Development of Phase and Seasonally Dependent Land-Use Regression Models to Predict Atmospheric PAH Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analytical Methods
2.3. Variables for LUR
2.4. Land Use Regression Model Development
2.5. Model Validation and Mapping
3. Results and Discussion
3.1. Descriptive Statistics
3.2. Models and Validation
3.3. Model Performance in Different Phases and Seasons
3.4. Comparison among PAHs
3.5. Mapping of PAHs in Taiyuan and Key Influencing Factors
3.6. Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arey, J.; Atkinson, R. Photochemical Reactions of PAHs in the Atmosphere. In PAHs: An Ecotoxicological Perspective; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2003; pp. 47–63. [Google Scholar]
- Kim, K.-H.; Jahan, S.A.; Kabir, E.; Brown, R.J.C. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013, 60, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, T.; Jorgensen, H.E.; Larsen, J.C.; Poulsen, M. City air pollution of polycyclic aromatic hydrocarbons and other mutagens: Occurrence, sources and health effects. Sci. Total Environ. 1996, 189, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Zedeck, M.S. Polycyclic aromatic hydrocarbons: A review. J. Environ. Pathol. Toxicol. 1980, 3, 537–567. [Google Scholar] [PubMed]
- Qin, N.; He, W.; Kong, X.-Z.; Liu, W.-X.; He, Q.-S.; Yang, B.; Wang, Q.-M.; Yang, C.; Jiang, Y.-J.; Jorgensen, S.E.; et al. Distribution, partitioning and sources of polycyclic aromatic hydrocarbons in the water-SPM-sediment system of Lake Chaohu, China. Sci. Total Environ. 2014, 496, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Qin, N.; Zhao, W.; Tian, Q.; Si, Q.; Wu, W.; Iskander, N.; Yang, Z.; Zhang, Y.; Duan, X. A three-dimensional LUR framework for PM2.5 exposure assessment based on mobile unmanned aerial vehicle monitoring. Environ. Pollut. 2022, 301, 118997. [Google Scholar] [CrossRef] [PubMed]
- Zou, B.; Xu, S.; Sternberg, T.; Fang, X. Effect of Land Use and Cover Change on Air Quality in Urban Sprawl. Sustainability 2016, 8, 677. [Google Scholar] [CrossRef] [Green Version]
- Minet, L.; Liu, R.; Valois, M.-F.; Xu, J.; Weichenthal, S.; Hatzopoulou, M. Development and Comparison of Air Pollution Exposure Surfaces Derived from On-Road Mobile Monitoring and Short-Term Stationary Sidewalk Measurements. Environ. Sci. Technol. 2018, 52, 3512–3519. [Google Scholar] [CrossRef]
- Xu, X.; Qin, N.; Yang, Z.; Liu, Y.; Cao, S.; Zou, B.; Jin, L.; Zhang, Y.; Duan, X. Potential for developing independent daytime/nighttime LUR models based on short-term mobile monitoring to improve model performance. Environ. Pollut. 2021, 268, 115951. [Google Scholar] [CrossRef]
- Mo, Y.Z.; Booker, D.; Zhao, S.Z.; Tang, J.; Jiang, H.X.; Shen, J.; Chen, D.H.; Li, J.; Jones, K.C.; Zhang, G. The application of land use regression model to investigate spatiotemporal variations of PM2.5 in Guangzhou, China: Implications for the public health benefits of PM2.5 reduction. Sci. Total Environ. 2021, 778, 146305. [Google Scholar] [CrossRef]
- Li, Z.; Ho, K.-F.; Chuang, H.-C.; Yim, S.H.L. Development and intercity transferability of land-use regression models for predicting ambient PM10, PM2.5, NO2 and O-3 concentrations in northern Taiwan. Atmos. Chem. Phys. 2021, 21, 5063–5078. [Google Scholar] [CrossRef]
