Solar Salterns and Pollution: Valorization of Some Endemic Species as Sentinels in Ecotoxicology
Abstract
:1. Introduction
2. Physicochemical Parameters
3. Biota
4. Pollution Diversity in Solar Salterns
Contaminants | Solar Saltern | Fraction | References |
---|---|---|---|
Trace metals | Sfax solar saltern (Tunisia) | Surface sediments | [69,80] |
Water | [70,72] | ||
Biota: Artemia salina | [73] | ||
Ribandar solar saltern (India) | Surface sediments | [63] | |
Porteresia Bed, Karnafully coastal area (Bangladesh) | Surface sediments | [62] | |
The Black Sea brine Pomorie salterns, Burgas (Bulgaria) | Water | [64] | |
Biota Halobacterium salinarium and microalgae Dunaliela salina | [64] | ||
Colloidal particles | [64] | ||
Tinto, Odiel, and Piedras salt marshes in Huelva (Spain). | Surface sediments | [65] | |
Hydrocarbons | Sfax solar saltern (Tunisia) | Surface sediments | [76] |
Water | [76] |
5. Solar Salterns: Potentialities for Bioremediation
6. Sentinel Species
- i.
- the presence of Artemia in high-salinity ecosystems indicates that it is not competitive with other zooplankton;
- ii.
- it probably lacks sensitivity to the actions of some contaminants due to its high tolerance to salinity.
7. Biosensors and Biotests
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Oren, A. Saltern Evaporation Ponds as Model Systems for the Study of Primary Production Processes under Hypersaline Conditions. Aquat. Microb. Ecol. 2009, 56, 193–204. [Google Scholar] [CrossRef]
- Chung, D.; Kim, H.; Choi, H.S. Fungi in Salterns. J. Microbiol. 2019, 57, 717–724. [Google Scholar] [CrossRef]
- Zafrilla, B.; Martínez-Espinosa, R.M.; Alonso, M.A.; Bonete, M.J. Biodiversity of Archaea and Floral of Two Inland Saltern Ecosystems in the Alto Vinalopó Valley, Spain. Saline Syst. 2010, 6, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedrós-Alió, C. Trophic Ecology of Solar Salterns. In Halophilic Microorganisms; Ventosa, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 33–48. ISBN 978-3-642-05664-2. [Google Scholar]
- Benlloch, S.; Lopez-Lopez, A.; Casamayor, E.O.; Ovreas, L.; Goddard, V.; Daae, F.L.; Smerdon, G.; Massana, R.; Joint, I.; Thingstad, F.; et al. Prokaryotic Genetic Diversity throughout the Salinity Gradient of a Coastal Solar Saltern. Environ. Microbiol. 2002, 4, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Javor, B. Industrial Microbiology of Solar Salt Production. J. Ind. Microbiol. Biotechnol. 2002, 28, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, S.A.; Dianese, J.C.; Fell, J.; Gunde-Cimerman, N.; Zalar, P. Unusual Fungal Niches. Mycologia 2011, 103, 1161–1174. [Google Scholar] [CrossRef]
- Abid, O.; Sellami-Kammoun, A.; Ayadi, H.; Drira, Z.; Bouain, A.; Aleya, L. Biochemical Adaptation of Phytoplankton to Salinity and Nutrient Gradients in a Coastal Solar Saltern, Tunisia. Estuar. Coast. Shelf Sci. 2008, 80, 391–400. [Google Scholar] [CrossRef]
- Elloumi, J.; Guermazi, W.; Ayadi, H.; Bouain, A.; Aleya, L. Abundance and Biomass of Prokaryotic and Eukaryotic Microorganisms Coupled with Environmental Factors in an Arid Multi-Pond Solar Saltern (Sfax, Tunisia). J. Mar. Biol. Assoc. UK 2009, 89, 243–253. [Google Scholar] [CrossRef]
- Guermazi, W.; Ayadi, H.; Aleya, L. Correspondence of the Seasonal Patterns of the Brine Shrimp, Artemia Salina (Leach, 1819) (Anostraca) with Several Environmental Factors in an Arid Solar Saltern (Sfax, Southern Tunisia). Crustaceana 2009, 82, 327–348. [Google Scholar] [CrossRef] [Green Version]
- Madkour, F.F.; Gaballah, M.M. Phytoplankton assemblage of a solar saltern in Port Fouad, Egypt. Oceanologia 2012, 54, 687–700. [Google Scholar] [CrossRef]
- Thabet, R.; Leignel, V.; Ayadi, H.; Tastard, E. Interannual and Seasonal Effects of Environmental Factors on the Zooplankton Distribution in the Solar Saltern of Sfax (South-Western Mediterranean Sea). Cont. Shelf Res. 2018, 165, 1–11. [Google Scholar] [CrossRef]
- Amdouni, R. Chemical Study of Free Brines in the Solar Salt Works of Sfax Saline (SE. Tunisia). In Proceedings of the 8th World Salt Symposium, The Hague, The Netherlands, 7–11 May 2000; Geertman: Arnhem, The Netherlands, 2002; pp. 501–506. [Google Scholar]
- Toumi, N.; Ayadi, H.; Abid, O.; Carrias, J.-F.; Sime-Ngando, T.; Boukhris, M.; Bouain, A. Zooplankton Distribution in Four Ponds of Different Salinity: A Seasonal Study in the Solar Salterns of Sfax (Tunisia). Hydrobiologia 2005, 534, 1–9. [Google Scholar] [CrossRef]
- Javor, B. Solar Salterns. In Hypersaline Environments; Brock/Springer Series in Contemporary Bioscience; Springer: Berlin/Heidelberg, Germany, 1989; pp. 189–204. ISBN 978-3-642-74372-6. [Google Scholar]
- Kobbi-Rebai, R.; Annabi-Trabelsi, N.; Khemakhem, H.; Ayadi, H.; Aleya, L. Impacts of Restoration of an Uncontrolled Phosphogypsum Dumpsite on the Seasonal Distribution of Abiotic Variables, Phytoplankton, Copepods, and Ciliates in a Man-Made Solar Saltern. Environ. Monit. Assess. 2013, 185, 2139–2155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, I.; Pachés, M.; Martínez-Guijarro, R. Selection of an Indicator to Assess a Highly Modified Saline Ecosystem. Sci. Total Environ. 2019, 693, 133656. [Google Scholar] [CrossRef] [PubMed]
- Sammy, N. Biological Systems in North—Western Australian Solar Salt Fields. In Proceedings of the 6th World Salt Symposium; The Salt Institute: Alexandria, VA, USA, 1983; Volume 1, pp. 207–215. [Google Scholar]
