Presence of Potentially Toxic Elements in Historical Mining Areas in the North-Center of Mexico and Possible Bioremediation Strategies
Abstract
:1. Introduction
Search Strategy and Data Collection
2. Environmental Implications Due to the Presence of Mining Passives
2.1. Environmental Assessment of Mining Passives
2.2. PTEs in Areas with Historical Mining Waste Worldwide
2.3. Overview of PTE Pollution in the State of Zacatecas, Mexico
3. Impact of PTEs in Mining Districts of Zacatecas
3.1. Contamination by PTEs in Aquifers in the State of Zacatecas
3.2. PTE Contamination in Soils of Zacatecas Mining Districts
3.3. Studies of PTEs Incorporated into Food Chains
Location | Type of Sample | Sample Processing and Analytical Technique | Concentration (mg/kg) | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
As | Pb | Hg | Cr | Cd | Cu | Zn | Mn | ||||
Santa Rita | Agricultural soils adjacent to areas with the presence of mining waste | Microwave-digested samples. Analyzed using FAAS (2) | 135 ± 20 | 179 ± 27.3 | [82] | ||||||
El Bordo | 141 ± 19.2 | 1201 ± 130 | |||||||||
El Lampotal | 138 ± 8.43 | 185 ± 13.5 | |||||||||
La Era | 165 ± 7.35 | 1206 ± 155 | |||||||||
Maderos’s mine | Waste with presence of vegetation and fungi | Microwave-digested samples. Analyzed using FAAS (2) | 67 to 120 | [83] | |||||||
El Bote mine | 73 to 96 | ||||||||||
Vetagrande | 49 to 163 | ||||||||||
Old Jal | Until 143 | ||||||||||
San Martin-Sombrerete mining district | Composed of mining waste | Hot-plate-digested samples. Analyzed using FAAS (2) | 2004 | 132 | [84] | ||||||
Flotation tailings | 1101 | 113 | |||||||||
Noria de Ángeles mining district | Red mining waste | Microwave-digested samples. Analyzed using ICP-OES (1) | 5199 ± 3 | 820 ± 137 | 476 ± 4 | 2454 ± 373 | 493 ± 74 | [85] | |||
Grey mining waste | 3958 ± 286 | 1239 ± 103 | 136 ± 11 | 1284 ± 234 | 756 ± 16 | ||||||
La Zacatecana lagoon | Soils and sediments | Hot-plate-digested samples. Analyzed using FAAS (2) | 101 ± 2.8 | 3070 ± 20 | 47 ± 11 | 74 ± 2.5 | 21 ± 0.1 | [77] | |||
Noria de Ángeles mining district | Soil | Hot-plate-digested samples. Analyzed using FAAS (2) | 50 to 429 | 1 to 4 | 30 to 95 | 60 to 250 | [86] | ||||
Mine waste | ~2000 | ~20 | ~450 | ~1000 | |||||||
El Bote mine | Mine waste | Hot-plate-digested samples. Analyzed using FAAS (2) | Ave: 2621 ± 53 Max: 8466 ± 116 | Ave: 3827 ± 83 Max:12,475 ± 324 | [71] | ||||||
Fresnillo mining district | Recreational park waste | Microwave-digested samples. Analyzed using FAAS (2) | 882 | 477 | [87] | ||||||
Recreational park plant sprouts | Ave: 499 Max: 1050 | Ave: 7.2 Max: 16 | |||||||||
Community of San Ignacio, Fresnillo | Processing plant | Samples dried between 40 and 60 °C. Analyzed using EDXRF (4) | 84,238 | [81] | |||||||
Agricultural–urban soils | 4940 ± 1950 | ||||||||||
Plants for consumption | 16,220 ± 20,954 | ||||||||||
Medicinal plants | 530 ± 30 | ||||||||||
Wild plants | 368 to 39,926 | ||||||||||
Mud vessel | 30,443 ± 1808 | ||||||||||
El Bote Mine | Soils used as substrate to evaluate germination and biomass growth of plants | Hot-plate-digested samples. Analyzed using ICP-OES (1) | 0.67 | 3.89 | 0.05 | [88] | |||||
