google Scholar] [CrossRef]
- Han, Q.F.; Zhao, S.; Zhang, X.R.; Wang, X.L.; Song, C.; Wang, S.G. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China. Environ. Int. 2020, 138, 105551. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Li, X.; Wang, T.; Wang, B.; Li, C.; Zeng, G. A review on airborne microorganisms in particulate matters: Composition, characteristics and influence factors. Environ. Int. 2018, 113, 74–90. [Google Scholar] [CrossRef]
- Hamscher, G.; Pawelzick, H.T.; Sczesny, S.; Nau, H.; Hartung, J. Antibiotics in dust originating from a pig-fattening farm: A new source of health hazard for farmers? Environ. Health Perspect. 2003, 111, 1590–1594. [Google Scholar] [CrossRef] [Green Version]
- Wooten, K.J.; Mayer, G.D.; Smith, P.N. Persistence of elevated concentrations of PM, affiliated pharmaceuticals, and tetracycline resistance genes downwind of feedyards. Environ. Pollut. 2019, 247, 467–473. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, S.; Hou, Z.; Lin, H.; Ren, H. Rainfall facilitates the transmission and proliferation of antibiotic resistance genes from ambient air to soil. Sci. Total Environ. 2021, 799, 149260. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, X.; Yang, T.; Su, J.; Qin, Y.; Wang, S.; Gillings, M.; Wang, C.; Ju, F.; Lan, B. Air pollution could drive global dissemination of antibiotic resistance genes. ISME J. 2021, 15, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Peterson, E.M.; Wooten, K.J.; Subbiah, S.; Anderson, T.A.; Longing, S.; Smith, P.N. Agrochemical Mixtures Detected on Wildflowers near Cattle Feed Yards. Environ. Sci. Technol. Lett. 2017, 4, 216–220. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, D.; Mao, Y.; Qiu, W.; Wu, Y.; Cai, B. The Source and Distribution of Tetracycline Antibiotics in China: A Review. Toxics 2023, 11, 214. https://doi.org/10.3390/toxics11030214
Chang D, Mao Y, Qiu W, Wu Y, Cai B. The Source and Distribution of Tetracycline Antibiotics in China: A Review. Toxics. 2023; 11(3):214. https://doi.org/10.3390/toxics11030214
Chicago/Turabian StyleChang, Donghao, Yizhi Mao, Wei Qiu, Yunshu Wu, and Baiyan Cai. 2023. "The Source and Distribution of Tetracycline Antibiotics in China: A Review" Toxics 11, no. 3: 214. https://doi.org/10.3390/toxics11030214