The Possible Role of PM2.5 Chronic Exposure on 5-Year Survival in Patients with Left Ventricular Dysfunction Following Coronary Artery Bypass Grafting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Air Pollution Exposure Methodology
2.2. Statistical Analysis
2.3. Bioethics Committee
3. Results
3.1. Logistic Regression Analysis
3.2. Group 1
3.3. Group 2
3.4. Group 3
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajagopalan, S.; Al-Kindi, S.G.; Brook, R.D. Air Pollution and Cardiovascular Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2018, 72, 2054–2070. [Google Scholar] [CrossRef]
- Liu, J.; Varghese, B.M.; Hansen, A.; Zhang, Y.; Driscoll, T.; Morgan, G.; Dear, K.; Gourley, M.; Capon, A.; Bi, P. Heat exposure and cardiovascular health outcomes: A systematic review and meta-analysis. Lancet Planet Health 2022, 6, e484–e495. [Google Scholar] [CrossRef]
- Urbanowicz, T.; Skotak, K.; Olasińska-Wiśniewska, A.; Filipiak, K.J.; Bratkowski, J.; Wyrwa, M.; Sikora, J.; Tyburski, P.; Krasińska, B.; Krasiński, Z.; et al. Long-Term Exposure to PM10 Air Pollution Exaggerates Progression of Coronary Artery Disease. Atmosphere 2024, 15, 216. [Google Scholar] [CrossRef]
- Urbanowicz, T.K.; Skotak, K.; Lesiak, M.; Olasińska-Wiśniewska, A.; Filipiak, K.J.; Bratkowski, J.; Szczepański, K.; Grodecki, K.; Tykarski, A.; Jemielity, M. Coronary artery culprit lesions progression and ambient temperature exposure—Personalised analysis. Postępy Kardiol. Interwencyjnej 2024, 20, 139–147. [Google Scholar] [CrossRef]
- Bharmal, M.; Kern, M.J.; Kumar, G.; Seto, A.H. Physiologic Lesion Assessment to Optimize Multivessel Disease. Curr. Cardiol. Rep. 2022, 24, 541–550. [Google Scholar] [CrossRef]
- Granger, C.B.; Krychtiuk, K.A.; Gersh, B.J. Personalizing Choice of CABG vs. PCI for Multivessel Disease: Predictive Model Falls Short. J. Am. Coll. Cardiol. 2022, 79, 1474–1476. [Google Scholar] [CrossRef] [PubMed]
- Formica, F.; Gallingani, A.; Tuttolomondo, D.; Hernandez-Vaquero, D.; Singh, G.; Pattuzzi, C.; Maestri, F.; Niccoli, G.; Ceccato, E.; Lorusso, R.; et al. Long-Term Outcomes Comparison between Surgical and Percutaneous Coronary Revascularization in Patients with Multivessel Coronary Disease or Left Main Disease: A Systematic Review and Study Level Meta-Analysis of Randomized Trials. Curr. Probl. Cardiol. 2023, 48, 101699. [Google Scholar] [CrossRef] [PubMed]
- Quin, J.A.; Wagner, T.H.; Hattler, B.; Carr, B.M.; Collins, J.; Almassi, G.H.; Grover, F.L.; Shroyer, A.L. Ten-Year Outcomes of Off-Pump vs. On-Pump Coronary Artery Bypass Grafting in the Department of Veterans Affairs: A Randomized Clinical Trial. JAMA Surg. 2022, 157, 303–310. [Google Scholar]
- Dominici, C.; Salsano, A.; Nenna, A.; Spadaccio, C.; Mariscalco, G.; Santini, F.; Chello, M. On-pump beating-heart coronary artery bypass grafting in high-risk patients: A systematic review and meta-analysis. J. Card. Surg. 2020, 35, 1958–1978. [Google Scholar] [CrossRef] [PubMed]