Noria de Ángeles | 7.42 | 6.17 | 0.10 | ||||||||
Sombrerete | 26.2 | 69.67 | 0.08 | ||||||||
Vetagrande | 1.65 | 20.81 | 0.05 | ||||||||
El Bordo | 1.73 | 5.35 | 0.05 | ||||||||
Vetagrande mining district | Composting of waste (phytostabilization) | Microwave-digested samples. Analyzed using FAAS (2) | 3518 ± 199 | 69.5 ± 5 | 56.2 ± 2 | 220 ± 12 | 7674 ± 292 | [89] | |||
Old waste | 305 ± 18 | 3836 ± 73 | 2464 ± 225 | 17.7 ± 3 | 73.6 ± 2 | 329 ± 5 | 8746 ± 194 | ||||
Fresnillo mining district | Soils near mining waste | Microwave-digested samples. Analyzed using FAAS (2) and HGAAS (3) | 2 to 1219 | 4 to 6100 | 0.1 to 292 | 0.1 to 47 | 6 to 1965 | 12 to 5341 | 75 to 3411 | [64] | |
Sediments | 7 to 152 | 23 to 345 | 0.02 to 20 | 0.2 | 22 to 77 | 105 to 426 | 50 to 271 | ||||
Community of Vetagrande | Kindergarten soils | Samples dried to 40 °C. Analyzed using EDXRF (4) | 1901 | [58] | |||||||
Recreational areas | 1489 | ||||||||||
Downtown area | 724 | ||||||||||
Concepción del Oro | Mining waste | Samples digested with boric acid and sodium metaborate. Analyzed using ICP-OES (1) | 70 to 515 | 16.4 to 200 | 27.7 to 1348 | 87.7 to 347 | [15] | ||||
Francisco I. Madero | Soil | Samples dried to 60 °C. Analyzed using EDXRF (4) | 699 to 2898 | [5] | |||||||
Shoot of Amaranthus hybridus | 2208 ± 136 | ||||||||||
Shoot of Buddleja scordioides | 1378 ± 153 | ||||||||||
Shoot of Cerdia congestiflora | 1175 ± 126 | ||||||||||
Shoot of Brassica campestris | 1095 ± 84 | ||||||||||
Zacatecas–Guadalupe Valley | Soil—Osiris | Microwave-digested samples. Analyzed using CVAAS (5) | 96.56 | [76] | |||||||
Soil—La Zacatecana | 47.95 | ||||||||||
El Bote mine | Soil–slag | Hot-plate-digested samples. Analyzed using ICP-OES (1) and FAAS (2) | 1489.4 | 22.6 | 197.5 | 947.7 | 1197.1 | [90] | |||
Brown slag | 1015 | 7.7 | 184.4 | 116.5 | 665.8 | ||||||
Yellow slag | 2061.9 | 30 | 12,313.1 | 1449 | 1499 | ||||||
San Martin-Sombrerete mining district | Slag | 1149 | 110 | 1534 | 4107 | 1397 | |||||
Soil | 702 | 93 | 769 | 1776 | 1893 | ||||||
Litter | 856 | 80 | 1547 | 3616 | 866 | ||||||
Fresnillo mining district | Soil–slag | 695 | 44 | 186 | 827 | 2400 | |||||
Slag | 3388 | 73 | 344 | 2770 | 4189 | ||||||
Soil | 16.3 | 3 | 15 | 283 | 599 | ||||||
Noria de Ángeles mining district | Slag | 665.9 | 20.8 | 114.1 | 668 | 1049.9 | |||||
Soil | 36.3 | 3.3 | 18 | 782 | 1032.3 | ||||||
Guadalupe, Zoquite and San Jerónimo. | Agricultural soils | Microwave-digested samples. Analyzed using HGAAS (3) and CVAAS (5) | 3.3 to 182 | 10 to 868 | 0.05 to 198 | [78] |
4. Bioremediation Proposals at Sites Impacted by Mining Waste in Zacatecas
4.1. Study of Microbial Dynamics and Their Interaction with Soils or Solutions Contaminated with PTEs
4.2. Phytoremediation Studies in the State of Zacatecas
4.3. Interaction Between Microorganisms and Plant Mycorrhizae with Bioremediation Potential
4.4. Studies Associated with the Use of Organic Amendments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdel-Musik, G. El Sector Minero en México; Diagnóstico, Prospectiva y Estrategia. Centro de Estudios de Competitividad (CEC). 2004. Available online: https://cec.itam.mx/sites/default/files/mineria.pdf (accessed on 2 April 2024).