- Litchfield, C.; Gillevet, P. Microbial Diversity and Complexity in Hypersaline Environments: A Preliminary Assessment. J. Ind. Microbiol. Biotechnol. 2002, 28, 48–55. [Google Scholar] [CrossRef]
- Carpelan, L.H. Hydrobiology of the Alviso Salt Ponds. Ecology 1957, 38, 375. [Google Scholar] [CrossRef]
- Landry, J.C.; Jaccard, J. Chimie Des Eaux Libres Des Marais Salants de Salin-de-Giraud (Sud de La France). Géologie Méditerranéenne 1982, 9, 329–348. [Google Scholar] [CrossRef]
- Khemakhem, H.; Elloumi, J.; Moussa, M.; Aleya, L.; Ayadi, H. The Concept of Ecological Succession Applied to Phytoplankton over Four Consecutive Years in Five Ponds Featuring a Salinity Gradient. Estuar. Coast. Shelf Sci. 2010, 88, 33–44. [Google Scholar] [CrossRef]
- Khemakhem, H.; Elloumi, J.; Ayadi, H.; Aleya, L.; Moussa, M. Modelling the Phytoplankton Dynamics in a Nutrient-Rich Solar Saltern Pond: Predicting the Impact of Restoration and Climate Change. Environ. Sci. Pollut. Res. 2013, 20, 9057–9065. [Google Scholar] [CrossRef]
- Shenbaga Devi, A.; Santhanam, P.; Ananth, S.; Dinesh Kumar, S. Distribution of Phytoplankton in Selected Salt Pans of Tamil Nadu, Southeast Coast of India. In Basic and Applied Phytoplankton Biology; Santhanam, P., Begum, A., Pachiappan, P., Eds.; Springer: Singapore, 2019; pp. 251–276. ISBN 978-981-10-7937-5. [Google Scholar]
- Amat Doménech, F. Bioecología de Artemia (Crustácea, Branchiopoda) en la Laguna de la Mata, Torrevieja, Alicante; Instituto de Cultura “Juan Gil-Albert”, Diputación de Alicante: Alicante, Spain, 1991; ISBN 978-84-7784-996-4.
- Hochstein, L.I.; Tomlinson, G.A. Denitrification by Extremely Halophilic Bacteria. FEMS Microbiol. Lett. 1985, 27, 329–331. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.S. Structure, Function, and Management of the Biological System for Seasonal Solar Saltworks. Glob. Nest J. 2000, 2, 217–226. [Google Scholar]
- Benlloch, S.; Acinas, S.G.; Martínez-Murcia, A.J.; Rodríguez-Valera, F. Description of Prokaryotic Biodiversity along the Salinity Gradient of a Multipond Solar Saltern by Direct PCR Amplification of 16S RDNA. In Coastal Lagoon Eutrophication and ANaerobic Processes (C.L.E.AN.); Caumette, P., Castel, J., Herbert, R., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 19–31. ISBN 978-94-010-7279-3. [Google Scholar]
- Joint, I.; Henriksen, P.; Garde, K.; Riemann, B. Primary Production, Nutrient Assimilation and Microzooplankton Grazing along a Hypersaline Gradient. FEMS Microbiol. Ecol. 2002, 39, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Ayadi, H.; Abid, O.; Elloumi, J.; Bouaïn, A.; Sime-Ngando, T. Structure of the Phytoplankton Communities in Two Lagoons of Different Salinity in the Sfax Saltern (Tunisia). J. Plankton Res. 2004, 26, 669–679. [Google Scholar] [CrossRef] [Green Version]
- Mohebbi, F. The Brine Shrimp Artemia and Hypersaline Environments Microalgal Composition: A Mutual Interaction. Int. J. Aquat. Sci. 2010, 1, 19–27. [Google Scholar]
- Javor, B.J. Planktonic Standing Crop and Nutrients in a Saltern Ecosystem. Limnol. Oceanogr. 1983, 28, 153–159. [Google Scholar] [CrossRef]
- Oren, A. A Hundred Years of Dunaliella Research: 1905–2005. Saline Syst. 2005, 1, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobbi-Rebai, R.; Annabi-Trabelsi, N.; Al-Jutaili, S.; Al-Enezi, Y.; Subrahmanyam, M.N.V.; Ali, M.; Belmonte, G.; Ayadi, H. Abundance and Reproduction Variables of Two Species of Harpacticoid Copepods along an Increasing Salinity Gradient. Aquat. Ecol. 2020, 54, 387–400. [Google Scholar] [CrossRef]
- Pedrós-Alió, C. Diversity of Microbial Communities: The Case of Solar Salterns. In Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya; Gunde-Cimerman, N., Oren, A., Plemenitaš, A., Eds.; Cellular Origin, Life in Extreme Habitats and Astrobiology; Springer: Berlin/Heidelberg, Germany, 2005; Volume 9, pp. 71–90. ISBN 978-1-4020-3632-3. [Google Scholar]
- López-López, A.; Yarza, P.; Richter, M.; Suárez-Suárez, A.; Antón, J.; Niemann, H.; Rosselló-Móra, R. Extremely Halophilic Microbial Communities in Anaerobic Sediments from a Solar Saltern. Environ. Microbiol. Rep. 2010, 2, 258–271. [Google Scholar] [CrossRef]
- Antón, J.; Rosselló-Mora, R.; Rodríguez-Valera, F.; Amann, R. Extremely Halophilic Bacteria in Crystallizer Ponds from Solar Salterns. Appl. Environ. Microbiol. 2000, 66, 3052–3057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Mora-Ruiz, M.R.; Cifuentes, A.; Font-Verdera, F.; Pérez-Fernández, C.; Farias, M.E.; González, B.; Orfila, A.; Rosselló-Móra, R. Biogeographical Patterns of Bacterial and Archaeal Communities from Distant Hypersaline Environments. Syst. Appl. Microbiol. 2018, 41, 139–150. [Google Scholar] [CrossRef]
- Viver, T.; Orellana, L.; González-Torres, P.; Díaz, S.; Urdiain, M.; Farías, M.E.; Benes, V.; Kaempfer, P.; Shahinpei, A.; Ali Amoozegar, M.; et al. Genomic Comparison between Members of the Salinibacteraceae Family, and Description of a New Species of Salinibacter (Salinibacter altiplanensis sp. nov.) Isolated from High Altitude Hypersaline Environments of the Argentinian Altiplano. Syst. Appl. Microbiol. 2018, 41, 198–212. [Google Scholar] [CrossRef] [Green Version]
