Relationships among Dioxin-like Mitochondria Inhibitor Substances (MIS)-Mediated Mitochondria Dysfunction, Obesity, and Lung Function in a Korean Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Assessment of Clinical Characteristics and Biological Parameters
2.3. Pulmonary Function Tests
2.4. Serum AhRL, MISATP, and MISROS Assays
2.5. Structural Equation Modeling
2.6. Statistical Analysis
2.7. AI-Assisted Editing
3. Results
3.1. General Characteristics of Studied Population
3.2. Pearson Correlation Analysis of AhRL and MIS with Clinical Parameters
3.3. Sex-Dependent Associations of AhRL and MIS with BMI or Lung Function
3.4. Structural Equation Modeling (SEM)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, H.K.; Park, K.S.; Cho, Y.M.; Lee, Y.Y.; Pak, Y.K. Mitochondria-based model for fetal origin of adult disease and insulin resistance. Ann. N. Y. Acad. Sci. 2005, 1042, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.C.; Shulman, G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.K.; Pak, Y.K. Persistent Organic Pollutants, Mitochondrial Dysfunction, and Metabolic Syndrome. In Mitochondrial Dysfunction Caused by Drugs and Environmental Toxicants; Will, Y., Dykens, J.A., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; Volume 2-2, pp. 691–707. [Google Scholar]
- Park, W.H.; Jun, D.W.; Kim, J.T.; Jeong, J.H.; Park, H.; Chang, Y.S.; Park, K.S.; Lee, H.K.; Pak, Y.K. Novel cell-based assay reveals associations of circulating serum AhR-ligands with metabolic syndrome and mitochondrial dysfunction. Biofactors 2013, 39, 494–504. [Google Scholar] [CrossRef]
- Lee, H.K.; Park, W.H.; Kang, Y.C.; Kang, S.; Im, S.; Park, S.; Kim, J.T.; Lee, M.; Seok, J.; Oh, M.S.; et al. Serum biomarkers from cell-based assays for AhRL and MIS strongly predicted the future development of diabetes in a large community-based prospective study in Korea. Sci. Rep. 2020, 10, 6339. [Google Scholar] [CrossRef]
- Lee, H.K.; Cho, Y.M.; Kwak, S.H.; Lim, S.; Park, K.S.; Shim, E.B. Mitochondrial dysfunction and metabolic syndrome-looking for environmental factors. Biochim. Biophys. Acta 2010, 1800, 282–289. [Google Scholar] [CrossRef]
- Park, W.H.; Kang, S.; Lee, H.K.; Salihovic, S.; Bavel, B.V.; Lind, P.M.; Pak, Y.K.; Lind, L. Relationships between serum-induced AhR bioactivity or mitochondrial inhibition and circulating polychlorinated biphenyls (PCBs). Sci. Rep. 2017, 7, 9383. [Google Scholar] [CrossRef]