- Ramos-Arroyo, Y.R.; Siebe-Grabach, C.D. Estrategia para identificar jales con potencial de riesgo ambiental en un distrito minero: Estudio de caso en el Distrito de Guanajuato, México. Rev. Mex. Cienc. Geol. 2006, 23, 54–74. [Google Scholar]
- Servicio Geológico Mexicano (SGM). Panorama Minero del Estado de Zacatecas. Serie “Panorama Minero de los Estados”. Eds.; Dirección de Investigación y Desarrollo del Servicio Geológico Mexicano y Secretaria de Economía: C.P. 42083, Pachuca, Hgo, México. 2021. Available online: https://landmatrix.org/media/uploads/sgmgobmxpdfszacatecaspdf.pdf, (accessed on 10 February 2024).
- INEGI. Indicador Trimestral de la Actividad Económica Estatal Zacatecas. Comunicado de Prensa núm. 62/23, Zacatecas, México. 2023; pp. 1–13. Available online: https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2023/itaee/itaee2023_01_Zac.pdf (accessed on 10 February 2024).
- Salas-Luévano, M.A.; Manzanares-Acuña, E.; Letechipía-de León, C.; Vega-Carrillo, H.R. Tolerant and hyperaccumulators autochthonous plant species from mine tailing disposal sites. Asian J. Exp. Sci. 2009, 23, 27–32. [Google Scholar]
- Sistema Informático de Sitios Contaminados (SISCO). Dirección General de Gestión Integral de Materiales y Actividades Riesgosas; SEMARNAT: México City, México, 2017. [Google Scholar]
- Diario oficial de la Federación (DOF). NOM-141-SEMARNAT/2003. Que Establece el Procedimiento para Caracterizar los Jales, así como las Especificaciones y Criterios para la Caracterización y Preparación del Sitio, Proyecto, Construcción, Operación y Postoperacion de Presas de Jales. 2004. Available online: https://dof.gob.mx/nota_detalle.php?codigo=661988&fecha=13/09/2004#gsc.tab=0 (accessed on 15 January 2024).
- Volke-Sepúlveda, T.; Velasco-Trejo, J.; De la Rosa-Pérez, D. Suelos contaminados por metales y metaloides: Muestreo y alternativas para su remediación. Secr. De Medio Ambiente Y Recur. Nat. Inst. Nac. De Ecol. 2005, 1, 141. [Google Scholar]
- Ledin, M.; Pedersen, K. The environmental impact of mine wastes-roles of microorganisms and their significance in treatment of mine wastes. Earth Sci. Rev. 1996, 41, 67–108. [Google Scholar] [CrossRef]
- Dold, B. Basic concepts in environmental geochemistry of sulfidic mine-waste management. In Waste Management, 1st ed.; Sunil, K.E., Ed.; IntechOpen: Rijeka, Croatia, 2010; Volume 1, pp. 173–198. [Google Scholar] [CrossRef]
- Diario oficial de la Federación (DOF). Norma Oficial Mexicana NOM-025-SSA1-2021, Salud Ambiental. Criterio para Evaluar la Calidad del Aire Ambiente, con Respecto a las Partículas Suspendidas PM10 y PM2.5 2021. Available online: www.dof.gob.mx/nota_detalle.php?codigo=5357042 (accessed on 18 January 2024).
- EPA, U.S. Environmental Protección Agency 2024. U.S. Environmental Protection Agency. Available online: https://www.epa.gov/pm-pollution/final-reconsideration-national-ambient-air-quality-standards-particulate-matter-pm (accessed on 12 January 2024).