- Baati, H.; Guermazi, S.; Amdouni, R.; Gharsallah, N.; Sghir, A.; Ammar, E. Prokaryotic Diversity of a Tunisian Multipond Solar Saltern. Extremophiles 2008, 12, 505–518. [Google Scholar] [CrossRef]
- Dillon, J.G.; Carlin, M.; Gutierrez, A.; Nguyen, V.; McLain, N. Patterns of Microbial Diversity along a Salinity Gradient in the Guerrero Negro Solar Saltern, Baja CA Sur, Mexico. Front. Microbiol. 2013, 4, 399. [Google Scholar] [CrossRef] [Green Version]
- Fernández, A.B.; León, M.J.; Vera, B.; Sánchez-Porro, C.; Ventosa, A. Metagenomic Sequence of Prokaryotic Microbiota from an Intermediate-Salinity Pond of a Saltern in Isla Cristina, Spain. Genome Announc. 2014, 2, e00045-14. [Google Scholar] [CrossRef] [Green Version]
- Çınar, S.; Mutlu, M.B. Comparative Analysis of Prokaryotic Diversity in Solar Salterns in Eastern Anatolia (Turkey). Extremophiles 2016, 20, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Antón, J.; Peña, A.; Santos, F.; Martínez-García, M.; Schmitt-Kopplin, P.; Rosselló-Mora, R. Distribution, Abundance and Diversity of the Extremely Halophilic Bacterium Salinibacter Ruber. Saline Syst. 2008, 4, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boujelben, I.; Gomariz, M.; Martínez-García, M.; Santos, F.; Peña, A.; López, C.; Antón, J.; Maalej, S. Spatial and Seasonal Prokaryotic Community Dynamics in Ponds of Increasing Salinity of Sfax Solar Saltern in Tunisia. Antonie Van Leeuwenhoek 2012, 101, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Antón, J.; Oren, A.; Benlloch, S.; Rodríguez-Valera, F.; Amann, R.; Rosselló-Mora, R. Salinibacter Ruber Gen. Nov., Sp. Nov., a Novel, Extremely Halophilic Member of the Bacteria from Saltern Crystallizer Ponds. Int. J. Syst. Evol. Microbiol. 2002, 52, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Øvreås, L.; Daae, F.L.; Torsvik, V.; Rodriguez-Valera, F. Characterization of Microbial Diversity in Hypersaline Environments by Melting Profiles and Reassociation Kinetics in Combination with Terminal Restriction Fragment Length Polymorphism (T-RFLP). Microb. Ecol. 2003, 46, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Estrada, M.; Henriksen, P.; Gasol, J.M.; Casamayor, E.O.; Pedrós-Alió, C. Diversity of Planktonic Photoautotrophic Microorganisms along a Salinity Gradient as Depicted by Microscopy, Flow Cytometry, Pigment Analysis and DNA-Based Methods. FEMS Microbiol. Ecol. 2004, 49, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Carré-Mlouka, A. Shaping Microbial Communities in Changing Environments: The Paradigm of Solar Salterns. In Extreme Environments; CRC Press: Boca Raton, FL, USA, 2021; p. 19. [Google Scholar]
- Hinzano, S.M.; Okalo, F.A.; Ngarari, M.M.; Opiyo, M.A.; Ogello, E.O.; Fulanda, A.M.; Odiwour, D.O.; Nyonje, B. Phytoplankton Distribution along a Salinity Gradient in Two Kenyan Saltworks (Tana and Kurawa). West. Indian Ocean J. Mar. Sci. 2022, 21, 113–124. [Google Scholar] [CrossRef]
- Annabi-Trabelsi, N.; Kobbi-Rebai, R.; Al-Enezi, Y.; Ali, M.; Subrahmanyam, M.N.V.; Belmonte, G.; Ayadi, H. Factors Affecting Oithona nana and Oithona similis along a Salinity Gradient. Mediterr. Mar. Sci. 2021, 22, 552. [Google Scholar] [CrossRef]
- Alonso, M. Anostraca, Cladocera and Copepoda of Spanish Saline Lakes. Hydrobiologia 1990, 197, 221–231. [Google Scholar] [CrossRef]
- Torrentera, L.; Dodson, S.I. Ecology of the Brine Shrimp Artemia in the Yucatan, Mexico, Salterns. J. Plankton Res. 2004, 26, 617–624. [Google Scholar] [CrossRef]
- Guermazi, W.; Elloumi, J.; Ayadi, H.; Bouain, A.; Aleya, L. Coupling Changes in Fatty Acid and Protein Composition of Artemia salina with Environmental Factors in the Sfax Solar Saltern (Tunisia). Aquat. Living Resour. 2008, 21, 63–73. [Google Scholar] [CrossRef]
- Ghannay, S.; Khemakhem, H.; Ayadi, H.; Elloumi, J. Spatial Distribution and Community Structure of Phytoplankton, Ciliates and Zooplankton Coupled to Environmental Factors in the Sousse Saltern (Sahel of Tunisia). Afr. J. Mar. Sci. 2015, 37, 53–64. [Google Scholar] [CrossRef]
- Ladhar, C.; Tastard, E.; Casse, N.; Denis, F.; Ayadi, H. Strong and Stable Environmental Structuring of the Zooplankton Communities in Interconnected Salt Ponds. Hydrobiologia 2015, 743, 1–13. [Google Scholar] [CrossRef]
- Mitchell, B.D.; Geddes, M.C. Distribution of the Brine Shrimps Parartemia zietziana Sayce and Artemia salina (L.) along a Salinity and Oxygen Gradient in a South Australian Saltfield. Freshw. Biol. 1977, 7, 461–467. [Google Scholar] [CrossRef]
- Boujelben, I.; Martínez-García, M.; van Pelt, J.; Maalej, S. Diversity of Cultivable Halophilic Archaea and Bacteria from Superficial Hypersaline Sediments of Tunisian Solar Salterns. Antonie Van Leeuwenhoek 2014, 106, 675–692. [Google Scholar] [CrossRef]
- Le Borgne, S.; Paniagua, D.; Vazquez-Duhalt, R. Biodegradation of Organic Pollutants by Halophilic Bacteria and Archaea. Microb. Physiol. 2008, 15, 74–92. [Google Scholar] [CrossRef]
- Fathepure, B.Z. Recent Studies in Microbial Degradation of Petroleum Hydrocarbons in Hypersaline Environments. Front. Microbiol. 2014, 5, 173. [Google Scholar] [CrossRef] [Green Version]
- Naik, M.M.; Dubey, S.K. (Eds.) Marine Pollution and Microbial Remediation, 1st ed.; Springer: Singapore, 2017; ISBN 978-981-10-1044-6. [Google Scholar]