- Pak, Y.K.; Choi, H.S.; Park, W.H.; Im, S.; Lind, P.M.; Lind, L.; Lee, H.K. High Serum-Induced AhRL Is Associated with Prevalent Metabolic Syndrome and Future Impairment of Glucose Tolerance in the Elderly. Endocrinol. Metab. 2021, 36, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Duncan, B.B.; Castilhos, C.D.; Bracco, P.A.; Schmidt, M.I.; Kang, S.; Im, S.; Lee, H.K.; Vigo, A.; Pak, Y.K. Aryl-hydrocarbon receptor binding and the incidence of type 2 diabetes: The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Environ. Health 2020, 19, 105. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.R.; Crapo, R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. General considerations for lung function testing. Eur. Respir. J. 2005, 26, 153–161. [Google Scholar] [CrossRef]
- Mora, A.L.; Bueno, M.; Rojas, M. Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis. J. Clin. Investig. 2017, 127, 405–414. [Google Scholar] [CrossRef]
- Paek, Y.J.; Jung, K.S.; Hwang, Y.I.; Lee, K.S.; Lee, D.R.; Lee, J.U. Association between low pulmonary function and metabolic risk factors in Korean adults: The Korean National Health and Nutrition Survey. Metabolism 2010, 59, 1300–1306. [Google Scholar] [CrossRef] [PubMed]
- Talaminos Barroso, A.; Marquez Martin, E.; Roa Romero, L.M.; Ortega Ruiz, F. Factors Affecting Lung Function: A Review of the Literature. Arch. Bronconeumol. (Engl. Ed.) 2018, 54, 327–332. [Google Scholar] [CrossRef]
- Choi, H.S.; Lee, S.W.; Kim, J.T.; Lee, H.K. The Association between Pulmonary Functions and Incident Diabetes: Longitudinal Analysis from the Ansung Cohort in Korea. Diabetes Metab. J. 2020, 44, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Han, B.G.; KoGES Group. Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiol. 2017, 46, e20. [Google Scholar] [CrossRef]
- Zhu, L.; He, A.; Chen, D.; Dong, X.; Xiong, X.; Chen, A. Cardiorespiratory fitness as a mediator between body fat rate and executive function in college students. Front. Endocrinol. 2023, 14, 1293388. [Google Scholar] [CrossRef]
- Fujii, R.; Melotti, R.; Gogele, M.; Barin, L.; Ghasemi-Semeskandeh, D.; Barbieri, G.; Pramstaller, P.P.; Pattaro, C. Structural equation modeling (SEM) of kidney function markers and longitudinal CVD risk assessment. PLoS ONE 2023, 18, e0280600. [Google Scholar] [CrossRef] [PubMed]
- Ohn, J.H.; Kwak, S.H.; Cho, Y.M.; Lim, S.; Jang, H.C.; Park, K.S.; Cho, N.H. 10-year trajectory of beta-cell function and insulin sensitivity in the development of type 2 diabetes: A community-based prospective cohort study. Lancet Diabetes Endocrinol. 2016, 4, 27–34. [Google Scholar] [CrossRef]
- Kim, S.K.; Bae, J.C.; Baek, J.H.; Jee, J.H.; Hur, K.Y.; Lee, M.K.; Kim, J.H. Decline in lung function rather than baseline lung function is associated with the development of metabolic syndrome: A six-year longitudinal study. PLoS ONE 2017, 12, e0174228. [Google Scholar] [CrossRef] [PubMed]
- Quon, M.J. Limitations of the fasting glucose to insulin ratio as an index of insulin sensitivity. J. Clin. Endocrinol. Metab. 2001, 86, 4615–4617. [Google Scholar] [CrossRef]