- Nordstrom, D.K. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Appl. Geochem. 2011, 26, 1777–1791. [Google Scholar] [CrossRef]
- Siegel, R.F. Environmental Geochemistry of Potentially Toxic Metals; Springer: Berlin, Germany, 2002; p. 32. [Google Scholar]
- Figueroa, F.; Castro-Larragoitia, J.; Aragón, A.; García-Meza, J.V. Grass cover density and metal speciation in profiles of a tailings-pile from a mining zones in Zacatecas, North-Central Mexico. Environ. Earth Sci. 2010, 60, 395–407. [Google Scholar] [CrossRef]
- Escot-Espinoza, V.M.; Ramos-Arroyo, Y.R.; Lázaro, I.; Montes-Avila, I.; Carrizalez-Yañez, L.; Briones-Gallardo, R. Presence of arsenic in potential sources of drinking water supply located in a mineralized and mined area of the Sierra Madre Oriental in Mexico. Toxics 2021, 9, 307. [Google Scholar] [CrossRef]
- Li, H.; Wang, T.; Du, H.; Guo, P.; Wang, S.; Ma, M. Research Progress in the Joint Remediation of Plants–Microbes–Soil for Heavy Metal-Contaminated Soil in Mining Areas: A Review. Sustainability 2024, 16, 8464. [Google Scholar] [CrossRef]
- Sun, W.; Ji, B.; Khoso, S.A.; Tang, H.; Liu, R.; Wang, L.; Hu, Y. An extensive review on restoration technologies for mining tailings. Environ. Sci. Pollut. Res. 2018, 25, 911–925. [Google Scholar] [CrossRef]
- Venkateswarlu, K.; Nirola, R.; Kuppusamy, S.; Thavamani, P.; Naidu, R. Abandoned metalliferous mines: Ecological impacts and potential approaches for reclamation. Environ. Sci. Biot. 2016, 15, 327–354. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Mickus, K.; Camacho, L.M. Abandoned Pb Zn mining wastes and their mobility as proxy to toxicity: A review. Sci. Total Environ. 2016, 565, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Raj, D.; Maiti, S.K. Sources, bioaccumulation, health risks and remediation of potentially toxic metal(loid)s (As, Cd, Cr, Pb and Hg): An epitomised review. Environ. Monit. Assess. 2020, 192, 108. [Google Scholar] [CrossRef] [PubMed]
- Gil-Loaiza, J.; White, S.A.; Root, R.A.; Solis-Dominguez, F.A.; Hammond, C.M.; Chorover, J.; Maier, R.M. Phytostabilization of mine tailings using compost-assisted direct planting: Translating greenhouse results to the field. Sci. Total Environ. 2016, 565, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Gray, E.; Crock, J.G.; Fey, D.L. Environmental geochemistry of abandoned mercury mines in West-Central Nevada, USA. Appl. Geochem. 2022, 17, 1069–1079. [Google Scholar] [CrossRef]
- Chikusa, C.M. Pollution Caused by Mine Dumps and its Control. Ph.D. Thesis, Rhodes University, Makhanda, South Africa, 1994. [Google Scholar]
- Kim, J.Y.; Chon, H.T. Pollution of a water course impacted by acid mine drainage in the Imgok creek of the Gangreung coal field, Korea. Appl. Geochem. 2001, 16, 1387–1396. [Google Scholar] [CrossRef]
- Zhou, H.; Yue, X.; Chen, Y.; Liu, Y. Source-specific probabilistic contamination risk and health risk assessment of soil heavy metals in a typical ancient mining area. Sci. Total Environ. 2024, 906, 167772. [Google Scholar] [CrossRef]
- Xu, D.M.; Yan, B.; Chen, T.; Lei, C.; Lin, H.Z.; Xiao, X.M. Contaminant characteristics and environmental risk assessment of heavy metals in the paddy soils from lead (Pb)-zinc (Zn) mining areas in Guangdong Province, South China. Environ. Sci. Pollut. Res. 2017, 24, 387–399. [Google Scholar] [CrossRef]
- Xiao, R.; Wang, S.; Li, R.; Wang, J.J.; Zhang, Z. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicol. Environ. Saf. 2017, 141, 17–24. [Google Scholar] [CrossRef]
- Escarré, J.; Lefèbvre, C.; Raboyeau, S.; Dossantos, A.; Gruber, W.; Cleyet Marel, J.C.; Frérot, H.; Noret, N.; Mahieu, S.; Collin, C. Heavy Metal Concentration Survey in Soils and Plants of the Les Malines Mining District (Southern France): Implications for Soil Restoration. Water Air Soil Pollut. 2010, 216, 485–504. [Google Scholar] [CrossRef]
- Martín-Crespo, T.; Gómez-Ortiz, D.; Martín-Velázquez, S.; Martinez-Pagan, P.; De Ignacio, C.; Lillo, J.; Faz, A. Geoenvironmental characterization of unstable abandoned mine tailings combining geophysical and geochemical methods (Cartagena-La Union district, Spain). Eng. Geol. 2018, 232, 135–146. [Google Scholar] [CrossRef]
