Computational Tools to Facilitate Early Warning of New Emerging Risk Chemicals
Abstract
:1. Introduction
2. Structure Curation and Data Sources
2.1. Structure Curation
2.2. Data Sources
3. Exposure Models
3.1. External Exposure Models
3.1.1. Human External Exposure Models
3.1.2. Environmental Fate Models
3.2. Internal Exposure Models
3.2.1. Bioconcentration and Bioaccumulation Models
3.2.2. Compartmental Models
3.2.3. Physiologically Based Kinetic Models
3.2.4. Biotransformation Models
4. Effect Models
4.1. Quantitative Structure-Activity/Property Relationship Models
4.2. Complementary Computational Tools
5. Data Integration
6. Summary and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Publications Office of the European Union. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions a New Era for Research and Innovation, COM/2020/628 Final. Available online: https://op.europa.eu/en/publication-detail/-/publication/f232e2ec-0345-11eb-a511-01aa75ed71a1 (accessed on 17 June 2024).
- Kelman, I.; Glantz, M.H. Early Warning Systems Defined. In Reducing Disaster: Early Warning Systems For Climate Change; Singh, A., Zommers, Z., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 89–108. ISBN 978-94-017-8598-3. [Google Scholar]
- Gonzalez-Daza, W.; Vivero-Gómez, R.J.; Altamiranda-Saavedra, M.; Muylaert, R.L.; Landeiro, V.L. Time Lag Effect on Malaria Transmission Dynamics in an Amazonian Colombian Municipality and Importance for Early Warning Systems. Sci. Rep. 2023, 13, 18636. [Google Scholar] [CrossRef] [PubMed]
- Sutradhar, A.; Rafi, M.A.; Alam, M.J.; Islam, S. An Early Warning System of Heart Failure Mortality with Combined Machine Learning Methods. Indones. J. Electr. Eng. Comput. Sci. 2023, 32, 1115–1122. [Google Scholar] [CrossRef]
- Abed Al-Isawi, O.M.; Alkhater, K.H.; Alrubaee, S.H.; Almarzoogee, A.H.; Mohammed, A.H. An Early Warning System for Fires in Hospitals and Health Centers via the Internet of Things to Reduce Human and Material Losses. In Proceedings of the 2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Istanbul, Turkiye, 8–10 June 2023. [Google Scholar]
- Kizgin, A.; Schmidt, D.; Joss, A.; Hollender, J.; Morgenroth, E.; Kienle, C.; Langer, M. Application of Biological Early Warning Systems in Wastewater Treatment Plants: Introducing a Promising Approach to Monitor Changing Wastewater Composition. J. Environ. Manag. 2023, 347, 119001. [Google Scholar] [CrossRef] [PubMed]
- Prakash, C.; Barthwal, A.; Acharya, D. An IoT-Based System for Monitoring and Forecasting Flash Floods in Real-Time. J. Earth Syst. Sci. 2023, 132, 159. [Google Scholar] [CrossRef]
- Gao, Z.; Chen, J.; Wang, G.; Ren, S.; Fang, L.; Yinglan, A.; Wang, Q. A Novel Multivariate Time Series Prediction of Crucial Water Quality Parameters with Long Short-Term Memory (LSTM) Networks. J. Contam. Hydrol. 2023, 259, 104262. [Google Scholar] [CrossRef] [PubMed]
- Connon, R.E.; Geist, J.; Werner, I. Effect-Based Tools for Monitoring and Predicting the Ecotoxicological Effects of Chemicals in the Aquatic Environment. Sensors 2012, 12, 12741–12771. [Google Scholar] [CrossRef]
- Brack, W. Effect-Directed Analysis: A Promising Tool for the Identification of Organic Toxicants in Complex Mixtures? Anal. Bioanal. Chem. 2003, 377, 397–407. [Google Scholar] [CrossRef]