- Crapo, R.O.; Hankinson, J.L.; Irvin, C.; MacIntyre, N.R.; Voter, K.Z.; Wise, R.A.; Graham, B.; O’Donnell, C.; Paoletti, P.; Roca, J.; et al. Standardization of Spirometry, 1994 Update. American Thoracic Society. Am. J. Respir. Crit. Care Med. 1995, 152, 1107–1136. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, Y.Y. RMSEA, CFI, and TLI in structural equation modeling with ordered categorical data: The story they tell depends on the estimation methods. Behav. Res. Methods 2019, 51, 409–428. [Google Scholar] [CrossRef] [PubMed]
- de Mello, A.H.; Costa, A.B.; Engel, J.D.G.; Rezin, G.T. Mitochondrial dysfunction in obesity. Life Sci. 2018, 192, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Petersen, K.F.; Befroy, D.; Dufour, S.; Dziura, J.; Ariyan, C.; Rothman, D.L.; DiPietro, L.; Cline, G.W.; Shulman, G.I. Mitochondrial dysfunction in the elderly: Possible role in insulin resistance. Science 2003, 300, 1140–1142. [Google Scholar] [CrossRef]
- Park, S.; Chon, S.; Park, S.Y.; Yun, S.; Baik, S.H.; Woo, J.T.; Rhee, S.Y.; Pak, Y.K.; Kim, S.H. Association of aryl hydrocarbon receptor transactivating activity, a potential biomarker for persistent organic pollutants, with the risk of gestational diabetes mellitus. Sci. Rep. 2021, 11, 3185. [Google Scholar] [CrossRef]
- Im, S.; Kang, S.; Kim, J.H.; Oh, S.J.; Pak, Y.K. Low-Dose Dioxin Reduced Glucose Uptake in C2C12 Myocytes: The Role of Mitochondrial Oxidative Stress and Insulin-Dependent Calcium Mobilization. Antioxidants 2022, 11, 2109. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Wang, X.; Li, F.; Wang, Y.; Yang, L.; Zhen, X.; Tan, W. Mitochondrial activity and oxidative stress functions are influenced by the activation of AhR-induced CYP1A1 overexpression in cardiomyocytes. Mol. Med. Rep. 2017, 16, 174–180. [Google Scholar] [CrossRef]
- Suh, K.S.; Choi, E.M.; Jung, W.W.; Park, S.Y.; Chin, S.O.; Rhee, S.Y.; Pak, Y.K.; Chon, S. 27-Deoxyactein prevents 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cellular damage in MC3T3-E1 osteoblastic cells. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2018, 53, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Kwon, S.Y.; Yoon, J.W.; Kim, S.Y.; Choi, S.H.; Park, Y.J.; Yoon, H.I.; Chang, Y.S.; Lee, J.H.; Lee, C.T.; et al. Association Between Body Composition and Pulmonary Function in Elderly People: The Korean Longitudinal Study on Health and Aging. Obesity 2011, 19, 631–638. [Google Scholar] [CrossRef]
- Chen, Y.; Rennie, D.; Cormier, Y.F.; Dosman, J. Waist circumference is associated with pulmonary function in normal-weight, overweight, and obese subjects. Am. J. Clin. Nutr. 2007, 85, 35–39. [Google Scholar] [CrossRef]