- Asensio, V.; Vega, F.A.; Singh, B.R.; Covelo, E.F. Effects of tree vegetation and waste amendments on the fractionation of Cr, Cu, Ni, Pb and Zn in polluted mine soils. Sci. Total Environ. 2013, 443, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Arenas-Lago, D.; Lago-Vila, M.; Rodrigues-Seijo, A.; Andrade, M.L.; Vega, F.A. Risk of metal mobility in soils from a Pb/Zn depleted mine (Lugo, Spain). Environ. Earth Sci. 2014, 72, 2541–2556. [Google Scholar] [CrossRef]
- Christou, A.; Theologides, C.; Costa, C.; Kalavrouziotis, I.; Varnavas, S. Assessment of toxic heavy metals concentrations in soils and wild and cultivated plant species in Limni abandoned copper mining site, Cyprus. J. Geochem. Explor. 2017, 178, 16–22. [Google Scholar] [CrossRef]
- Boughattas, I.; Hattab, S.; Boussetta, H.; Sappin-Didier, V.; Viarengo, A. Biomarker responses of Eisenia andrei to a polymetallic gradient near a lead mining site in North Tunisia. Environ. Pollut. 2016, 218, 530–541. [Google Scholar] [CrossRef]
- Yildirim, D.; Sasmaz, A. Phytoremediation of As, Ag, and Pb in contaminated soils using terrestrial plants grown on Gumuskoy mining area (Kutahya Turkey). J. Geochem. Explor. 2017, 182, 228–234. [Google Scholar] [CrossRef]
- Adebayo, A.S.; Olufemi, A.P.; Ogundele, L.T.; Okunnuwa, O.Q.; Toyeje, A.B.; Olowookere, C.J. Ecological and human health risk assessments of metals in soil and tailing from Ife-Ijesha gold mining area, Southwest Nigeria. Environ. Earth Sci. 2022, 81, 462. [Google Scholar] [CrossRef]
- Radi, N.; Hirche, A.; Boutaleb, A. Assessment of soil contamination by heavy metals and arsenic in Tamesguida abandoned copper mine area, Médéa, Algeria. Environ. Monit. Assess. 2022, 195, 247. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.; Parvez, L.; Islam, M.A.; Dampare, S.B.; Suzuki, S. Heavy metal pollution of coal mine affected agricultural soils in the northern part of Bangladesh. J. Hazard. Mater. 2010, 173, 384–392. [Google Scholar] [CrossRef]
- Abdul-Wahab, S.A.; Marikar, F.A. The environmental impact of gold mines: Pollution by heavy metals. Cent. Eur. J. Eng. 2012, 2, 304–313. [Google Scholar] [CrossRef]
- Mwaanga, P.; Silondwa, M.; Kasali, G.; Banda, P.M. Preliminary review of mine air pollution in Zambia: A Review. Heliyon 2019, 5, e02485. [Google Scholar] [CrossRef]
- Masto, R.E.; Sheik, S.; Nehru, G.; Selvi, V.A.; George, J.; Ram, L.C. Assessment of environmental soil quality around Sonepur Bazari mine of Raniganj coalfield, India. Sol. Earth 2015, 6, 811–821. [Google Scholar] [CrossRef]
- Ribeiro, J.; Da Silva, E.F.; Li, Z.; Ward, C.; Flores, D. Petrographic, mineralogical and geochemical characterization of the Serrinha coal waste pile (Douro coalfield, Portugal) and the potential environmental impacts on soil, sediments and surface waters. Int. J. Coal Geol. 2010, 83, 456–466. [Google Scholar] [CrossRef]
- Acosta, J.; Martínez-Pagán, P.; Martínez-Martínez, S.; Faz, A.; Zornoza, D.M. Assessment of environmental risk of reclaimedmining ponds using geophysics and geochemical techniques. J. Geochem. Explor. 2014, 147, 80–90. [Google Scholar] [CrossRef]
- Marasinghe-Wadige, C.P.; Taylor, A.; Krikowa, F.; Mahler, W. Sediment metal concentration survey along the mine-affected Molonglo River NSW, Australia. Arch. Environ. Contam. Toxicol. 2016, 70, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, E.; Armienta, M.A.; Cruz, O.; Aguayo, A.; Ceniceros, N. Geochemical distribution of arsenic, cadmium, lead and zinc in river sediments affected by tailings in Zimapán, a historical polymetallic mining zone of Mexico. Environ. Geol. 2009, 58, 1467–1477. [Google Scholar] [CrossRef]
- Montes-Ávila, I.; Espinosa-Serrano, E.; Castro-Larragoitia, J.; Lázaro, I.; Cardona, A. Chemical mobility of inorganic elements in stream sediments of a semiarid zone impacted by ancient mine residues. Appl. Geochem. 2019, 100, 8–21. [Google Scholar] [CrossRef]
- Straskraba, V.; Moran, R.E. Environmental occurrence and impacts of arsenic at gold mining sites in the western United States. Int. J. Mine Water 1990, 9, 181–191. [Google Scholar] [CrossRef]
- SEMARNAT. Informe de la Situación del Medio Ambiente en México. Compendio de Estadísticas Ambientales, Indicadores Clave, de Desempeño Ambiental y de Crecimiento Verde; Edition 2015; México City, Mexico, 2016. Available online: https://apps1.semarnat.gob.mx:8443/dgeia/informe15/tema/pdf/Informe15_completo.pdf (accessed on 7 November 2024).