- Widya, L.K.; Hsu, C.-Y.; Lee, H.-Y.; Jaelani, L.M.; Lung, S.-C.C.; Su, H.-J.; Wu, C.-D. Comparison of Spatial Modelling Approaches on PM10 and NO2 Concentration Variations: A Case Study in Surabaya City, Indonesia. Int. J. Environ. Res. Public Health 2020, 17, 8883. [Google Scholar] [CrossRef]
- Jedynska, A.; Hoek, G.; Wang, M.; Eeftens, M.; Cyrys, J.; Keuken, M.; Ampe, C.; Beelen, R.; Cesaroni, G.; Forastiere, F.; et al. Development of Land Use Regression Models for Elemental, Organic Carbon, PAH, and Hopanes/Steranes in 10 ESCAPE/TRANSPHORM European Study Areas. Environ. Sci. Technol. 2014, 48, 14435–14444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, K.B.; Sáňka, O.; Melymuk, L.; Přibylová, P.; Klánová, J. Application of land use regression modelling to describe atmospheric levels of semivolatile organic compounds on a national scale. Sci. Total Environ. 2021, 793, 148520. [Google Scholar] [CrossRef]
- Yin, S.; Tian, L.; Ma, Y.G.; Tan, H.X.; Xu, L.R.; Sun, N.X.; Meng, H.Y.; Liu, C.J. Sources and sinks evaluation of PAHs in leaves of Cinnamomum camphora in megacity: From the perspective of land-use types. J. Clean. Prod. 2021, 279, 123444. [Google Scholar] [CrossRef]
- Noth, E.M.; Hammond, S.K.; Biging, G.S.; Tager, I.B. A spatial-temporal regression model to predict daily outdoor residential PAH concentrations in an epidemiologic study in Fresno, CA. Atmos. Environ. 2011, 45, 2394–2403. [Google Scholar] [CrossRef]
- Masri, S.; Li, L.; Dang, A.; Chung, J.H.; Chen, J.-C.; Fan, Z.-H.; Wu, J. Source characterization and exposure modeling of gas-phase polycyclic aromatic hydrocarbon (PAH) concentrations in Southern California. Atmos. Environ. 2018, 177, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Noth, E.M.; Lurmann, F.; Northcross, A.; Perrino, C.; Vaughn, D.; Hammond, S.K. Spatial and temporal distribution of polycyclic aromatic hydrocarbons and elemental carbon in Bakersfield, California. Air Qual. Atmos. Health 2016, 9, 899–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Q.; Li, Y.; Hu, X.; Lu, B.; Tao, S.; Wang, R. Estimation of annual emission and distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) in Taiyuan. China Environ. Sci. 2013, 33, 14–20. [Google Scholar]
- Ma, W.-L.; Zhu, F.-J.; Liu, L.-Y.; Jia, H.-L.; Yang, M.; Li, Y.-F. PAHs in Chinese atmosphere Part II: Health risk assessment. Ecotoxicol. Environ. Saf. 2020, 200, 110774. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Duan, X.; Qiu, W.; Liu, D.; Wang, B.; Tao, S.; Jiang, Q.; Lu, B.; Song, Y.; Hu, X. Health risk assessment on dietary exposure to polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China. Sci. Total Environ. 2010, 408, 5331–5337. [Google Scholar] [CrossRef]