- Farina, P.; Gaudino, M.; Angelini, G.D. Off-pump coronary artery bypass surgery: The long and winding road. Int. J. Cardiol. 2019, 279, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Aksut, B.; Starling, R.; Kapadia, S. Stable coronary artery disease and left ventricular dysfunction: The role of revascularization. Catheter. Cardiovasc. Interv. 2017, 90, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Kosmala, W.; Marwick, T.H. Asymptomatic Left Ventricular Diastolic Dysfunction: Predicting Progression to Symptomatic Heart Failure. JACC Cardiovasc. Imaging 2020, 13, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Zuo, B.; Fan, X.; Xu, D.; Zhao, L.; Zhang, B.; Li, X. Deciphering the mitochondria-inflammation axis: Insights and therapeutic strategies for heart failure. Int. Immunopharmacol. 2024, 139, 112697. [Google Scholar] [CrossRef] [PubMed]
- Lanas, F.; Saavedra, N.; Saavedra, K.; Hevia, M.; Seron, P.; Salazar, L.A. Effect of intermediate-term firewood smoke air pollution on cardiometabolic risk factors and inflammatory markers. Front. Cardiovasc. Med. 2023, 10, 1252542. [Google Scholar] [CrossRef] [PubMed]
- Urbanowicz, T.; Skotak, K.; Filipiak, K.J.; Olasińska-Wiśniewska, A.; Szczepański, K.; Wyrwa, M.; Sikora, J.; Tykarski, A.; Jemielity, M. Long-Term Exposure of Nitrogen Oxides Air Pollution (NO2) Impact for Coronary Artery Lesion Progression-Pilot Study. J. Pers. Med. 2023, 13, 1376. [Google Scholar] [CrossRef]
- Available online: https://www.kobize.pl/en/article/national-database-on-greenhouse-gases-and-other-substances-emissions/id/1232/general-information (accessed on 27 March 2024).
- European Air Quality, Copernicus, Atmosphere Monitoring Service. Available online: https://www.regional-evaluation.atmosphere.copernicus.eu/ (accessed on 27 March 2024).
- Braunwald, E. Air pollution: Challenges and opportunities for cardiology. Eur. Heart J. 2023, 44, 1679–1681. [Google Scholar] [CrossRef]
- US Preventive Services Task Force; Mangione, C.M.; Barry, M.J.; Nicholson, W.K.; Cabana, M.; Chelmow, D.; Coker, T.R.; Davis, E.M.; Donahue, K.E.; Jaén, C.R.; et al. Statin Use for the Primary Prevention of Cardiovascular Disease in Adults: US Preventive Services Task Force Recommendation Statement. JAMA 2022, 328, 746–753. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, C.K.; Yi, M.; Lui, K.O.; Huang, Y. Targeting endothelial dysfunction and inflammation. J. Mol. Cell Cardiol. 2022, 168, 58–67. [Google Scholar] [CrossRef]
- Xiang, Q.; Tian, F.; Xu, J.; Du, X.; Zhang, S.; Liu, L. New insight into dyslipidemia-induced cellular senescence in atherosclerosis. Biol. Rev. Camb. Philos Soc. 2022, 97, 1844–1867. [Google Scholar] [CrossRef]
- Prasad, K. Current Status of Primary, Secondary, and Tertiary Prevention of Coronary Artery Disease. Int. J. Angiol. 2021, 30, 177–186. [Google Scholar] [CrossRef]