- Thomas, E.T.; Guppy, M.; Straus, S.E.; Bell, K.J.L.; Glasziou, P. Rate of normal lung function decline in ageing adults: A systematic review of prospective cohort studies. BMJ Open 2019, 9, e028150. [Google Scholar] [CrossRef]
- Thyagarajan, B.; Jacobs, D.R., Jr.; Apostol, G.G.; Smith, L.J.; Jensen, R.L.; Crapo, R.O.; Barr, R.G.; Lewis, C.E.; Williams, O.D. Longitudinal association of body mass index with lung function: The CARDIA study. Respir. Res. 2008, 9, 31. [Google Scholar] [CrossRef] [PubMed]
- Sterling, P.; Eyer, J. Allostasis: A New Paradigm to Expalin Arousal Pathology. In Handbook of Life Stress, Cognition and Health, 1st ed.; Fisher, S., Reason, J., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 1988; p. 629. [Google Scholar]
- Picard, M.; Juster, R.-P.; McEwen, B.S. Mitochondrial allostatic load puts the ‘gluc’ back in glucocorticoids. Nat. Rev. Endocrinol. 2014, 10, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, K.; Horie-Inoue, K.; Inoue, S. Functions of estrogen and estrogen receptor signaling on skeletal muscle. J. Steroid Biochem. Mol. Biol. 2019, 191, 105375. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, P.; Koc, E.; Sonpavde, G.; Singh, R.; Singh, K.K. Mitochondrial localization, import, and mitochondrial function of the androgen receptor. J. Biol. Chem. 2019, 294, 6621–6634. [Google Scholar] [CrossRef]
- Lejri, I.; Grimm, A.; Eckert, A. Mitochondria, Estrogen and Female Brain Aging. Front. Aging Neurosci. 2018, 10, 124. [Google Scholar] [CrossRef]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015, 36, E1–E150. [Google Scholar] [CrossRef]
Variables | Total | BMI < 25 | 25 ≤ BMI < 30 | 30 ≤ BMI | p for Trend |
---|---|---|---|---|---|
Number | 1371 | 817 | 491 | 63 | |
Female (n/%) | 718 (52.4%) | 393 (48.1%) | 276 (56.2%) | 49 (77.8%) | <0.001 |
Age (years) | 60.9 ± 8.5 | 61.4 ± 8.6 | 60.3 ± 8.3 | 60.5 ± 8.1 | 0.208 |
Height (cm) | 159.1 ± 9.1 | 159.7 ± 8.9 | 158.7 ±9.4 | 154.9 ± 7.2 | <0.001 |
Weight (kg) | 61.7 ± 10.1 | 56.9 ± 7.9 | 67.8 ± 8.5 | 76.5 ± 8.3 | <0.001 |
Waist circumference (cm) | 88.5 ± 8.7 | 83.8 ± 6.6 | 94.5 ± 5.5 | 103.8 ±6.3 | <0.001 |
Hip circumference(cm) | 92.5 ± 5.4 | 89.6 ± 3.9 | 95.9 ±3.6 | 103.3 ± 4.5 | <0.001 |
BMI (kg/m2) | 24.3 ± 3.2 | 22.2 ± 1.9 | 26.8 ± 1.3 | 31.8 ± 1.5 | <0.001 |
SBP (mmHg) | 121.4 ± 16.0 | 119.8 ± 16.4 | 123.6 ± 15.1 | 125.2 ± 16.1 | <0.001 |
DBP (mmHg) | 75.9 ± 8.8 | 74.6 ± 8.8 | 77.7 ± 8.4 | 78.4 ± 8.3 | <0.001 |
Smoking (n/%) | <0.001 | ||||
Never | 861 (62.9%) | 486 (59.6%) | 325 (66.2%) | 50 (79.4%) | |
Ex- | 269 (19.6%) | 156 (19.1%) | 102 (20.8%) | 11 (17.5%) | |
Current | 240 (17.5%) | 174 (21.3%) | 64 (13.0%) | 2 (3.2%) | |
Alcohol consumption (n/%) | <0.001 | ||||
Never | 677 (49.4%) | 377 (46.2%) | 259 (52.7%) | 41 (65.1%) | |
Ex- | 87 (6.4%) | 54 (6.6%) | 27 (5.5%) | 6 (9.5%) | |
Current | 606 (44.2%) | 385 (47.2%) | 205 (41.8%) | 16 (25.4%) | |