- Ogura, T.; Ramírez-Ortiz, J.; Arroyo-Villaseñor, M.Z.; Hernández, M.S.; Palafox-Hernández, P.J.; García de Alba, H.L.; Quintus, F. Zacatecas (México) companies extract Hg from surface soil contaminated by ancient mining industries. Water Air Soil Pollut. 2003, 148, 167–177. [Google Scholar] [CrossRef]
- Plumlee, G.S.; Morman, S.A. Mine Wastes and Human Health. Elements 2011, 7, 399–404. [Google Scholar] [CrossRef]
- Garibay, C.; Boni, A.; Panico, F.; Urquijo, P. Corporación minera, colusión gubernamental y desposesión campesina. El caso de Goldcorp Inc. en Mazapil, Zacatecas, México. Desacatos 2014, 44, 113–142. Available online: www.redalyc.org/articulo.oa?id=13930746009 (accessed on 30 April 2024).
- Guzmán-López, F. Impactos ambientales causados por megaproyectos de minería a cielo abierto en el estado de Zacatecas, México. Rev. De Geogr. Agrícola 2016, 56, 109–128. [Google Scholar]
- Escalona-Alcázar, F.; Escobedo-Arellano, B.; Castillo-Félix, B.; García-Sandoval, P.; Gurrola-Menchaca, L.L.; Carrillo-Castillo, C.; Esparza-Martínez, A. A geologic and geomorphologic analysis of the Zacatecas and Guadalupe quadrangles in order to define hazardous zones associated with the erosion processes. In Sustainable Development-Authoritative and Leading Edge Content for Environmental Management; IntechOpen: London, UK, 2012. [Google Scholar]
- Servicio Geológico Mexicano (SGM). Cartas Geológico-Minera, Zacatecas. Escala 1:50,000; Primera Edición; Servicio Geológico Mexicano: Pachuca Hidalgo, Mexico, 2006. [Google Scholar]
- CEQG. Canadian Council of Miners of the Environment. Canadian Environmental Quality Guidelines. 2003. Available online: www.ccme.ca/en/resources/canadian_environmental_quality_guidelines (accessed on 20 January 2024).
- Diario oficial de la Federación (DOF). NOM 147-SEMARNAT/SSA1-2004, Que establece criterios para determinar las concentraciones de remediación de suelos contaminados. 2007. Available online: https://www.gob.mx/profepa/documentos/norma-oficial-mexicana-nom-147-semarnat-ssa1-2004 (accessed on 18 January 2024).
- World Health Organization (WHO). Guidelines for Drinking-Water and Soil Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Salas-Luévano, M.; Manzanares-Acuna, E.; Letechipia-de Leon, C.; Hernandez-Davila, V.; Vega-Carrillo, H. Lead concentration in soil from an old mining town. J. Radioanal. Nucl. Chem. 2011, 289, 35–39. [Google Scholar] [CrossRef]
- Diario oficial de la Federación (DOF). Norma Oficial Mexicana NOM-127-SSA1-1994, Salud ambiental, agua para uso y consumo humano. Límites permisibles de Calidad. 2000. Available online: https://www.seguiremoshaciendohistoria.gob.mx/wp-content/uploads/2020/07/Norma-127.pdf (accessed on 20 January 2024).