- Siddique, M.A.M.; Aktar, M. Heavy Metals in Salt Marsh Sediments of Porteresia Bed along the Karnafully River Coast, Chittagong. Soil Water Res. 2012, 7, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Pereira, F.; Kerkar, S.; Krishnan, K.P. Bacterial Response to Dynamic Metal Concentrations in the Surface Sediments of a Solar Saltern (Goa, India). Environ. Monit. Assess. 2013, 185, 3625–3636. [Google Scholar] [CrossRef] [PubMed]
- Bozhkov, O.; Tzvetkova, C.; Russeva, E. Distribution and Determination of Pb, Cd, Bi and Cu in the Sea Brine System: Solution—Colloidal Particles—Biota. Ann. Chim. 2006, 96, 435–442. [Google Scholar] [CrossRef]
- Mesa, J.; Mateos-Naranjo, E.; Pajuelo, E.; Caviedes, M.Á.; Rodríguez-Llorente, I.D. Heavy Metal Pollution Structures Soil Bacterial Community Dynamics in SW Spain Polluted Salt Marshes. Water. Air Soil Pollut. 2016, 227, 466. [Google Scholar] [CrossRef]
- Azri, C.; Maalej, A.; Tlili, A.; Medhioub, K. Characterization of the Atmospheric Pollution Level in Sfax (Tunisia): Influence of Sources and Meteorological Factors. Technol. Sci. Méthodes Génie Urbain Génie Rural. 2002, 1, 78–92. [Google Scholar]
- Gargouri, D.; Azri, C.; Serbaji, M.M.; Jedoui, Y.; Montacer, M. Heavy Metal Concentrations in the Surface Marine Sediments of Sfax Coast, Tunisia. Environ. Monit. Assess. 2011, 175, 519–530. [Google Scholar] [CrossRef]
- Nedia, G.; Chafai, A.; Moncef, S.M.; Chokri, Y. Spatial Distribution of Heavy Metals in the Coastal Zone of “Sfax-Kerkennah” Plateau, Tunisia. Environ. Prog. Sustain. Energy 2011, 30, 221–233. [Google Scholar] [CrossRef]
- Bahloul, M.; Baati, H.; Amdouni, R.; Azri, C. Assessment of Heavy Metals Contamination and Their Potential Toxicity in the Surface Sediments of Sfax Solar Saltern, Tunisia. Environ. Earth Sci. 2018, 77, 27. [Google Scholar] [CrossRef]
- Baati, H.; Bahloul, M.; Amdouni, R.; Azri, C. Behavior Assessment of Moderately Halophilic Bacteria in Brines Highly Enriched with Heavy Metals: Sfax Solar Saltern (Tunisia), A Case Study. Geomicrobiol. J. 2022, 39, 341–351. [Google Scholar] [CrossRef]
- Amdouni, R. Etude Geochimique Des Saumures Libres, Des Sediments et Des Sels Dans Les Marais Salants de La Saline de Sfax (Tunisie). Ph.D. Thesis, Université Paris Diderot Paris 7, Paris, France, 1990. [Google Scholar]
- Amdouni, R. Behaviour of Trace Elements during the Natural Evaporation of Sea Water: Case of Solar Salt Works of Sfax Saline (S. E. of Tunisia). Glob. Nest J. 2009, 11, 96–105. [Google Scholar]
- Aloui, N.; Amorri, M.; Azaza, M.; Chouba, L. Study of Trace Metals (Hg, Cd, Pb, Cu, and Zn) in Cysts and Biomass of Artemia salina (Linnaeus, 1758) (Branchiopoda, Anostraca) from the Salt Work of Sfax (Tunisia). Crustaceana 2012, 85, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pais-Costa, A.J.; Sánchez, M.I.; Taggart, M.A.; Green, A.J.; Hortas, F.; Vinagre, P.A.; Marques, J.C.; Martinez-Haro, M. Trace Element Bioaccumulation in Hypersaline Ecosystems and Implications of a Global Invasion. Sci. Total Environ. 2021, 800, 149349. [Google Scholar] [CrossRef]
- Nieto, J.M.; Sarmiento, A.M.; Olías, M.; Canovas, C.R.; Riba, I.; Kalman, J.; Delvalls, T.A. Acid Mine Drainage Pollution in the Tinto and Odiel Rivers (Iberian Pyrite Belt, SW Spain) and Bioavailability of the Transported Metals to the Huelva Estuary. Environ. Int. 2007, 33, 445–455. [Google Scholar] [CrossRef]
- Elloumi, J.; Guermazi, W.; Ayadi, H.; Bouaïn, A.; Aleya, L. Detection of Water and Sediments Pollution of An Arid Saltern (Sfax, Tunisia) by Coupling the Distribution of Microorganisms with Hydrocarbons. Water. Air Soil Pollut. 2008, 187, 157–171. [Google Scholar] [CrossRef]
- Zaghden, H.; Kallel, M.; Louati, A.; Elleuch, B.; Oudot, J.; Saliot, A. Hydrocarbons in Surface Sediments from the Sfax Coastal Zone, (Tunisia) Mediterranean Sea. Mar. Pollut. Bull. 2005, 50, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Zaghden, H.; Kallel, M.; Elleuch, B.; Oudot, J.; Saliot, A. Sources and Distribution of Aliphatic and Polyaromatic Hydrocarbons in Sediments of Sfax, Tunisia, Mediterranean Sea. Mar. Chem. 2007, 105, 70–89. [Google Scholar] [CrossRef]
- Zaghden, H.; Kallel, M.; Elleuch, B.; Oudot, J.; Saliot, A.; Sayadi, S. Evaluation of Hydrocarbon Pollution in Marine Sediments of Sfax Coastal Areas from the Gabes Gulf of Tunisia, Mediterranean Sea. Environ. Earth Sci. 2014, 72, 1073–1082. [Google Scholar] [CrossRef]
- Cherif, F.; Ben Hmid, R.; Frikha, I.; Omar, T.; Choura, M. Assessment of Heavy Metal Contamination in the Subsurface Sediment of the Southern Coastal Zone of Sfax, Tunisia. J. Coast. Conserv. 2020, 24, 52. [Google Scholar] [CrossRef]
- Shameer, S. Haloalkaliphilic Bacillus Species from Solar Salterns: An Ideal Prokaryote for Bioprospecting Studies. Ann. Microbiol. 2016, 66, 1315–1327. [Google Scholar] [CrossRef]
- Abou Khalil, C.; Prince, V.L.; Prince, R.C.; Greer, C.W.; Lee, K.; Zhang, B.; Boufadel, M.C. Occurrence and Biodegradation of Hydrocarbons at High Salinities. Sci. Total Environ. 2021, 762, 143165. [Google Scholar] [CrossRef] [PubMed]
- Erdoğmuş, S.F.; Mutlu, B.; Korcan, S.E.; Güven, K.; Konuk, M. Aromatic Hydrocarbon Degradation by Halophilic Archaea Isolated from Çamaltı Saltern, Turkey. Water. Air Soil Pollut. 2013, 224, 1449. [Google Scholar] [CrossRef]