- Dulio, V.; van Bavel, B.; Brorström-Lundén, E.; Harmsen, J.; Hollender, J.; Schlabach, M.; Slobodnik, J.; Thomas, K.; Koschorreck, J. Emerging Pollutants in the EU: 10 Years of NORMAN in Support of Environmental Policies and Regulations. Environ. Sci. Eur. 2018, 30, 5. [Google Scholar] [CrossRef]
- Dulio, V.; Slobodnik, J. NORMAN—Network of Reference Laboratories, Research Centres and Related Organisations for Monitoring of Emerging Substances. Environ. Sci. Pollut. Res. 2009, 16, 132–135. [Google Scholar] [CrossRef]
- Ford, K.A. Refinement, Reduction, and Replacement of Animal Toxicity Tests by Computational Methods. ILAR J. 2016, 57, 226–233. [Google Scholar] [CrossRef]
- Blümmel, T.; Rehn, J.; Mereu, C.; Graf, F.; Kneuer, C.; Wittkowski, P.; Sonnenburg, A.; Moore, A.; Bech, K.; van der Lugt, B.; et al. Review of State-of-the-Art AI Tools and Methods for Screening, Extracting and Evaluating NAMs Literature in the Context of Chemical Risk Assessment. EFSA Support. Publ. 2023, 20, 7815E. [Google Scholar] [CrossRef]
- Ram, R.N.; Gadaleta, D.; Allen, T.E.H. The Role of ‘Big Data’ and ‘in Silico’ New Approach Methodologies (NAMs) in Ending Animal Use–A Commentary on Progress. Comput. Toxicol. 2022, 23, 100232. [Google Scholar] [CrossRef]
- Pawar, G.; Madden, J.C.; Ebbrell, D.; Firman, J.W.; Cronin, M.T.D. In Silico Toxicology Data Resources to Support Read-Across and (Q)SAR. Front. Pharmacol. 2019, 10, 561. [Google Scholar] [CrossRef]
- Ciffroy, P.; Alfonso, B.; Altenpohl, A.; Banjac, Z.; Bierkens, J.; Brochot, C.; Critto, A.; De Wilde, T.; Fait, G.; Fierens, T.; et al. Modelling the Exposure to Chemicals for Risk Assessment: A Comprehensive Library of Multimedia and PBPK Models for Integration, Prediction, Uncertainty and Sensitivity Analysis-the MERLIN-Expo Tool. Sci. Total Env. 2016, 568, 770–784. [Google Scholar] [CrossRef]
- Nicolotti, O. Computational Toxicology: Methods and Protocols; Nicolotti, O., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2018; Volume 2834, ISBN 978-1-07-164002-9. [Google Scholar]
- Daniels, W.; Lee, S.; Miller, A. EPA’s Exposure Assessment Tools and Models. Appl. Occup. Env. Hyg. 2003, 18, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, K.K.; Glen, W.G.; Egeghy, P.; Goldsmith, M.-R.; Smith, L.; Vallero, D.; Brooks, R.; Grulke, C.M.; Özkaynak, H. SHEDS-HT: An Integrated Probabilistic Exposure Model for Prioritizing Exposures to Chemicals with near-Field and Dietary Sources. Environ. Sci. Technol. 2014, 48, 12750–12759. [Google Scholar] [CrossRef] [PubMed]
- Aguayo-Orozco, A.; Taboureau, O.; Brunak, S. The Use of Systems Biology in Chemical Risk Assessment. Curr. Opin. Toxicol. 2019, 15, 48–54. [Google Scholar] [CrossRef]
- Downs, G.M.; Barnard, J.M. Clustering Methods and Their Uses in Computational Chemistry. In Reviews in Computational Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2002; pp. 1–40. ISBN 978-0-471-43351-4. [Google Scholar]
- Unlocking the Potential of Clustering and Classification Approaches: Navigating Supervised and Unsupervised Chemical Similarity. Available online: https://ehp.niehs.nih.gov/doi/epdf/10.1289/EHP14001 (accessed on 30 September 2024).