- Writing Committee; Lloyd-Jones, D.M.; Morris, P.B.; Ballantyne, C.M.; Birtcher, K.K.; Covington, A.M.; DePalma, S.M.; Minissian, M.B.; Orringer, C.E.; Smith, S.C., Jr.; et al. 2022 ACC Expert Consensus Decision Pathway on the Role of Nonstatin Therapies for LDL-Cholesterol Lowering in the Management of Atherosclerotic Cardiovascular Disease Risk: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2022, 80, 1366–1418. [Google Scholar]
- Urbanowicz, T.K.; Olasińska-Wiśniewska, A.; Michalak, M.; Gąsecka, A.; Rodzki, M.; Perek, B.; Jemielity, M. Cardioprotective Effect of Low Level of LDL Cholesterol on Perioperative Myocardial Injury in Off-Pump Coronary Artery Bypass Grafting. Medicina 2021, 57, 875. [Google Scholar] [CrossRef]
- Lim, K.; Wong, C.H.M.; Lee, A.L.Y.; Fujikawa, T.; Wong, R.H.L. Influence of cholesterol level on long-term survival and cardiac events after surgical coronary revascularization. JTCVS Open 2022, 10, 195–203. [Google Scholar] [CrossRef]
- Hanna, A.; Frangogiannis, N.G. Inflammatory Cytokines and Chemokines as Therapeutic Targets in Heart Failure. Cardiovasc. Drugs Ther. 2020, 34, 849–863. [Google Scholar] [CrossRef]
- Urbanowicz, T.; Michalak, M.; Al-Imam, A.; Olasińska-Wiśniewska, A.; Rodzki, M.; Witkowska, A.; Haneya, A.; Buczkowski, P.; Perek, B.; Jemielity, M. The Significance of Systemic Immune-Inflammatory Index for Mortality Prediction in Diabetic Patients Treated with Off-Pump Coronary Artery Bypass Surgery. Diagnostics 2022, 12, 634. [Google Scholar] [CrossRef]
- Abu Khadija, H.; Gandelman, G.; Ayyad, O.; Poles, L.; Jonas, M.; Paz, O.; Goland, S.; Shimoni, S.; Meledin, V.; George, J.; et al. Comparative Analysis of the Kinetic Behavior of Systemic Inflammatory Markers in Patients with Depressed versus Preserved Left Ventricular Function Undergoing Transcatheter Aortic Valve Implantation. J. Clin. Med. 2021, 10, 4148. [Google Scholar] [CrossRef]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
- Goossens, J.; Jonckheere, A.C.; Seys, S.F.; Dilissen, E.; Decaesteker, T.; Goossens, C.; Peers, K.; Vanbelle, V.; Stappers, J.; Aertgeerts, S.; et al. Activation of epithelial and inflammatory pathways in adolescent elite athletes exposed to intense exercise and air pollution. Thorax 2023, 78, 775–783. [Google Scholar] [CrossRef]
- Marchini, T. Redox and inflammatory mechanisms linking air pollution particulate matter with cardiometabolic derangements. Free Radic. Biol. Med. 2023, 209, 320–341. [Google Scholar] [CrossRef]
- Su, R.; Jin, X.; Li, H.; Huang, L.; Li, Z. The mechanisms of PM2.5 and its main components penetrate into HUVEC cells and effects on cell organelles. Chemosphere 2020, 241, 125127. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, X.; Zhong, M.; Hotchkiss, I.P.; Lewandowski, R.P.; Wagner, J.G.; Bramble, L.A.; Yang, Y.; Wang, A.; Harkema, J.R.; et al. Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues. Part. Fibre Toxicol. 2011, 8, 20–34. [Google Scholar] [CrossRef]