- Xia, Z.H.; Duan, X.L.; Tao, S.; Qiu, W.X.; Liu, D.; Wang, Y.L.; Wei, S.Y.; Wang, B.; Jiang, Q.J.; Lu, B.; et al. Pollution level, inhalation exposure and lung cancer risk of ambient atmospheric polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China. Environ. Pollut. 2013, 173, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Wang, B.; Zhao, X.; Shen, G.; Xia, Z.; Huang, N.; Jiang, Q.; Lu, B.; Xu, D.; Fang, J.; et al. Personal inhalation exposure to polycyclic aromatic hydrocarbons in urban and rural residents in a typical northern city in China. Indoor Air 2014, 24, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, G.; Li, X.D.; Qi, S.H.; Liu, G.Q.; Peng, X.Z. Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China. Sci. Total Environ. 2006, 355, 145–155. [Google Scholar] [CrossRef]
- Qin, N.; He, W.; Kong, X.-Z.; Liu, W.-X.; He, Q.-S.; Yang, B.; Ouyang, H.-L.; Wang, Q.-M.; Xu, F.-L. Atmospheric partitioning and the air-water exchange of polycyclic aromatic hydrocarbons in a large shallow Chinese lake (Lake Chaohu). Chemosphere 2013, 93, 1685–1693. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.L.; Liu, L.Y.; Jia, H.L.; Yang, M.; Li, Y.F. PAHs in Chinese atmosphere Part I: Concentration, source and temperature dependence. Atmos. Environ. 2018, 173, 330–337. [Google Scholar] [CrossRef]
- Baek, S.O.; Field, R.A.; Goldstone, M.E.; Kirk, P.W.; Lester, J.N.; Perry, R. A review of atmospheric polycyclic aromatic hydrocarbons: Sources, fate and behavior. Water Air Soil Pollut. 1991, 60, 279–300. [Google Scholar] [CrossRef]
- Larsen, R.K.; Baker, J.E. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: A comparison of three methods. Environ. Sci. Technol. 2003, 37, 1873–1881. [Google Scholar] [CrossRef]
- Shi, Y.; Lau, K.K.-L.; Ng, E. Developing street-level PM2.5 and PM10 land use regression models in high-density Hong Kong with urban morphological factors. Environ. Sci. Technol. 2016, 50, 8178–8187. [Google Scholar] [CrossRef]
- Cordioli, M.; Pironi, C.; De Munari, E.; Marmiroli, N.; Lauriola, P.; Ranzi, A. Combining land use regression models and fixed site monitoring to reconstruct spatiotemporal variability of NO2 concentrations over a wide geographical area. Sci. Total Environ. 2017, 574, 1075–1084. [Google Scholar] [CrossRef] [PubMed]
- Miri, M.; Ghassoun, Y.; Dovlatabadi, A.; Ebrahimnejad, A.; Loewner, M.-O. Estimate annual and seasonal PM1, PM2.5 and PM10 concentrations using land use regression model. Ecotoxicol. Environ. Saf. 2019, 174, 137–145. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, R. Climatology of dust storms in northern China and Mongolia: Results from MODIS observations during 2000–2010. J. Geogr. Sci. 2015, 25, 1298–1306. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.-C.; Shi, G.-Y.; Wang, H. Long-range transport of spring dust storms in Inner Mongolia and impact on the China seas. Atmos. Environ. 2012, 46, 299–308. [Google Scholar] [CrossRef]
- Zhenxiang, G.; Jian, Y.; Honggen, Z.; Xiaobin, W.; Hua, Y.; Ji, W.; Cheng, L. The Spatial-temporal Characteristics of PM2.5 and PM10 and Their Relationships with Meteorological Factors in Jiangsu Province. Environ. Sci. Technol. 2020, 43, 51–58. [Google Scholar]
- Arnold, C.L.; Gibbons, C.J. Impervious Surface Coverage: The Emergence of a Key Environmental Indicator. J. Am. Plan. Assoc. 1996, 62, 243–258. [Google Scholar] [CrossRef]