- Li, L.; Westgate, J.N.; Hughes, L.; Zhang, X.; Givehchi, B.; Toose, L.; Armitage, J.M.; Wania, F.; Egeghy, P.; Arnot, J.A. A Model for Risk-Based Screening and Prioritization of Human Exposure to Chemicals from Near-Field Sources. Environ. Sci. Technol. 2018, 52, 14235–14244. [Google Scholar] [CrossRef]
- Leonis, G.; Melagraki, G.; Afantitis, A. Open Source Chemoinformatics Software Including KNIME Analytics. Handb. Comput. Chem. 2016, 2201–2230. [Google Scholar] [CrossRef]
- Wang, Z.; Walker, G.W.; Muir, D.C.G.; Nagatani-Yoshida, K. Toward a Global Understanding of Chemical Pollution: A First Comprehensive Analysis of National and Regional Chemical Inventories. Environ. Sci. Technol. 2020, 54, 2575–2584. [Google Scholar] [CrossRef]
- Kiritchenko, S.; de Bruijn, B.; Carini, S.; Martin, J.; Sim, I. ExaCT: Automatic Extraction of Clinical Trial Characteristics from Journal Publications. BMC Med. Inf. Decis. Mak. 2010, 10, 56. [Google Scholar] [CrossRef] [PubMed]
- Park, S.E.; Thomas, J. Evidence Synthesis Software. BMJ EBM 2018, 23, 140–141. [Google Scholar] [CrossRef] [PubMed]
- Jaylet, T.; Coustillet, T.; Jornod, F.; Margaritte-Jeannin, P.; Audouze, K. AOP-helpFinder 2.0: Integration of an Event-Event Searches Module. Environ. Int. 2023, 177, 108017. [Google Scholar] [CrossRef] [PubMed]
- Wambaugh, J.F.; Wetmore, B.A.; Ring, C.L.; Nicolas, C.I.; Pearce, R.G.; Honda, G.S.; Dinallo, R.; Angus, D.; Gilbert, J.; Sierra, T.; et al. Assessing Toxicokinetic Uncertainty and Variability in Risk Prioritization. Toxicol. Sci. 2019, 172, 235–251. [Google Scholar] [CrossRef] [PubMed]
- Sarigiannis, D.; Karakitsios, S.; Gotti, A.; Loizou, G.; Cherrie, J.; Smolders, R.; Brouwere, K.D.; Galea, K.; Jones, K.; Handakas, E.; et al. INTEGRA: From Global Scale Contamination to Tissue Dose. In Proceedings of the 7th International Congress on Environmental Modelling and Software 2014, San Diego, CA, USA, 15–19 June 2014. [Google Scholar]
- Kim, K.-E.; Jung, J.E.; Lee, Y.; Lee, D.S. Ranking Surface Soil Pollution Potential of Chemicals from Accidental Release by Using Two Indicators Calculated with a Multimedia Model (SoilPCA). Ecol. Indic. 2018, 85, 664–673. [Google Scholar] [CrossRef]
- MacLeod, M.; Woodfine, D.G.; Mackay, D.; McKone, T.; Bennett, D.; Maddalena, R. BETR North America: A Regionally Segmented Multimedia Contaminant Fate Model for North America. Environ. Sci. Pollut. Res. Int. 2001, 8, 156–163. [Google Scholar] [CrossRef]