- Ghanmi, F.; Carré-Mlouka, A.; Zarai, Z.; Mejdoub, H.; Peduzzi, J.; Maalej, S.; Rebuffat, S. The Extremely Halophilic Archaeon Halobacterium Salinarum ETD5 from the Solar Saltern of Sfax (Tunisia) Produces Multiple Halocins. Res. Microbiol. 2020, 171, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Lizama, C.; Monteoliva-Sánchez, M.; Suárez-García, A.; Roselló-Mora, R.; Aguilera, M.; Campos, V.; Ramos-Cormenzana, A. Halorubrum tebenquichense sp. nov., a Novel Halophilic Archaeon Isolated from the Atacama Saltern, Chile. Int. J. Syst. Evol. Microbiol. 2002, 52, 149–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asker, D.; Ohta, Y. Haloferax Alexandrinus Sp. Nov., an Extremely Halophilic Canthaxanthin-Producing Archaeon from a Solar Saltern in Alexandria (Egypt). Int. J. Syst. Evol. Microbiol. 2002, 52, 729–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pašić, L.; Ulrih, N.P.; Črnigoj, M.; Grabnar, M.; Velikonja, B.H. Haloarchaeal Communities in the Crystallizers of Two Adriatic Solar Salterns. Can. J. Microbiol. 2007, 53, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, M.; Kannan, V.; Pašić, L. Diversity of Microorganisms in Solar Salterns of Tamil Nadu, India. World J. Microbiol. Biotechnol. 2009, 25, 1007–1017. [Google Scholar] [CrossRef]
- Sydeman, W.J.; Poloczanska, E.; Reed, T.E.; Thompson, S.A. Climate Change and Marine Vertebrates. Science 2015, 350, 772–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Multisanti, C.R.; Merola, C.; Perugini, M.; Aliko, V.; Faggio, C. Sentinel Species Selection for Monitoring Microplastic Pollution: A Review on One Health Approach. Ecol. Indic. 2022, 145, 109587. [Google Scholar] [CrossRef]
- Tlili, S.; Mouneyrac, C. New Challenges of Marine Ecotoxicology in a Global Change Context. Mar. Pollut. Bull. 2021, 166, 112242. [Google Scholar] [CrossRef]
- Hutchinson, T.H.; Pounds, N.A.; Hampel, M.; Williams, T.D. Impact of Natural and Synthetic Steroids on the Survival, Development and Reproduction of Marine Copepods (Tisbe battagliai). Sci. Total Environ. 1999, 233, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Browne, R.A.; Wanigasekera, G. Combined Effects of Salinity and Temperature on Survival and Reproduction of Five Species of Artemia. J. Exp. Mar. Biol. Ecol. 2000, 244, 29–44. [Google Scholar] [CrossRef]
- Kyriakopoulou, K.; Papadaki, S.; Krokida, M. Life Cycle Analysis of β-Carotene Extraction Techniques. J. Food Eng. 2015, 167, 51–58. [Google Scholar] [CrossRef]
- Thomas, K.V.; Barnard, N.; Collins, K.; Eggleton, J. Toxicity Characterisation of Sediment Porewaters Collected from UK Estuaries Using a Tisbe Battagliai Bioassay. Chemosphere 2003, 53, 1105–1111. [Google Scholar] [CrossRef]
- El-Baz, F.K.; Hussein, R.A.; Saleh, D.O.; Abdel Jaleel, G.A.R. Zeaxanthin Isolated from Dunaliella salina Microalgae Ameliorates Age Associated Cardiac Dysfunction in Rats through Stimulation of Retinoid Receptors. Mar. Drugs 2019, 17, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobretsov, S.; Sathe, P.; Bora, T.; Barry, M.; Myint, M.T.Z.; Abri, M.A. Toxicity of Different Zinc Oxide Nanomaterials at 3 Trophic Levels: Implications for Development of Low-Toxicity Antifouling Agents. Environ. Toxicol. Chem. 2020, 39, 1343–1354. [Google Scholar] [CrossRef]
- Mohamad, N.N.; Basir, M.R.; Mahmood, A.; Bakhari, N.A.; Mydin, M.M.; Arshad, N.M.; Hamid, H.A.; Isa, N. Synthesis of Silver Nanoparticles Using Beijing Grass Extract as Reducing Agent and The Comparative Study of AgNPs Toxicity. Int. J. Electroact. Mater. 2022, 10, 1–11. [Google Scholar]
- Avron, M.; Ben-Amotz, A. Dunaliella: Physiology, Biochemistry, and Biotechnology; CRC Press: Boca Raton, FL, USA, 1992; ISBN 978-0-8493-6647-5. [Google Scholar]
- Pick, U. Dunaliella acidophila—A Most Extreme Acidophilic Alga. In Enigmatic Microorganisms and Life in Extreme Environments; Seckbach, J., Ed.; Springer: Dordrecht, The Netherlands, 1999; pp. 465–478. ISBN 978-1-4020-1863-3. [Google Scholar]
- Gallego-Cartagena, E.; Castillo-Ramírez, M.; Martínez-Burgos, W. Effect of Stressful Conditions on the Carotenogenic Activity of a Colombian Strain of Dunaliella salina. Saudi J. Biol. Sci. 2019, 26, 1325–1330. [Google Scholar] [CrossRef]
- Guermazi, W.; Masmoudi, S.; Trabelsi, N.A.; Gammoudi, S.; Ayadi, H.; Morant-Manceau, A.; Hotos, G.N. Physiological and Biochemical Responses in Microalgae Dunaliella salina, Cylindrotheca closterium and Phormidium versicolor NCC466 Exposed to High Salinity and Irradiation. Life 2023, 13, 313. [Google Scholar] [CrossRef]
- Shariati, M.; Hadi, M. Isolation, Purification and Identification of Three Unicellular Green Alga Species of Dunaliella salina, Dunaliella parva and Dunaliella pseudosalina from Salt Marsh of Gave-Khoni of Isfahan-Iran. Iran. J. Biol. 2000, 9, 45–54. [Google Scholar]
- Hashemi, A.; Pajoum Shariati, F.; Delavari Amrei, H.; Heydari Nasab, A. The Effect of Instantaneous and Slow-Release Salt Stress Methods on Beta-Carotene Production within Dunaliella Salina Cells. Iran. J. Chem. Chem. Eng. IJCCE 2021, 40, 1642–1652. [Google Scholar] [CrossRef]
- Rastogi, R.P.; Sinha, R.P.; Moh, S.H.; Lee, T.K.; Kottuparambil, S.; Kim, Y.-J.; Rhee, J.-S.; Choi, E.-M.; Brown, M.T.; Häder, D.-P.; et al. Ultraviolet Radiation and Cyanobacteria. J. Photochem. Photobiol. B 2014, 141, 154–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowan, A.K.; Rose, P.D.; Horne, L.G. Dunaliella salina: A Model System for Studying the Response of Plant Cells to Stress. J. Exp. Bot. 1992, 43, 1535–1547. [Google Scholar] [CrossRef]