- Vieira, J.L.; Guimaraes, G.V.; de Andre, P.A.; Cruz, F.D.; Saldiva, P.H.; Bocchi, E.A. Respiratory Filter Reduces the Cardiovascular Effects Associated with Diesel Exhaust Exposure: A Randomized, Prospective, Double-Blind, Controlled Study of Heart Failure: The FILTER-HF Trial. JACC Heart Fail. 2016, 4, 55–64. [Google Scholar] [CrossRef]
- Eze, U.U.; Eke, I.G.; Anakwue, R.C.; Oguejiofor, C.F.; Onyejekwe, O.B.; Udeani, I.J.; Onunze, C.J.; Obed, U.J.; Eze, A.A.; Anaga, A.O.; et al. Effects of Controlled Generator Fume Emissions on the Levels of Troponin I, C-Reactive Protein and Oxidative Stress Markers in Dogs: Exploring Air Pollution-Induced Cardiovascular Disease in a Low-Resource Country. Cardiovasc. Toxicol. 2021, 21, 1019–1032. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Sergeev, A.K. The Role of Fine Particles (PM 2.5) in the Genesis of Atherosclerosis and Myocardial Damage: Emphasis on Clinical and Epidemiological Data, and Pathophysiological Mechanisms. Cardiol. Res. 2022, 13, 268–282. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, M. Trends in all causes and cause specific mortality attributable to ambient particulate matter pollution in China from 1990 to 2019: A secondary data analysis study. PLoS ONE 2023, 18, e0291262. [Google Scholar] [CrossRef]
- Krittanawong, C.; Qadeer, Y.K.; Hayes, R.B.; Wang, Z.; Thurston, G.D.; Virani, S.; Lavie, C.J. PM2.5 and cardiovascular diseases: State-of-the-Art review. Int. J. Cardiol. Cardiovasc. Risk Prev. 2023, 19, 200217. [Google Scholar] [CrossRef]
Parameters | Group 1 | Group 2 | Group 3 | p | p | p |
---|---|---|---|---|---|---|
LVEF ≥ 50% | LVEF 41–49% | LVEF ≤ 40% | Group 1 vs. Group 2 | Group 1 vs. Group 3 | Group 2 vs. Group 3 | |
n = 169 | n = 61 | n = 53 | ||||
Demographical | ||||||
Age (years) (median (Q1–Q3) | 64 (60–72) | 64 (58–69) | 64 (59–68) | 0.322 | 0.186 | 0.795 |
Sex (male (%)) | 142 (84) | 52 (85) | 49 (92) | 0.627 | 0.124 | 0.324 |
BMI (median (Q1–Q3) | 28.4 (26.6–30.9) | 28.4 (26.3–31.0) | 28.7 (26.6–31.5) | 0.624 | 0.74 | 0.532 |
Co-morbidities | ||||||
Arterial hypertension (n, %) | 128 (76) | 49 (80) | 45 (85) | 0.349 | 0 | 0.302 |
Dyslipidemia (n, %) | 89 (53) | 30 (49) | 30 (57) | 0.724 | 0.457 | 0.639 |
Diabetes mellitus (n, %) | 57 (34) | 21 (34) | 19 (36) | 0.859 | 0.778 | 0.928 |
PAD (n, %) | 18 (11) | 5 (8) | 4 (8) | 0.61 | 0.512 | 0.883 |
CAD diagnosis: | ||||||
Left main disease (n, %) | 51 (30) | 19 (31) | 14 (26) | 0.873 | 0.73 | 0.68 |
Two-vessel disease (n, %) | 49 (29) | 18 (30) | 14 26) | 1 | 0.862 | 0.835 |
Three-vessel disease (n, %) | 69 (41) | 24 (39) | 25 (47) | 0.88 | 0.43 | 0.451 |
Parameters | Group 1 | Group 2 | Group 3 | p | p | p |
---|---|---|---|---|---|---|
LVEF ≥ 50% | LVEF 41–49% | LVEF ≤ 40% | Group 1 vs. Group 2 | Group 1 vs. Group 3 | Group 2 vs. Group 3 | |
n = 169 | n = 61 | n = 53 | ||||
Preoperative laboratory results: | ||||||
WBC (×109/L) (median (Q1–Q3)) | 7.70 (6.47–8.93) | 7.84 (6.41–8.83) | 7.44 (6.59–8.51) | 0.612 | 0.738 | 0.716 |