- Danz, M.; Bräuer, R. Carcinogenic and non-carcinogenic fluorene derivatives: Induction of thymocyte stimulating serum factors by 2-acetylaminofluorene (AAF) and their synergy with lymphocyte mitogens. Exp. Pathol. 1988, 34, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Qi, Q.; Jiang, L.; Zhou, F.; Wang, J. Population exposure to PM2. 5 in the urban area of Beijing. PLoS ONE 2013, 8, e63486. [Google Scholar]
- Lammel, G.; Klanova, J.; Kohoutek, J.; Prokes, R.; Ries, L.; Stohl, A. Observation and origin of organochlorine compounds and polycyclic aromatic hydrocarbons in the free troposphere over central Europe. Environ. Pollut. 2009, 157, 3264–3271. [Google Scholar] [CrossRef] [PubMed]
- Farrar, N.J.; Harner, T.; Shoeib, M.; Sweetman, A.; Jones, K.C. Field deployment of thin film passive air samplers for persistent organic pollutants: A study in the urban atmospheric boundary layer. Environ. Sci. Technol. 2005, 39, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Briggs, D.J.; Collins, S.; Elliott, P.; Fischer, P.; Kingham, S.; Lebret, E.; Pryl, K.; Reeuwijk, H.V.; Smallbone, K.; Veen, A.J.T.; et al. Mapping urban air pollution using GIS: A regression-based approach. Int. J. Geogr. Inf. Sci. 1997, 11, 699–718. [Google Scholar] [CrossRef] [Green Version]
- Henderson, S.B.; Beckerman, B.; Jerrett, M.; Brauer, M. Application of Land Use Regression to Estimate Long-Term Concentrations of Traffic-Related Nitrogen Oxides and Fine Particulate Matter. Environ. Sci. Technol. 2007, 41, 2422–2428. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Cao, J.; Wang, W.; Zhao, J.; Wang, W.; Wang, Z.; Cao, H.; Xing, B. A passive sampler with improved performance for collecting gaseous and particulate phase polycyclic aromatic hydrocarbons in air. Environ. Sci. Technol. 2009, 43, 4124–4129. [Google Scholar] [CrossRef] [PubMed]
- MacKay, D.; Shiu, W.Y.; Ma, K.C. Volume III, volatile organic chemicals. In Illustrated Handbook of Physical Chemical Properties and Environmental Fate of Organic Chemicals; Lewis Publishers: Boca Raton, FL, USA, 1993; 916p, ISBN 0-87371-973-5. [Google Scholar]
Type | Potential Variables | Group Code | Buffer Size | Unit | Coefficient Sign Setting |
---|---|---|---|---|---|
Land cover (the total area in the buffer) | Plough | lc_10 | 500–5000 | m2 | / |
Forest | lc_20 | 500–5000 | m2 | - | |
Grassland | lc_30 | 500–5000 | m2 | - | |
Shrub | lc_40 | 500–5000 | m2 | - | |
Wetland | lc_50 | 500–5000 | m2 | - | |
Water | lc_60 | 500–5000 | m2 | - | |
Tundra | lc_70 | 500–5000 | m2 | - | |
Artificial surface | lc_80 | 500–5000 | m2 | / | |
Bare land | lc_90 | 500–5000 | m2 | / | |
Glaciers and permanent snow cover | lc_100 | 500–5000 | m2 | / | |
Land use (the total area in the buffer) | Plough | lu_1 | 500–5000 | m2 | / |
Forest | lu_2 | 500–5000 | m2 | - | |
Grassland | lu_3 | 500–5000 | m2 | - | |
Water | lu_4 | 500–5000 | m2 | - | |
Urban and rural | lu_5 | 500–5000 | m2 | - | |
Unutilized | lu_6 | 500–5000 | m2 | / | |
Water | Water | w | 500–5000 | m2 | - |
Road length (total length in buffer) | Motorway | r_51 | 500–5000 | m | + |
Primary roads | r_52 | 500–5000 | m | + | |
Non-motor vehicle | r_53 | 500–5000 | m | ||
Point feature | Number of factories within 5000 m | point | N/A | N/A | + |
Distance to the nearest factory | dis | N/A | m | + | |