- Kaamoush, M.; El-Agawany, N.; Omar, M.Y. Environmental Toxicological Evaluation (in Vitro) of Copper, Zinc and Cybutryne on the Growth and Amino Acids Content of the Marine Alga Dunaliella salina. Egypt. J. Aquat. Res. 2022, 49, 23–32. [Google Scholar] [CrossRef]
- Yilancioglu, K.; Cokol, M.; Pastirmaci, I.; Erman, B.; Cetiner, S. Oxidative Stress Is a Mediator for Increased Lipid Accumulation in a Newly Isolated Dunaliella salina Strain. PLoS ONE 2014, 9, e91957. [Google Scholar] [CrossRef] [Green Version]
- Miazek, K.; Iwanek, W.; Remacle, C.; Richel, A.; Goffin, D. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review. Int. J. Mol. Sci. 2015, 16, 23929–23969. [Google Scholar] [CrossRef] [Green Version]
- Roy, U.K.; Nielsen, B.V.; Milledge, J.J. Antioxidant Production in Dunaliella. Appl. Sci. 2021, 11, 3959. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [Green Version]
- Canion, A.; MacIntyre, H.L.; Phipps, S. Short-Term to Seasonal Variability in Factors Driving Primary Productivity in a Shallow Estuary: Implications for Modeling Production. Estuar. Coast. Shelf Sci. 2013, 131, 224–234. [Google Scholar] [CrossRef]
- Elleuch, J.; Hmani, R.; Drira, M.; Michaud, P.; Fendri, I.; Abdelkafi, S. Potential of Three Local Marine Microalgae from Tunisian Coasts for Cadmium, Lead and Chromium Removals. Sci. Total Environ. 2021, 799, 149464. [Google Scholar] [CrossRef] [PubMed]
- Belghith, T.; Athmouni, K.; Bellassoued, K.; El Feki, A.; Ayadi, H. Physiological and Biochemical Response of Dunaliella salina to Cadmium Pollution. J. Appl. Phycol. 2016, 28, 991–999. [Google Scholar] [CrossRef]
- Nikookar, K.; Moradshahi, A.; Hosseini, L. Physiological Responses of Dunaliella salina and Dunaliella tertiolecta to Copper Toxicity. Biomol. Eng. 2005, 22, 141–146. [Google Scholar] [CrossRef]
- Gamal-ELDi, N.; Ahmed Fath, A. Humic Acid Mitigates Viability Reduction, Lipids and Fatty Acids of Dunaliella salina and Nannochloropsis salina Grown under Nickel Stress. Int. J. Bot. 2006, 3, 64–70. [Google Scholar] [CrossRef]
- Rani, A.; Saini, K.; Bast, F.; Mehariya, S.; Bhatia, S.; Lavecchia, R.; Zuorro, A. Microorganisms: A Potential Source of Bioactive Molecules for Antioxidant Applications. Molecules 2021, 26, 1142. [Google Scholar] [CrossRef] [PubMed]
- Widowati, I.; Zainuri, M.; Kusumaningrum, H.P.; Susilowati, R.; Hardivillier, Y.; Leignel, V.; Bourgougnon, N.; Mouget, J.-L. Antioxidant Activity of Three Microalgae Dunaliella salina, Tetraselmis chuii and Isochrysis galbana Clone Tahiti. IOP Conf. Ser. Earth Environ. Sci. 2017, 55, 012067. [Google Scholar] [CrossRef] [Green Version]
- Shafik, M.A. Phytoremediation of Some Heavy Metals by Dunaliella Salina. Glob. J. Environ. Res. 2008, 2, 1–11. [Google Scholar]
- Mofeed, J. Biosorption of Heavy Metals from Aqueous Industrial Effluent by Non-Living Biomass of Two Marine Green Algae Ulva Lactuca and Dunaliella salina as Biosorpents. Catrina Int. J. Environ. Sci. 2017, 16, 43–52. [Google Scholar] [CrossRef]
- Su, W. State and Parameter Estimation of Microalgal Photobioreactor Cultures Based on Local Irradiance Measurement. J. Biotechnol. 2003, 105, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Jiang, J.-G. Toxic Effects of Chemical Pesticides (Trichlorfon and Dimehypo) on Dunaliella salina. Chemosphere 2011, 84, 664–670. [Google Scholar] [CrossRef]
- Belmonte, G.; Moscatello, S.; Batogova, E.A.; Pavlovskaya, T.; Shardin, N.V.; Litvinchuk, L.F. Fauna of Hypersaline Lakes of the Crimea (Ukraine). Thalass. Salentina 2012, 34, 11–24. [Google Scholar]
- Radzikowski, J. Resistance of Dormant Stages of Planktonic Invertebrates to Adverse Environmental Conditions. J. Plankton Res. 2013, 35, 707–723. [Google Scholar] [CrossRef] [Green Version]
- Nunes, B.S.; Carvalho, F.D.; Guilhermino, L.M.; Van Stappen, G. Use of the Genus Artemia in Ecotoxicity Testing. Environ. Pollut. 2006, 144, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Alal, G.W.; Robert, J.O. Effect of Different Salinity Levels on the Hatchability and Survival of Brine Shrimp, Artemia Salina (Linnaeus, 1758) from Malindi, Kenya. Afr. J. Educ. Sci. Technol. 2017, 3, 1–5. [Google Scholar]
- Thode Filho, S.; de Jorge, E.N.L.F.; de Oliveira, A.S.; da Costa Marques, M.R.; Franco, H.A. Study on the Use of Artemia Salina as Bioindicator in the Ecotoxicological Evaluation of Landfill Leachate. Rev. Eletrônica Em Gest. Educ. E Tecnol. Ambient. 2017, 21, 24. [Google Scholar] [CrossRef] [Green Version]
- Browne, R.A. Competition Experiments Between Parthenogenetic and Sexual Strains of the Brine Shrimp, Artemia salina. Ecology 1980, 61, 471–474. [Google Scholar] [CrossRef]
- Busa, W.B.; Crowe, J.H. Intracellular PH Regulates Transitions Between Dormancy and Development of Brine Shrimp (Artemia salina) Embryos. Science 1983, 221, 366–368. [Google Scholar] [CrossRef]
- Pecoraro, R.; Scalisi, E.M.; Messina, G.; Fragalà, G.; Ignoto, S.; Salvaggio, A.; Zimbone, M.; Impellizzeri, G.; Brundo, M.V. Artemia salina: A Microcrustacean to Assess Engineered Nanoparticles Toxicity. Microsc. Res. Tech. 2021, 84, 531–536. [Google Scholar] [CrossRef]
- Weber, C.I. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, 4th ed.; EPA 600/4-90-027; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 1991.