Hb (mmol/L) (median (Q1–Q3)) | 8.8 (8.2–9.3) | 8.7 (8.2–9.15) | 8.90 (8.40–9.30) | 0.972 | 0.699 | 0.416 |
Plt (×109/L) (median (Q1–Q3)) | 219 (187–259) | 225 (188–262) | 222 (182–263) | 0.896 | 0.961 | 0.863 |
Creatinine (μmol/L) (median (Q1–Q3)) | 98 (79–114) | 93 (74–108) | 95 (89–107) | 0.578 | 0.685 | 0.893 |
CRP (mg/L) (median (Q1–Q3)) | 6 (5–8) | 6 (3–8) | 6 (5–8) | 0.64 | 0.934 | 0.756 |
Preoperative echocardiography: | ||||||
LVED (mm) (median (Q1–Q3)) | 50 (44–55) | 57 (53–60) | 61 (57–64) | <0.001 | <0.001 | <0.001 |
LVEF (%) (median (Q1–Q3)) | 53 (50–57) | 40 (38–43) | 31 (27–34) | <0.001 | <0.001 | <0.001 |
Off-pump surgery: | ||||||
Skin-to-skin time (min) (median (Q1–Q3)) | 132 (119–167) | 139 (121–170) | 161 (120–182) | 0.289 | 0.116 | 0.189 |
Number of grafts (n, mean (SD)) | 2.2 (0.8) | 2.4 (0.7) | 3.0 (0.8) | 0.148 | 0.047 | 0.563 |
Troponin max (ng/mL) (median (Q1–Q3)) | 1.698 (0.789–4.334) | 1.47 (0.603–3.416) | 2.37 (0.942–4.125) | 0.452 | 0.453 | 0.187 |
Overall hospitalization: (days) (mean (SD)) | 10 (2) | 11 (3) | 14 (3) | 0.608 | 0.043 | 0.278 |
Complications: | ||||||
Bleeding (n, (%)) | 2 (1) | 1 (2) | 1 (2) | 1 | 1 | 0.561 |
Wound infection (n, (%)) | 3 (2) | 2 (3) | 1 (2) | 0.61 | 1 | 1 |
Parameters | Group 1 | Group 2 | Group 3 | p | p | p |
---|---|---|---|---|---|---|
LVEF ≥ 50% | LVEF 41–49% | LVEF ≤ 40% | Group 1 vs. Group 2 | Group 1 vs. Group 3 | Group 2 vs. Group 3 | |
n = 169 | n = 61 | n = 53 | ||||
Mean follow-up time (years) (mean (SD) | 5.3 (1.1) | 5.5 (1.1) | 5.4 (1.1) | 0.919 | 0.814 | 0.818 |
Follow–up laboratory results: | ||||||
WBC (×109/L) (median (Q1–Q3)) | 8.32 (7.04–9.73) | 8.6 (6.96–10.31) | 8.91 (7.68–10.49) | 0.797 | 0.152 | 0.535 |
Hb (mmol/L) (median (Q1–Q3)) | 7.0 (6.6–7.4) | 6.8 (6.5–7.45) | 6.9 (6.5–7.5) | 0.915 | 0.767 | 0.709 |
Plt (×109/L) (median (Q1–Q3)) | 264 (211–322) | 258 (220–303) | 272 (222–354) | 0.988 | 0.509 | 0.502 |
Creatinine (μmol/L) (median (Q1–Q3)) | 92 (79–104) | 94 (75–105) | 93 (81.5–100.6) | 0.589 | 0.847 | 0.892 |
Uric acid (μmol/L) (median (Q1–Q3)) | 5.72 (4.85–6.99) | 5.94 (5.01–6.63) | 6.00 (4.98–7.64) | 0.961 | 0.346 | 0.946 |
Hb1Ac (%) (median (Q1–Q3)) | 6.4 (6.0–6.9) | 6.5 (6.1–7.1) | 6.4 (6.0–7.0) | 0.928 | 0.879 | 0.945 |
Lipidogram: | ||||||
Total cholesterol (mmol/L) (median (Q1–Q3)) | 4.0 (3.3–4.7) | 3.7 (3.1–4.2) | 3.8 (3.5–4.2) | 0.131 | 0.212 | 0.441 |
LDL (mmol/L) (median (Q1–Q3)) | 2.2 (1.6–2.9) | 1.7 (1.3–2.4) | 2.1 (1.6–2.3) | 0.034 | 0.145 | 0.123 |
HDL (mmol/L) (median (Q1–Q3)) | 1.2 (0.9–1.5) | 1.0 (0.9–1.3) | 1.1 (1.0–1.2) | 0.11 | 0.48 | 0.423 |
TG (mmol/L) (median (Q1–Q3)) | 1.4 (1.1–1.8) | 1.5 (1.0–1.9) | 1.5 (1.0–1.5) | 0.324 | 0.052 | 0.365 |
Follow-up echocardiography | ||||||
LVED (mm) (median) (Q1–Q3) | 48 (42–52) | 55 (51–58) | 57 (53–61) | <0.001 | <0.001 | <0.001 |
LVEF (%) (median (Q1–Q3) | 55 (50–60) | 44 (41–47) | 33 (30–37) | <0.001 | <0.001 | <0.001 |
Postoperative pharmacotherapy: | ||||||