- Breivik, K.; Eckhardt, S.; McLachlan, M.S.; Wania, F. Introducing a Nested Multimedia Fate and Transport Model for Organic Contaminants (NEM). Environ. Sci. Process. Impacts 2021, 23, 1146–1157. [Google Scholar] [CrossRef]
- Hollander, A.; Schoorl, M.; van de Meent, D. SimpleBox 4.0: Improving the Model While Keeping It Simple…. Chemosphere 2016, 148, 99–107. [Google Scholar] [CrossRef]
- Wania, F.; Breivik, K.; Persson, N.J.; McLachlan, M.S. CoZMo-POP 2–A Fugacity-Based Dynamic Multi-Compartmental Mass Balance Model of the Fate of Persistent Organic Pollutants. Environ. Model. Softw. 2006, 21, 868–884. [Google Scholar] [CrossRef]
- Rosenbaum, R.K.; Bachmann, T.M.; Gold, L.S.; Huijbregts, M.A.J.; Jolliet, O.; Juraske, R.; Koehler, A.; Larsen, H.F.; MacLeod, M.; Margni, M.; et al. USEtox—The UNEP-SETAC Toxicity Model: Recommended Characterisation Factors for Human Toxicity and Freshwater Ecotoxicity in Life Cycle Impact Assessment. Int. J. Life Cycle Assess. 2008, 13, 532–546. [Google Scholar] [CrossRef]
- Falakdin, P.; Terzaghi, E.; Di Guardo, A. Spatially Resolved Environmental Fate Models: A Review. Chemosphere 2022, 290, 133394. [Google Scholar] [CrossRef] [PubMed]
- Örtl, E. Protecting the Sources of Our Drinking Water: The Criteria for Identifying Persistent, Mobile and Toxic (PMT) Sub-Stances and Very Persistent and Very Mobile (vPvM) Substances under EU Regulation REACH (EC) No 1907/2006; Umweltbundesamt: Dessau-Roßlau, Germany, 2019. [Google Scholar]
- Gobas, F.A.P.C.; Burkhard, L.P.; Doucette, W.J.; Sappington, K.G.; Verbruggen, E.M.J.; Hope, B.K.; Bonnell, M.A.; Arnot, J.A.; Tarazona, J.V. Review of Existing Terrestrial Bioaccumulation Models and Terrestrial Bioaccumulation Modeling Needs for Organic Chemicals. Integr. Environ. Assess. Manag. 2016, 12, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, S.; Dimitrova, N.; Parkerton, T.; Comber, M.; Bonnell, M.; Mekenyan, O. Base-Line Model for Identifying the Bioaccumulation Potential of Chemicals. SAR QSAR Environ. Res. 2005, 16, 531–554. [Google Scholar] [CrossRef]
- Mora Lagares, L.; Vračko, M. Ecotoxicological Evaluation of Bisphenol A and Alternatives: A Comprehensive In Silico Modelling Approach. J. Xenobiotics 2023, 13, 719–739. [Google Scholar] [CrossRef] [PubMed]
- Bruks, S.; Zheng, Z.; Andersson, P.L. Methods for Early Identification of Chemicals that Have the Potential to Harm Human Health or the Environment; The Toxicological Council; Swedish Chemicals Agency: Sundbyberg, Sweden, 2021; Available online: https://www.kemi.se/en (accessed on 25 September 2024).