- Libralato, G. The Case of Artemia Spp. in Nanoecotoxicology. Mar. Environ. Res. 2014, 101, 38–43. [Google Scholar] [CrossRef]
- Kirchner, S.R.; Fedoruk, M.; Lohmüller, T.; Feldmann, J. Analyzing the Movement of the Nauplius Artemia salina by Optical Tracking of Plasmonic Nanoparticles. J. Vis. Exp. 2014, 51502. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Henry, J.; Karpiński, T.M.; Wlodkowic, D. High-Throughput Phototactic Ecotoxicity Biotests with Nauplii of Artemia franciscana. Toxics 2022, 10, 508. [Google Scholar] [CrossRef]
- Kissa, E.; Moraitou-Apostolopoulou, M.; Kiortsis, V. Effects of Four Heavy Metals on Survival and Hatching Rate of Artemia Salina. Arch. Für Hydrobiol. 1984, 102, 255–264. [Google Scholar] [CrossRef]
- Liu, P.-C.; Chen, J.-C. Effects of Heavy Metals on the Hatching Rates of Brine Shrimp Artemia salina Cysts. J. World Aquac. Soc. 1987, 18, 78–83. [Google Scholar] [CrossRef]
- Kokkali, V.; Katramados, I.; Newman, J.D. Monitoring the Effect of Metal Ions on the Mobility of Artemia salina Nauplii. Biosensors 2011, 1, 36–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umarani, R.; Kumaraguru, A.K.; Nagarani, N. Investigation of Acute Toxicity of Heavy Metals in Artemia salina Acclimated to Different Salinity. Toxicol. Environ. Chem. 2012, 94, 1547–1556. [Google Scholar] [CrossRef]
- Reddy, S.; Osborne, W.J. Heavy Metal Determination and Aquatic Toxicity Evaluation of Textile Dyes and Effluents Using Artemia salina. Biocatal. Agric. Biotechnol. 2020, 25, 101574. [Google Scholar] [CrossRef]
- Ñañez Pacheco, G.K.; Sanabio Maldonado, N.S.; Pastrana Alta, R.Y.; Aguilar Vitorino, H. Short Exposure of Artemia salina to Group-12 Metals: Comparing Hatchability, Mortality, Lipid Peroxidation, and Swimming Speed. Ecotoxicol. Environ. Saf. 2021, 213, 112052. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.A.G.; de Nagai, M.Y.O.; Coimbra, E.N.; Mohammad, S.N.; Silva, J.S.; Von Ancken, A.; Pinto, S.A.G.; Aguiar, M.S.; Dutra-Correa, M.; Hortellani, M.A.; et al. Bioresilience to Mercury Chloride of the Brine Shrimp Artemia salina after Treatment with Homeopathic Mercurius Corrosivus. Homeopathy 2021, 110, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Tzima, C.S.; Banti, C.N.; Hadjikakou, S.K. Assessment of the Biological Effect of Metal Ions and Their Complexes Using Allium Cepa and Artemia Salina Assays: A Possible Environmental Implementation of Biological Inorganic Chemistry. JBIC J. Biol. Inorg. Chem. 2022, 27, 611–629. [Google Scholar] [CrossRef]
- Annabi-Trabelsi, N.; Guermazi, W.; Karam, Q.; Ali, M.; Uddin, S.; Leignel, V.; Ayadi, H. Concentrations of Trace Metals in Phytoplankton and Zooplankton in the Gulf of Gabès, Tunisia. Mar. Pollut. Bull. 2021, 168, 112392. [Google Scholar] [CrossRef] [PubMed]
- Zulkifli, S.Z.; Aziz, F.Z.A.; Ajis, S.Z.M.; Ismail, A. Nauplii of Brine Shrimp (Artemia salina) as a Potential Toxicity Testing Organism for Heavy Metals Contamination. In From Sources to Solution; Aris, A.Z., Tengku Ismail, T.H., Harun, R., Abdullah, A.M., Ishak, M.Y., Eds.; Springer: Singapore, 2014; pp. 233–237. ISBN 978-981-4560-69-6. [Google Scholar]
- Chen, J.-C.; Lru, P.-C. Accumulation of Heavy Metals in the Nauplii of Artemia salina. J. World Aquac. Soc. 1987, 18, 84–93. [Google Scholar] [CrossRef]
- Mohamed, A.H.; Sheir, S.K.; Osman, G.Y.; Abd-El Azeem, H.H. Toxic Effects of Heavy Metals Pollution on Biochemical Activities of the Adult Brine Shrimp, Artemia salina. Can. J. Pure Appl. Sci. 2014, 8, 3019–3028. [Google Scholar]
- Persoone, G.; Wells, P.G. Artemia in Aquatic Toxicology: A Review. In Artemia Research and Its Applications: Morphology, Genetics, Strain Characterization, Toxicology; Universa Press: Wetteren, Belgium, 1987; Volume 1, p. 380. [Google Scholar]
- Hicks, G.F.; Coull, B.C. The Ecology of Marine Meiobenthic Harpacticoid Copepods. Oceanogr. Mar. Biol. 1983, 21, 67–175. [Google Scholar]
- Williams, T.D.; Hutchinson, T.H.; Roberts, G.C.; Coleman, C.A. The Assessment of Industrial Effluent Toxicity Using Aquatic Microorganisms, Invertebrates and Fish. Sci. Total Environ. 1993, 134, 1129–1141. [Google Scholar] [CrossRef]
- Barata, C.; Baird, D.; Medina, M.; Albalat, A.; Soares, A. Determining the Ecotoxicological Mode of Action of Toxic Chemicals in Meiobenthic Marine Organisms: Stage-Specific Short Tests with Tisbe Battagliai. Mar. Ecol. Prog. Ser. 2002, 230, 183–194. [Google Scholar] [CrossRef]
- Diz, F.R.; Araújo, C.V.M.; Moreno-Garrido, I.; Hampel, M.; Blasco, J. Short-Term Toxicity Tests on the Harpacticoid Copepod Tisbe battagliai: Lethal and Reproductive Endpoints. Ecotoxicol. Environ. Saf. 2009, 72, 1881–1886. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, T.H.; Williams, T.D. The Use of Sheepshead Minnow (Cyprinodon variegatus) and a Benthic Copepod (Tisbe battagliai) in Short-Term Tests for Estimating the Chronic Toxicity of Industrial Effluents. Hydrobiologia 1989, 188–189, 567–572. [Google Scholar] [CrossRef]