B-blockers (n (%)) | 169 (100) | 61 (100) | 53 (100) | 1 | 1 | 1 |
ACE-I (n (%)) | 151 (89) | 56 (92) | 21 (40) | 1 | <0.001 | <0.001 |
ARNI (n (%)) | 14 (8) | 3 (5) | 32 (60) | 0.768 | <0.001 | <0.001 |
Diuretics (n (%)) | 29 (17) | 17 (28) | 34 (64) | 0.092 | <0.001 | <0.001 |
SGLT2 inhibitors (n (%)) | 2 (1) | 3 (5) | 15 (28) | 0.09 | <0.001 | 0.004 |
Statins (n (%)) | 164 (97) | 61 (100) | 53 (100) | 0.566 | 1 | 1 |
MRA (n (%)) | 3 (18) | 5 (8) | 45 (85) | 0.034 | <0.001 | <0.001 |
ASA (n (%)) | 169 (100) | 61 (100) | 53 (100) | 1 | 1 | 1 |
Insulin (n (%)) | 31 (18) | 6 (10) | 10 (19) | 0.218 | 0.838 | 0.187 |
Metformin (n (%)) | 26 (15) | 15 (25) | 43 (81) | 0.12 | <0.001 | <0.001 |
Ambient air pollution | ||||||
PM2.5 (μg/m3) (median (Q1–Q3) | 18.9 (16.9–22.4) | 20.6 (17.8–23.0) | 18.9 (15.4–21.8) | 0.152 | 0.614 | 0.108 |
PM10 (μg/m3) (median (Q1–Q3) | 25.3 (22.4–29.6) | 26.7 (23.9–29.7) | 25.0 (21.2–28.3) | 0.237 | 0.37 | 0.053 |
NO2 (μg/m3) (median (Q1–Q3) | 12.2 (9.99–15.62) | 13.0 (10.1–15.1) | 11.2 (9.3–14.5) | 0.709 | 0.217 | 0.145 |
Five-year overall mortality (n, %) | 23 (14) | 9 (15) | 14 (26) | 0.831 | 0.036 | 0.161 |
Parameters | Univariable | Multivariable | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p | HR | 95% CI | p | |
Demographical: | ||||||
Age | 0.976 | 0.828–1.151 | 0.775 | |||
Sex (male) | 0.755 | 0.135–2.606 | 0.49 | |||
BMI | 0.976 | 0.828–1.151 | 0.755 | |||
Clinical: | ||||||
Arterial hypertension | 2.411 | 0.465–12.512 | 0.295 | |||
Diabetes mellitus | 2.402 | 0.702–8.218 | 0.163 | |||
Hypercholesterolemia | 4.246 | 1.152–15.646 | 0.03 | 3.254 | 1.008–10.511 | 0.049 |
PAD | 1.145 | 1.044–3.871 | 0.437 | |||
Perioperative: | ||||||
Number of grafts (2) | 1.478 | 0.288–7.574 | 0.64 | |||
Number of grafts (3) | 1.579 | 0.309–8.078 | 0.583 | |||
Arterial revascularization | 0.91 | 0.567–1.245 | 0.592 | |||
Troponin max | 0.903 | 0.770–1.059 | 0.21 | |||
Postoperative: | ||||||
Creatinine | 0.995 | 0.970–1.022 | 0.726 | |||
Uric acid | 0.889 | 0.616–1.282 | 0.528 | |||
Air pollution exposure: | ||||||
PM2.5 | 0.979 | 0.688–1.392 | 0.906 | |||
PM10 | 0.955 | 0.723–1.370 | 0.977 | |||
NO2 | 1.012 | 0.871–1.175 | 0.879 |
Parameter | Univariable | Multivariable | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p | HR | 95% CI | p | |
Demographical: | ||||||
Age | 0.82 | 0.521–1.291 | 0.39 | |||
Sex (male) | 0.047 | 0.01–4.086 | 0.18 | |||
BMI | 1.194 | 0.743–1.919 | 0.463 | |||
Clinical: | ||||||
Arterial hypertension | 4.366 | 0.280–10.672 | 0.196 | |||
Diabetes mellitus | 1.934 | 0.124–30.031 | 0.638 | |||
Hypercholesterolemia | 6.767 | 0.859–83.861 | 0.156 | 3.391 | 1.001–11.874 | 0.05 |
PAD | 1.04 | 0.103–5.764 | 0.241 | |||
Perioperative: | ||||||
Number of grafts (2) | 0.053 | 0.001–33.6700 | 0.226 | |||
Number of grafts (3) | 0.062 | 0.002–43.703 | 0.227 | |||
Arterial revascularization | 0.902 | 0.567– 1.674 | 0.997 | |||
Troponin max | 1.015 | 0.805–1.278 | 0.902 | |||