- Wiecek, W.; Dorne, J.-L.; Quignot, N.; Bechaux, C.; Amzal, B. A Generic Bayesian Hierarchical Model for the Meta-Analysis of Human Population Variability in Kinetics and Its Applications in Chemical Risk Assessment. Comput. Toxicol. 2019, 12, 100106. [Google Scholar] [CrossRef]
- Hendriks, A.J.; van der Linde, A.; Cornelissen, G.; Sijm, D.T. The Power of Size. 1. Rate Constants and Equilibrium Ratios for Accumulation of Organic Substances Related to Octanol-Water Partition Ratio and Species Weight. Environ. Toxicol. Chem. 2001, 20, 1399–1420. [Google Scholar] [CrossRef]
- Spinu, N.; Cronin, M.T.D.; Enoch, S.J.; Madden, J.C.; Worth, A.P. Quantitative Adverse Outcome Pathway (qAOP) Models for Toxicity Prediction. Arch. Toxicol. 2020, 94, 1497–1510. [Google Scholar] [CrossRef]
- Deepika, D.; Kumar, V. The Role of “Physiologically Based Pharmacokinetic Model (PBPK)” New Approach Methodology (NAM) in Pharmaceuticals and Environmental Chemical Risk Assessment. Int. J. Environ. Res. Public. Health 2023, 20, 3473. [Google Scholar] [CrossRef]
- Thompson, C.V.; Firman, J.W.; Goldsmith, M.R.; Grulke, C.M.; Tan, Y.-M.; Paini, A.; Penson, P.E.; Sayre, R.R.; Webb, S.; Madden, J.C. A Systematic Review of Published Physiologically-Based Kinetic Models and an Assessment of Their Chemical Space Coverage. Altern. Lab. Anim. 2021, 49, 197–208. [Google Scholar] [CrossRef]
- Paini, A.; Leonard, J.A.; Joossens, E.; Bessems, J.G.M.; Desalegn, A.; Dorne, J.L.; Gosling, J.P.; Heringa, M.B.; Klaric, M.; Kliment, T.; et al. Next Generation Physiologically Based Kinetic (NG-PBK) Models in Support of Regulatory Decision Making. Comput. Toxicol. 2019, 9, 61–72. [Google Scholar] [CrossRef]
- Georgopoulos, P.G.; Lioy, P.J. From a Theoretical Framework of Human Exposure and Dose Assessment to Computational System Implementation: The Modeling ENvironment for TOtal Risk Studies (MENTOR). J. Toxicol. Environ. Health B Crit. Rev. 2006, 9, 457–483. [Google Scholar] [CrossRef] [PubMed]
- Brochot, C.; Quindroit, P. Modelling the Fate of Chemicals in Humans Using a Lifetime Physiologically Based Pharmacokinetic (PBPK) Model in MERLIN-Expo. In Modelling the Fate of Chemicals in the Environment and the Human Body; Ciffroy, P., Tediosi, A., Capri, E., Eds.; The Handbook of Environmental Chemistry; Springer International Publishing: Cham, Switzerland, 2018; pp. 215–257. ISBN 978-3-319-59502-3. [Google Scholar]
- Grech, A.; Brochot, C.; Dorne, J.-L.; Quignot, N.; Bois, F.Y.; Beaudouin, R. Toxicokinetic Models and Related Tools in Environmental Risk Assessment of Chemicals. Sci. Total Environ. 2017, 578, 1–15. [Google Scholar] [CrossRef]
- Lautz, L.S.; Dorne, J.L.C.M.; Oldenkamp, R.; Hendriks, A.J.; Ragas, A.M.J. Generic Physiologically Based Kinetic Modelling for Farm Animals: Part I. Data Collection of Physiological Parameters in Swine, Cattle and Sheep. Toxicol. Lett. 2020, 319, 95–101. [Google Scholar] [CrossRef]
- Tebby, C.; van der Voet, H.; de Sousa, G.; Rorije, E.; Kumar, V.; de Boer, W.; Kruisselbrink, J.W.; Bois, F.Y.; Faniband, M.; Moretto, A.; et al. A Generic PBTK Model Implemented in the MCRA Platform: Predictive Performance and Uses in Risk Assessment of Chemicals. Food Chem. Toxicol. 2020, 142, 111440. [Google Scholar] [CrossRef]