Geographic information | Elevation | dem | N/A | m | / |
Longitude | long | N/A | N/A | / | |
Latitude | lat | N/A | N/A | / | |
Precipitation | Daytime average | rain_8 | N/A | mm | / |
Nighttime | rain_20 | N/A | mm | / | |
Pressure | average | pre | N/A | hPa | / |
Relative humidity | Daytime average | hum | N/A | % | / |
Temperature | Daytime average | tem | N/A | N/A | / |
Wind speed | Daytime average | wind | N/A | N/A | / |
PAH | Season | Phase | LUR Model | R2 | adj. R2 | RMSE |
---|---|---|---|---|---|---|
Ace | Windy season | Gaseous phase | 6.71 × 10−7 lc2000_80 + 13.11 | 0.180 | 0.140 | 5.124 |
Particle phase | 2.49 point−0.22 | 0.374 | 0.347 | 1.822 | ||
Non-heating season | Gaseous phase | 5.63 × 10−5 r3000_51-10.32 lat − 0.01 dem − 10−4 r3000_53 + 8.63 × 10−7 lc1500_80 − 3.60 × 10−6 lc3000_60 + 420.82 | 0.863 | 0.818 | 1.287 | |
Particle phase | 0.518−1.73 × 10−5dis | 0.346 | 0.219 | 0.332 | ||
Heating season | Gaseous phase | −1.44 × 10−6 lu2000_3 − 8.22 × 10−3 dem − 1.4 × 10−4 r2000_53 + 1.84 dis | 0.800 | 0.760 | 1.803 | |
Particle phase | −1.29 lat + 49.4 | 0.262 | 0.230 | 15.215 | ||
Flo | Windy season | Gaseous phase | −3.36 × 10−7 lc5000_20 − 1.55 lat − 1.71 × 10−4 r2000_53 + 609.65 | 0.7 | 0.657 | 2.101 |
Particle phase | 2.51 point−0.61 | 0.363 | 0.336 | 1.883 | ||
Nonheating season | Gaseous phase | −8.82 × 10−3 dem − 4.12 × 10−7 lu3500_3 − 1.52 × 10−4 r2500_53 + 1.92 point + 8.5 × 10−5 r1500_52 − 2.23 × 10−6 lc3000_60 + 31.81 | 0.884 | 0.846 | 1.210 | |
Particle phase | 2.71–8.09 × 10−5 dis | 0.245 | 0.212 | 1.580 | ||
Heating season | Gaseous phase | −6.8 × 10−3 dem − 13.66 lat + 6.86 × 10−6 lc1500_80 − 8.06 × 10−4 r500_53 + 5.42 × 102 | 0.835 | 0.802 | 1.638 | |
Particle phase | −8.21 × lat + 3.13 × 102 | 0.412 | 0.387 | 1.468 | ||
BghiP | Windy season | Gaseous phase | ||||
Particle phase | 9.02 × 10−7 lu2500_5 − 1.57 × 10−3 r500_53 + 2.12 | 0.471 | 0.423 | 6.091 | ||
Nonheating season | Gaseous phase | |||||
Particle phase | 4.42 lu2500_5 + 4.42 | 0.295 | 0.265 | 9.256 | ||
Heating season | Gaseous phase | |||||
Particle phase | 1.72 × 10−6 lu2500_5 + 8.85 | 0.235 | 0.202 | 21.385 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuerxunbieke, A.; Xu, X.; Pei, W.; Qi, L.; Qin, N.; Duan, X. Development of Phase and Seasonally Dependent Land-Use Regression Models to Predict Atmospheric PAH Levels. Toxics 2023, 11, 316. https://doi.org/10.3390/toxics11040316
Tuerxunbieke A, Xu X, Pei W, Qi L, Qin N, Duan X. Development of Phase and Seasonally Dependent Land-Use Regression Models to Predict Atmospheric PAH Levels. Toxics. 2023; 11(4):316. https://doi.org/10.3390/toxics11040316
Chicago/Turabian StyleTuerxunbieke, Ayibota, Xiangyu Xu, Wen Pei, Ling Qi, Ning Qin, and Xiaoli Duan. 2023. "Development of Phase and Seasonally Dependent Land-Use Regression Models to Predict Atmospheric PAH Levels" Toxics 11, no. 4: 316. https://doi.org/10.3390/toxics11040316
APA StyleTuerxunbieke, A., Xu, X., Pei, W., Qi, L., Qin, N., & Duan, X. (2023). Development of Phase and Seasonally Dependent Land-Use Regression Models to Predict Atmospheric PAH Levels. Toxics, 11(4), 316. https://doi.org/10.3390/toxics11040316