- Dávila, O.G. Water arsenic and fluoride contamination in Zacatecas Mexico: An exploratory study. In 8th International Conference “Developments in Economic Theory and Policy”; The University of the Basque Country: Leioa, Spain, 2012. [Google Scholar]
- Martínez-Acuña, M.I.; Mercado-Reyes, M.; Alegría-Torres, J.A.; Mejía-Saavedra, J.J. Preliminary human health risk assessment of arsenic and fluoride in tap water from Zacatecas, México. Environ. Monit. Assess. 2016, 188, 476. [Google Scholar] [CrossRef] [PubMed]
- Navarro, O.; González, J.; Júnez-Ferreira, H.; Bautista, C.; Cardona, A. Correlation of arsenic and fluoride in the groundwater for human consumption in a semiarid region of Mexico. Procedia Eng. 2017, 186, 333–340. [Google Scholar] [CrossRef]
- Orozco-Corona, D.M.; Letechipia-de-Leon, C.; Vega-Carrillo, H.R.; Castaneda-Miranda, R.; Megchun-Garcia, J.V.; Solis-Sanchez, L.O. Evaluation of heavy metals concentration (As, Pb and Hg) in irrigation water in an agricultural area with a mining history. Int. J. Adv. Res. Eng. Technol. 2021, 12, 20–28. [Google Scholar] [CrossRef]
- Mayorga-Ávila, R. Evaluación de la Contaminación por Arsénico y Metales Pesados en el Distrito Minero Fresnillo (Zacatecas, México). Master’s Thesis, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico, 2012. [Google Scholar]
- Ortiz-Letechipia, J.; González-Trinidad, J.; Júnez-Ferreira, H.E.; Bautista-Capetillo, C.; Dávila-Hernández, S. Evaluation of groundwater quality for human consumption and irrigation in relation to arsenic concentration in flow systems in a semi-arid Mexican region. Int. J. Environ. Res. Public Health 2021, 18, 8045. [Google Scholar] [CrossRef]
- Padilla-Reyes, D.A.; Peña, E.P.N.; Alcázar, F.D.J.E.; Gutiérrez, J.B. Calidad del agua del acuífero Guadalupe-Bañuelos, Estado de Zacatecas, México. GEOS 2012, 32, 1–20. [Google Scholar]
- González-Valdez, E.; González Reyes, E.; Bedolla Cedeño, C.; Arrollo Ordaz, E.L.; Manzanares Acuña, E. Niveles de plomo en sangre y factores de riesgo por envenenamiento de plomo en niños mexicanos. Rev. Fac. De Ing. Univ. De Antioq. 2008, 43, 114–119. [Google Scholar]
- Kabata-Pendias, A.; Mukherjee, A. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Smith, K.S. Strategies to predict metal mobility in surficial mining environments. Geol. Soc. Am. Rev. Eng. Geol. 2007, 17, 25–45. [Google Scholar] [CrossRef]
- Vallejo, A. Geología Mina Proaño en Fresnillo, Zac. México. Congreso Internacional de Prospectores y Exploradores, 4, Trabajos Técnicos; Instituto de Ingenieros de Minas del Perú: Lima, Peru, 2005. [Google Scholar]
- Flores de la Torre, J.A.; Mitchell, K.; Ramos Gómez, M.S.; Guerrero Barrera, A.L.; Yamamoto Flores, L.; Avelar González, F.J. Effect of plant growth on Pb and Zn geoaccumulation in 300-year-old mine tailings of Zacatecas, México. Environ. Earth Sci. 2017, 77, 386. [Google Scholar] [CrossRef]
- Núñez, J.; Bustamente, J.; Ruiz, A.; Mendoza, J.; Moya, E.; Vieyra, I. Diagnostico Integral Sobre la Minería en el Estado de Zacatecas; Gobierno del Estado de Zacatecas: Zacatecas, Mexico, 2002. [Google Scholar]
- Garay-Hernández, M.D.C.; Paredes-Lara, M.D.R.; Hernández-Martínez, J. Acumulación de As-Cd-Pb en suelos y cultivos afectados por jales mineros. In Memorias V Congreso de la Asociación Mesoamericana de Ecotoxicología y Química Ambiental; Aguascalientes: Ags, Mexico, 2012. [Google Scholar]
- Nriagu, J.O. Mercury pollution from the past mining of gold and silver in the Americas. Sci. Total Environ. 1994, 149, 167–181. [Google Scholar] [CrossRef]
- Diaz, J.C. An Assessment of Primary and Secondary Mercury Supplies in Mexico; Commission for Environmental Cooperation. (CEC): Montreal, QC, Canada, 2013; Available online: http://www.cec.org/files/documents/publications/11208-assessment-primary-and-secondary-mercury-supplies-in-mexico-en.pdf (accessed on 7 November 2024).