- Hutchinson, T.H.; Williams, T.D.; Eales, G.J. Toxicity of Cadmium, Hexavalent Chromium and Copper to Marine Fish Larvae (Cyprinodon variegatus) and Copepods (Tisbe battagliai). Mar. Environ. Res. 1994, 38, 275–290. [Google Scholar] [CrossRef]
- Matthiessen, P.; Bifield, S.; Jarrett, F.; Kirby, M.F.; Law, R.J.; McMinn, W.R.; Sheahan, D.A.; Thain, J.E.; Whale, G.F. An Assessment of Sediment Toxicity in the River Tyne Estuary, UK by Means of Bioassays. Mar. Environ. Res. 1998, 45, 1–15. [Google Scholar] [CrossRef]
- Fitzer, S. Impacts of Ocean Acidification and Environmental Copper on the Harpacticoid Copepod, Tisbe Battagliai. Ph.D. Thesis, University of Newcastle upon Tyne, Newcastle upon Tyne, UK, 2012. [Google Scholar]
- Macken, A.; Lillicrap, A.; Langford, K. Benzoylurea Pesticides Used as Veterinary Medicines in Aquaculture: Risks and Developmental Effects on Nontarget Crustaceans: Environmental Risks of Veterinary Medicines in Aquaculture. Environ. Toxicol. Chem. 2015, 34, 1533–1542. [Google Scholar] [CrossRef] [Green Version]
- Trombini, C.; Hampel, M.; Blasco, J. Evaluation of Acute Effects of Four Pharmaceuticals and Their Mixtures on the Copepod Tisbe battagliai. Chemosphere 2016, 155, 319–328. [Google Scholar] [CrossRef]
- ISO-International Organization for Standardisation. Water Quality—Determination of Acute Lethal Toxicity to Marine Copepods (Copepoda, Crustacea), 1st ed.; ISO: Géneve, Switzerland, 1999. [Google Scholar]
- Drira, Z.; Kmiha-Megdiche, S.; Sahnoun, H.; Pagano, M.; Tedetti, M.; Ayadi, H. Water Quality Affects the Structure of Copepod Assemblages along the Sfax Southern Coast (Tunisia, Southern Mediterranean Sea). Mar. Freshw. Res. 2018, 69, 220. [Google Scholar] [CrossRef]
- Patel, P.D. (Bio)Sensors for Measurement of Analytes Implicated in Food Safety: A Review. TrAC Trends Anal. Chem. 2002, 21, 96–115. [Google Scholar] [CrossRef]
- Szczerbiñska, N.; Gałczyñska, M. Biological Methods Used to Assess Surface Water Quality. Arch. Pol. Fish. 2015, 23, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Napiórkowski, P.; Florkiewicz, S.; Œlebioda, K.; Kentzer, A. Surface Water Quality Ecotoxicological Assessment of the Toruñ Area Using Bioassays with Artemia salina and Hydra attenuate—I: Ekotoksykologia w Ochronie Oerodowiska; Wydawnictwo PZITS: Warszawa, Poland, 2008. [Google Scholar]
- Dvořák, P.; Beňová, K.; Žďárský, M.; Sklenář, Z.; Havelková, A. Use of the Crustacean Artemia Franciscana for Alternative Biotests. Acta Vet. Brno 2010, 79, S47–S53. [Google Scholar] [CrossRef] [Green Version]
- Fichet, D.; Radenac, G.; Miramand, P. Experimental Studies of Impacts of Harbour Sediments Resuspension to Marine Invertebrates Larvae: Bioavailability of Cd, Cu, Pb and Zn and Toxicity. Mar. Pollut. Bull. 1998, 36, 509–518. [Google Scholar] [CrossRef]
- Yadav, S.; Choudhary, N.; Bhai, S.; Bhojani, G.; Chatterjee, S.; Ganguly, B.; Paital, A.R. Recyclable Functionalized Material for Sensitive Detection and Exceptional Sorption of Hexavalent Chromium and Permanganate Ions with Biosensing Applications. ACS Appl. Bio Mater. 2021, 4, 6430–6440. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Rajpurohit, D.; Dash, S.R.; Bhojani, G.; Chatterjee, S.; Paital, A.R. Hybrid Material for Ferric Ion Detection & Remediation: Exceptional Selectivity & Adsorption Capacity with Biological Applications. Microporous Mesoporous Mater. 2022, 338, 111945. [Google Scholar] [CrossRef]
- Mudhulkar, R.; Nair, R.R.; Raval, I.H.; Haldar, S.; Chatterjee, P.B. Visualizing Zn2+ in Living Whole Organism Artemia by a Natural Fluorimetric Intermediate Siderophore. ChemistrySelect 2017, 2, 6407–6412. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guermazi, W.; Annabi-Trabelsi, N.; Belmonte, G.; Guermazi, K.; Ayadi, H.; Leignel, V. Solar Salterns and Pollution: Valorization of Some Endemic Species as Sentinels in Ecotoxicology. Toxics 2023, 11, 524. https://doi.org/10.3390/toxics11060524
Guermazi W, Annabi-Trabelsi N, Belmonte G, Guermazi K, Ayadi H, Leignel V. Solar Salterns and Pollution: Valorization of Some Endemic Species as Sentinels in Ecotoxicology. Toxics. 2023; 11(6):524. https://doi.org/10.3390/toxics11060524
Chicago/Turabian StyleGuermazi, Wassim, Neila Annabi-Trabelsi, Genuario Belmonte, Kais Guermazi, Habib Ayadi, and Vincent Leignel. 2023. "Solar Salterns and Pollution: Valorization of Some Endemic Species as Sentinels in Ecotoxicology" Toxics 11, no. 6: 524. https://doi.org/10.3390/toxics11060524
APA StyleGuermazi, W., Annabi-Trabelsi, N., Belmonte, G., Guermazi, K., Ayadi, H., & Leignel, V. (2023). Solar Salterns and Pollution: Valorization of Some Endemic Species as Sentinels in Ecotoxicology. Toxics, 11(6), 524. https://doi.org/10.3390/toxics11060524