Postoperative: | ||||||
Creatinine | 0.997 | 0.943–1.054 | 0.913 | |||
Uric acid | 1.155 | 0.282–4.726 | 0.841 | |||
Air pollution exposure: | ||||||
PM2.5 | 2.084 | 0.849–5.114 | 0.109 | 1.327 | 1.085–1.625 | 0.006 |
PM10 | 1.009 | 0.122–1.250 | 0.113 | |||
NO2 | 1.429 | 0.829–2.464 | 0.199 |
Parameter | Univariable | Multivariable | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p | HR | 95% CI | p | |
Demographical: | ||||||
Age | 1.032 | 0.868–1.228 | 0.719 | |||
Sex (male) | 4.061 | 0.681–10.603 | 0.996 | |||
BMI | 1.035 | 0.784–1.367 | 0.807 | |||
Clinical: | ||||||
Arterial hypertension | 1.374 | 0.477–21.139 | 0.633 | |||
Diabetes mellitus | 1.856 | 0.228–15.096 | 0.563 | |||
Hypercholesterolemia | 2.397 | 0.327–24.812 | 0.142 | |||
PAD | 1.496 | 0.484–11.671 | 0.401 | |||
Perioperative: | ||||||
Number of grafts (2) | 1.478 | 0.961–1.029 | 0.743 | |||
Number of grafts (3) | 1.579 | 0.309–8.078 | 0.583 | |||
Arterial revascularization | 0.91 | 0.567–1.245 | 0.592 | |||
Troponin max | 1.062 | 0.998–1.158 | 0.092 | |||
Postoperative: | ||||||
Creatinine | 0.994 | 0.970–1.022 | 0.726 | |||
Uric acid | 0.889 | 0.616–1.282 | 0.528 | |||
Air pollution exposure: | ||||||
PM2.5 | 1.311 | 0.588–2.923 | 0.509 | 1.518 | 1.050–2.195 | 0.026 |
PM10 | 1.322 | 0.547–3.193 | 0.535 | |||
NO2 | 0.644 | 0.306–1.355 | 0.247 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbanowicz, T.; Skotak, K.; Olasińska-Wiśniewska, A.; Filipiak, K.J.; Płachta-Krasińska, A.; Piecek, J.; Krasińska, B.; Krasiński, Z.; Tykarski, A.; Jemielity, M. The Possible Role of PM2.5 Chronic Exposure on 5-Year Survival in Patients with Left Ventricular Dysfunction Following Coronary Artery Bypass Grafting. Toxics 2024, 12, 697. https://doi.org/10.3390/toxics12100697
Urbanowicz T, Skotak K, Olasińska-Wiśniewska A, Filipiak KJ, Płachta-Krasińska A, Piecek J, Krasińska B, Krasiński Z, Tykarski A, Jemielity M. The Possible Role of PM2.5 Chronic Exposure on 5-Year Survival in Patients with Left Ventricular Dysfunction Following Coronary Artery Bypass Grafting. Toxics. 2024; 12(10):697. https://doi.org/10.3390/toxics12100697
Chicago/Turabian StyleUrbanowicz, Tomasz, Krzysztof Skotak, Anna Olasińska-Wiśniewska, Krzysztof J Filipiak, Aleksandra Płachta-Krasińska, Jakub Piecek, Beata Krasińska, Zbigniew Krasiński, Andrzej Tykarski, and Marek Jemielity. 2024. "The Possible Role of PM2.5 Chronic Exposure on 5-Year Survival in Patients with Left Ventricular Dysfunction Following Coronary Artery Bypass Grafting" Toxics 12, no. 10: 697. https://doi.org/10.3390/toxics12100697
APA StyleUrbanowicz, T., Skotak, K., Olasińska-Wiśniewska, A., Filipiak, K. J., Płachta-Krasińska, A., Piecek, J., Krasińska, B., Krasiński, Z., Tykarski, A., & Jemielity, M. (2024). The Possible Role of PM2.5 Chronic Exposure on 5-Year Survival in Patients with Left Ventricular Dysfunction Following Coronary Artery Bypass Grafting. Toxics, 12(10), 697. https://doi.org/10.3390/toxics12100697