Diabetes mellitus (n/%) | <0.001 | ||||
NGT | 805 (58.7%) | 521 (63.8%) | 259 (52.7%) | 25 (39.7%) | |
IGT | 218 (15.9%) | 107 (13.1%) | 98 (20.0%) | 13 (20.6%) | |
DM | 348 (25.4%) | 189 (23.1%) | 134 (27.3%) | 25 (39.7%) | |
HbA1c (%) | 5.87 ± 0.99 | 5.81 ± 1.05 | 5.92 ± 0.88 | 6.20 ± 1.02 | <0.001 |
Fasting glucose (mg/dL) | 103.3 ± 31.5 | 101.9 ± 34.1 | 104.6 ± 23.9 | 111.9 ± 44.2 | 0.004 |
Fasting insulin (μIU/mL) | 9.72 ± 6.72 | 8.79 ± 5.71 | 10.73 ± 7.54 | 13.96 ± 9.07 | <0.001 |
HOMA-IR | 2.56 ± 2.39 | 2.29 ± 2.21 | 2.84 ± 2.50 | 3.94 ± 2.99 | <0.001 |
Total cholesterol (mg/dL) | 190.8 ± 33.6 | 188.2 ± 32.8 | 194.5 ± 34.3 | 194.6 ± 35.8 | <0.001 |
LDL-cholesterol (mg/dL) | 117.3 ± 30.7 | 115.8 ± 29.4 | 119.4 ± 32.5 | 120.1 ± 32.4 | 0.032 |
Triglyceride (mg/dL) | 141.1 ± 85.3 | 130.4 ± 80.3 | 157.7 ± 92.4 | 149.2 ± 69.2 | <0.001 |
AhRL (pM, TCDDeq) | 2.73 ± 1.85 | 2.59 ± 1.76 | 2.89 ± 1.96 | 3.42 ± 1.79 | <0.001 |
MISATP (% Control) | 89.16 ± 12.67 | 90.07 ± 12.35 | 88.19 ± 13.19 | 84.84 ±11.36 | <0.001 |
MISROS (% Control) | 115.76 ± 15.47 | 115.11 ± 15.04 | 116.10 ± 15.92 | 121.64 ± 16.35 | 0.005 |
FVC (liters, unadjusted) | 3.41 ± 0.83 | 3.50 ± 0.82 | 3.34 ± 0.83 | 2.90 ± 0.71 | <0.001 |
FEV1 (liters, unadjusted) | 2.62 ± 0.63 | 2.65 ± 0.62 | 2.61 ± 0.64 | 2.36 ± 0.58 | 0.005 |
MISATP | MISROS | AhRL | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Men | Women | Men | Women | Men | Women | |||||||
Coef. | p | Coef. | p | Coef. | p | Coef. | p | Coef. | p | Coef. | p | |
Age | −0.091 | 0.019 * | −0.163 | <0.001 * | 0.014 | 0.717 | 0.063 | 0.091 | 0.120 | 0.003 * | 0.181 | <0.001 * |
SBP | −0.070 | 0.071 | −0.178 | <0.001 * | 0.073 | 0.062 | 0.123 | 0.001 * | 0.118 | 0.003 * | 0.124 | 0.001 * |
DBP | 0.001 | 0.996 | −0.083 | 0.026 * | −0.026 | 0.503 | −0.001 | 0.963 | 0.012 | 0.769 | 0.064 | 0.088 |
Height | 0.027 | 0.486 | 0.103 | 0.005 * | −0.045 | 0.242 | −0.017 | 0.644 | −0.038 | 0.328 | −0.130 | <0.001 * |
Weight | −0.051 | 0.192 | −0.099 | 0.008 * | 0.107 | 0.006 * | 0.050 | 0.183 | 0.071 | 0.072 | 0.040 | 0.294 |
Waist circumference | −0.125 | 0.001 * | −0.202 | <0.001 * | 0.186 | <0.001 * | 0.107 | 0.004 * | 0.145 | <0.001 * | 0.164 | <0.001 * |
Hip circumference | −0.061 | 0.120 | −0.068 | 0.067 | 0.094 | 0.017 * | 0.023 | 0.538 | 0.080 | 0.046 * | 0.012 | 0.749 |
BMI | −0.076 | 0.052 | −0.165 | <0.001 * | 0.157 | <0.001 * | 0.065 | 0.083 | 0.108 | 0.006 * | 0.122 | 0.001 * |
HbA1c | −0.238 | <0.001 * | −0.333 | <0.001 * | 0.208 | <0.001 * | 0.240 | <0.001 * | 0.425 | <0.001 * | 0.409 | <0.001 * |
FBC | −0.215 | <0.001 * | −0.263 | <0.001 * | 0.294 | <0.001 * | 0.248 | <0.001 * | 0.343 | <0.001 * | 0.255 | <0.001 * |