- Breen, M.; Wambaugh, J.F.; Bernstein, A.; Sfeir, M.; Ring, C.L. Simulating Toxicokinetic Variability to Identify Susceptible and Highly Exposed Populations. J. Expo. Sci. Environ. Epidemiol. 2022, 32, 855–863. [Google Scholar] [CrossRef]
- Ring, C.L.; Pearce, R.G.; Setzer, R.W.; Wetmore, B.A.; Wambaugh, J.F. Identifying Populations Sensitive to Environmental Chemicals by Simulating Toxicokinetic Variability. Environ. Int. 2017, 106, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Deepika, D.; Sharma, R.P.; Schuhmacher, M.; Kumar, V. Risk Assessment of Perfluorooctane Sulfonate (PFOS) Using Dynamic Age Dependent Physiologically Based Pharmacokinetic Model (PBPK) across Human Lifetime. Environ. Res. 2021, 199, 111287. [Google Scholar] [CrossRef] [PubMed]
- Arnot, J.A.; Mackay, D.; Bonnell, M. Estimating Metabolic Biotransformation Rates in Fish from Laboratory Data. Environ. Toxicol. Chem. 2008, 27, 341–351. [Google Scholar] [CrossRef]
- Dimitrov, S.D.; Diderich, R.; Sobanski, T.; Pavlov, T.S.; Chankov, G.V.; Chapkanov, A.S.; Karakolev, Y.H.; Temelkov, S.G.; Vasilev, R.A.; Gerova, K.D.; et al. QSAR Toolbox-Workflow and Major Functionalities. SAR QSAR Environ. Res. 2016, 27, 203–219. [Google Scholar] [CrossRef]
- Djoumbou-Feunang, Y.; Fiamoncini, J.; Gil-de-la-Fuente, A.; Greiner, R.; Manach, C.; Wishart, D.S. BioTransformer: A Comprehensive Computational Tool for Small Molecule Metabolism Prediction and Metabolite Identification. J. Cheminform 2019, 11, 2. [Google Scholar] [CrossRef]
- Gao, J.; Ellis, L.B.M.; Wackett, L.P. The University of Minnesota Biocatalysis/Biodegradation Database: Improving Public Access. Nucleic Acids Res. 2010, 38, D488–D491. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Arp, H.P.H.; Peters, G.; Andersson, P.L. Combining In Silico Tools with Multicriteria Analysis for Alternatives Assessment of Hazardous Chemicals: Accounting for the Transformation Products of decaBDE and Its Alternatives. Environ. Sci. Technol. 2021, 55, 1088–1098. [Google Scholar] [CrossRef] [PubMed]
- Marchant, C.A.; Briggs, K.A.; Long, A. In Silico Tools for Sharing Data and Knowledge on Toxicity and Metabolism: Derek for Windows, Meteor, and Vitic. Toxicol. Mech. Methods 2008, 18, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Ankley, G.T.; Bennett, R.S.; Erickson, R.J.; Hoff, D.J.; Hornung, M.W.; Johnson, R.D.; Mount, D.R.; Nichols, J.W.; Russom, C.L.; Schmieder, P.K.; et al. Adverse Outcome Pathways: A Conceptual Framework to Support Ecotoxicology Research and Risk Assessment. Environ. Toxicol. Chem. 2010, 29, 730–741. [Google Scholar] [CrossRef] [PubMed]
- Benfenati, E. In Silico Methods for Predicting Drug Toxicity; Benfenati, E., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2016; Volume 1425, ISBN 978-1-4939-3607-6. [Google Scholar]
- De, P.; Kar, S.; Ambure, P.; Roy, K. Prediction Reliability of QSAR Models: An Overview of Various Validation Tools. Arch. Toxicol. 2022, 96, 1279–1295. [Google Scholar] [CrossRef]
- OECD. Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models; Organisation for Economic Co-Operation and Development: Paris, France, 2014. [Google Scholar]
- ANNEX I–(Q)SAR Model Reporting Format (QMRF) v.2.1. OECD Environment, Health and Safety Publications SERIES ON TESTING AND ASSESSMENT NO. 386. Available online: https://one.oecd.org/document/ENV/CBC/MONO(2023)32/ANN1/en/pdf (accessed on 25 September 2024).
- Nair, S.K.; Eeles, C.; Ho, C.; Beri, G.; Yoo, E.; Tkachuk, D.; Tang, A.; Nijrabi, P.; Smirnov, P.; Seo, H.; et al. ToxicoDB: An Integrated Database to Mine and Visualize Large-Scale Toxicogenomic Datasets. Nucleic Acids Res. 2020, 48, W455–W462. [Google Scholar] [CrossRef]
- El-Hachem, N.; Grossmann, P.; Blanchet-Cohen, A.; Bateman, A.R.; Bouchard, N.; Archambault, J.; Aerts, H.J.W.L.; Haibe-Kains, B. Characterization of Conserved Toxicogenomic Responses in Chemically Exposed Hepatocytes across Species and Platforms. Environ. Health Perspect. 2016, 124, 313–320. [Google Scholar] [CrossRef]
- Sordo Vieira, L.; Laubenbacher, R.C. Computational Models in Systems Biology: Standards, Dissemination, and Best Practices. Curr. Opin. Biotechnol. 2022, 75, 102702. [Google Scholar] [CrossRef]
- Sakkiah, S.; Kusko, R.; Tong, W.; Hong, H. Applications of Molecular Dynamics Simulations in Computational Toxicology. Adv. Comput. Toxicol. Methodol. Appl. Regul. Sci. 2019, 30, 181–212. [Google Scholar] [CrossRef]
- Lu, L.; Zhan, T.; Ma, M.; Xu, C.; Wang, J.; Zhang, C.; Liu, W.; Zhuang, S. Thyroid Disruption by Bisphenol S Analogues via Thyroid Hormone Receptor β: In Vitro, in Vivo, and Molecular Dynamics Simulation Study. Environ. Sci. Technol. 2018, 52, 6617–6625. [Google Scholar] [CrossRef]
- Walker, S.D.; McEldowney, S. Molecular Docking: A Potential Tool to Aid Ecotoxicity Testing in Environmental Risk Assessment of Pharmaceuticals. Chemosphere 2013, 93, 2568–2577. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for Scientific Data Management and Stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef]
- PM1/22: Dataanalys av Patentinformation med Hjälp av Artificiell Intelligens. Available online: https://www.kemi.se/publikationer/pm/2022/pm1-22-dataanalys-av-patentinformation-med-hjalp-av-artificiell-intelligens (accessed on 17 June 2024).
- Menger, F.; Andersson, P.L.; Weiss, J.M. Integration of Chemicals Market Data with Suspect Screening Using In Silico Tools to Identify Potential New and Emerging Risk Chemicals; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–20. [Google Scholar]
- Moon, J.; Lee, B.; Ra, J.-S.; Kim, K.-T. Predicting PBT and CMR Properties of Substances of Very High Concern (SVHCs) Using QSAR Models, and Application for K-REACH. Toxicol. Rep. 2020, 7, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Papa, E.; Sangion, A.; Arnot, J.A.; Gramatica, P. Development of Human Biotransformation QSARs and Application for PBT Assessment Refinement. Food Chem. Toxicol. 2018, 112, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Bossi, R.; Carvalho, P.N.; Rigét, F.F.; Christensen, J.H.; Weihe, P.; Bonefeld-Jørgensen, E.C.; Vorkamp, K. Suspect and Non-Target Screening of Chemicals of Emerging Arctic Concern in Biota, Air and Human Serum. Environ. Pollut. 2024, 360, 124605. [Google Scholar] [CrossRef] [PubMed]
- Dürig, W.; Tröger, R.; Andersson, P.L.; Rybacka, A.; Fischer, S.; Wiberg, K.; Ahrens, L. Development of a Suspect Screening Prioritization Tool for Organic Compounds in Water and Biota. Chemosphere 2019, 222, 904–912. [Google Scholar] [CrossRef]
- Hartmann, J.; Rorije, E.; Wassenaar, P.; Verbruggen, E. Screening and Prioritising Persistent, Mobile and Toxic Chemicals: Development and Application of a Robust Scoring System. Environ. Sci. Eur. 2023, 35, 40. [Google Scholar] [CrossRef]