Fasting insulin | −0.082 | 0.035 * | −0.141 | <0.001 * | 0.161 | <0.001 * | 0.143 | <0.001 * | 0.104 | 0.009 * | 0.141 | <0.001 * |
HOMA-IR | −0.149 | <0.001 * | −0.198 | <0.001 * | 0.235 | <0.001 * | 0.181 | <0.001 * | 0.194 | <0.001 * | 0.215 | <0.001 * |
Total cholesterol | −0.001 | 0.756 | 0.046 | 0.219 | 0.006 | 0.879 | −0.069 | 0.062 | −0.015 | 0.695 | 0.046 | 0.218 |
LDL cholesterol | 0.084 | 0.032 * | 0.074 | 0.046 * | −0.065 | 0.095 | −0.069 | 0.064 | −0.100 | 0.012 * | −0.019 | 0.627 |
Triglyceride | −0.196 | <0.001 * | −0.140 | <0.001 * | 0.181 | <0.001 * | 0.064 | 0.087 | 0.191 | <0.001 * | 0.192 | <0.001 * |
FVC | 0.148 | <0.001 * | 0.144 | <0.001 * | −0.121 | 0.003 * | −0.077 | 0.058 | −0.117 | 0.005 * | −0.129 | 0.001 * |
FEV1 | 0.136 | <0.001 * | 0.154 | <0.001 * | −0.079 | 0.054 | −0.063 | 0.117 | −0.126 | 0.002 * | −0.125 | 0.002 * |
MISATP | MISROS | AhRL | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Men | Women | Men | Women | Men | Women | |||||||
Beta (SE) | p | Beta (SE) | p | Beta (SE) | p | Beta (SE) | p | Beta (SE) | p | Beta (SE) | p | |
BMI | −1.498 (1.848) | 0.418 | −7.747 (2.105) | <0.001 * | 4.365 (2.029) | 0.032 * | 2.730 (2.314) | 0.238 | 0.558 (0.392) | 0.155 | 0.854 (0.378) | 0.024 * |
FVC | 0.905 (0.344) | 0.009 * | −0.062 (0.256) | 0.807 | −0.819 (0.371) | 0.028 * | −0.318 (0.288) | 0.270 | −0.053 (0.072) | 0.380 | 0.010 (0.044) | 0.820 |
FEV1 | 0.582 (0.306) | 0.058 | 0.035 (0.219) | 0.872 | −0.512 (0.331) | 0.122 | −0.148 (0.247) | 0.546 | −0.070 (0.054) | 0.270 | 0.006 (0.038) | 0.878 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.; Ha, K.; Kim, J.T.; Moon, M.K.; Joung, H.; Lee, H.K.; Pak, Y.K. Relationships among Dioxin-like Mitochondria Inhibitor Substances (MIS)-Mediated Mitochondria Dysfunction, Obesity, and Lung Function in a Korean Cohort. Toxics 2024, 12, 735. https://doi.org/10.3390/toxics12100735
Choi H, Ha K, Kim JT, Moon MK, Joung H, Lee HK, Pak YK. Relationships among Dioxin-like Mitochondria Inhibitor Substances (MIS)-Mediated Mitochondria Dysfunction, Obesity, and Lung Function in a Korean Cohort. Toxics. 2024; 12(10):735. https://doi.org/10.3390/toxics12100735
Chicago/Turabian StyleChoi, Hoonsung, Kyungho Ha, Jin Taek Kim, Min Kyong Moon, Hyojee Joung, Hong Kyu Lee, and Youngmi Kim Pak. 2024. "Relationships among Dioxin-like Mitochondria Inhibitor Substances (MIS)-Mediated Mitochondria Dysfunction, Obesity, and Lung Function in a Korean Cohort" Toxics 12, no. 10: 735. https://doi.org/10.3390/toxics12100735
APA StyleChoi, H., Ha, K., Kim, J. T., Moon, M. K., Joung, H., Lee, H. K., & Pak, Y. K. (2024). Relationships among Dioxin-like Mitochondria Inhibitor Substances (MIS)-Mediated Mitochondria Dysfunction, Obesity, and Lung Function in a Korean Cohort. Toxics, 12(10), 735. https://doi.org/10.3390/toxics12100735