- Banerjee, A.; Kar, S.; Roy, K.; Patlewicz, G.; Charest, N.; Benfenati, E.; Cronin, M.T.D. Molecular Similarity in Chemical Informatics and Predictive Toxicity Modeling: From Quantitative Read-across (q-RA) to Quantitative Read-across Structure–Activity Relationship (q-RASAR) with the Application of Machine Learning. Crit. Rev. Toxicol. 2024, 54, 659–684. [Google Scholar] [CrossRef]
- Corradi, M.P.F.; de Haan, A.M.; Staumont, B.; Piersma, A.H.; Geris, L.; Pieters, R.H.H.; Krul, C.A.M.; Teunis, M.A.T. Natural Language Processing in Toxicology: Delineating Adverse Outcome Pathways and Guiding the Application of New Approach Methodologies. Biomater. Biosyst. 2022, 7, 100061. [Google Scholar] [CrossRef]
- Bouhedjar, K.; Boukelia, A.; Khorief Nacereddine, A.; Boucheham, A.; Belaidi, A.; Djerourou, A. A Natural Language Processing Approach Based on Embedding Deep Learning from Heterogeneous Compounds for Quantitative Structure–Activity Relationship Modeling. Chem. Biol. Drug Des. 2020, 96, 961–972. [Google Scholar] [CrossRef]
- Sharma, R.; Saghapour, E.; Chen, J.Y. An NLP-Based Technique to Extract Meaningful Features from Drug SMILES. iScience 2024, 27, 109127. [Google Scholar] [CrossRef] [PubMed]
- Wassenaar, P.N.H.; Minnema, J.; Vriend, J.; Peijnenburg, W.J.G.M.; Pennings, J.L.A.; Kienhuis, A. The Role of Trust in the Use of Artificial Intelligence for Chemical Risk Assessment. Regul. Toxicol. Pharmacol. 2024, 148, 105589. [Google Scholar] [CrossRef] [PubMed]
- Lai, T.T.; Kuntz, D.; Wilson, A.K. Molecular Screening and Toxicity Estimation of 260,000 Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) through Machine Learning. J. Chem. Inf. Model. 2022, 62, 4569–4578. [Google Scholar] [CrossRef] [PubMed]
- Gustavsson, M.; Käll, S.; Svedberg, P.; Inda-Diaz, J.S.; Molander, S.; Coria, J.; Backhaus, T.; Kristiansson, E. Transformers Enable Accurate Prediction of Acute and Chronic Chemical Toxicity in Aquatic Organisms. Sci. Adv. 2024, 10, eadk6669. [Google Scholar] [CrossRef]
- Cipullo, S.; Snapir, B.; Prpich, G.; Campo, P.; Coulon, F. Prediction of Bioavailability and Toxicity of Complex Chemical Mixtures through Machine Learning Models. Chemosphere 2019, 215, 388–395. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tariq, F.; Ahrens, L.; Alygizakis, N.A.; Audouze, K.; Benfenati, E.; Carvalho, P.N.; Chelcea, I.; Karakitsios, S.; Karakoltzidis, A.; Kumar, V.; et al. Computational Tools to Facilitate Early Warning of New Emerging Risk Chemicals. Toxics 2024, 12, 736. https://doi.org/10.3390/toxics12100736
Tariq F, Ahrens L, Alygizakis NA, Audouze K, Benfenati E, Carvalho PN, Chelcea I, Karakitsios S, Karakoltzidis A, Kumar V, et al. Computational Tools to Facilitate Early Warning of New Emerging Risk Chemicals. Toxics. 2024; 12(10):736. https://doi.org/10.3390/toxics12100736
Chicago/Turabian StyleTariq, Farina, Lutz Ahrens, Nikiforos A. Alygizakis, Karine Audouze, Emilio Benfenati, Pedro N. Carvalho, Ioana Chelcea, Spyros Karakitsios, Achilleas Karakoltzidis, Vikas Kumar, and et al. 2024. "Computational Tools to Facilitate Early Warning of New Emerging Risk Chemicals" Toxics 12, no. 10: 736. https://doi.org/10.3390/toxics12100736