- Gavilán-García, I.; Santos-Santos, E.; Tovar-Gálvez, L.R.; Gavilán-García, A.; Suárez, S.; Olmos, J. Mercury speciation in contaminated soils from old mining activities in Mexico using a chemical selective extraction. J. Mex. Chem. Soc. 2008, 52, 263–271. [Google Scholar] [CrossRef]
- Covarrubias, S.A.; Flores de la Torre, J.A.; Maldonado Vega, M.; Avelar González, F.J.; Peña Cabriales, J.J. Spatial variability of heavy metals in soils and sediments of “La Zacatecana” lagoon, Mexico. Appl. Environ. Soil Sci. 2018, 1, 9612412. [Google Scholar] [CrossRef]
- Santos-Santos, E.; Yarto-Ramírez, M.; Gavilán-García, I.; Castro-Díaz, J.; Rosiles, R.; López-Villegas, T. Analysis of arsenic, lead and mercury in farming areas with mining contaminated soils at Zacatecas, Mexico. J. Mex. Chem. Soc. 2006, 50, 57–63. [Google Scholar]
- Castro-Larragoitia, J.; Kramar, U.; Monroy-Fernández, M.G.; Viera-Décida, F.; García-González, E.G. Heavy metal and arsenic dispersion in a copper-skarn mining district in a Mexican semi-arid environment: Sources, pathways and fate. Environ. Earth Sci. 2013, 69, 1915–1929. [Google Scholar] [CrossRef]
- Jain, C.K.; Malik, D.S.; Yadav, A.K. Applicability of plant based biosorbents in the removal of heavy metals: A review. Environ. Process. 2016, 3, 495–523. [Google Scholar] [CrossRef]
- Salas-Luévano, M.A.; Vega-Carrillo, H.R. Environmental impact in a rural community due to a lead recycling plant in Zacatecas, Mexico. Environ. Earth Sci. 2016, 75, 408. [Google Scholar] [CrossRef]
- Salas-Muñoz, S.S.; Valdez, E.V.; Castillo, J.A.M.; Badillo, F.B.S.; Carrillo, H.R.V.; Salas-Luevano, M.A. Accumulation of As and Pb in vegetables grown in agricultural soils contaminated by historical mining in Zacatecas, Mexico. Environ. Earth Sci. 2021, 81, 374. [Google Scholar] [CrossRef]
- Flores-Torres, G.; Solis-Hernández, A.; Vela-Correa, G.; Rodríguez-Tovar, A.V.; Cano-Flores, O.; Castellanos-Moguel, J.; Rivera-Becerril, F. Pioneer plant species and fungal root endophytes in metal-polluted tailings deposited near human populations and agricultural areas in Northern Mexico. Environ. Sci. Pollut. Res 2021, 28, 72–88. [Google Scholar] [CrossRef]
- Salas-Luévano, M.A.; Puente-Cuevas, R.; Vega-Carrillo, H.R. Concentrations of heavy metals and measurement of 40K in mine tailings in Zacatecas, Mexico. Environ. Earth Sci. 2021, 80, 186. [Google Scholar] [CrossRef]
- Martínez-González, H.; Ibarra-García, A.; Gutiérrez-Arzaluz, M.; Alvarez, V. Phytoextraction of Toxic Elements from Contaminated Soils by Ornamental Plants. In Proceedings of the Conference on “Agricultural, Biological and Environmental Sciences”, Milan, Italy, 5–7 August 2019. [Google Scholar]
- Ibarra-García, A.R.; Barceló-Quintal, I.D.; García-Albortante, J.; López-Lafuente, A.L.; González-Huecas, C.; Quintana-Nieto, J.R.; Mugica-Alvarez, V. Phytoextraction of metals by native plants from mining wastes in Zacatecas, Mexico. Acta Hortic. 2018, 1227, 409–416. [Google Scholar] [CrossRef]
- Salas-Luévano, M.Á.; González-Rivera, M.L.; de León, C.L.; Mart, V.; Vega-Carrillo, H.R. Estabilización de metales pesados en jales mediante vegetación endémica e introducida en Fresnillo, Zacatecas. Biotecnol. Sustentabilidad 2017, 2, 5. [Google Scholar]
- González-Valdez, E.; Alarcón, A.; Ferrera-Cerrato, R.; Vega-Carrillo, H.R.; Maldonado-Vega, M.; Salas-Luévano, M.Á. Seed germination and seedling growth of five plant species for assessing potential strategies to stabilizing or recovering metals from mine tailings. Water Air Soil Pollut. 2016, 227, 24. [Google Scholar] [CrossRef]
- Barajas-Aceves, M.; Camarillo-Ravelo, D.; Rodríguez-Vázquez, R. Mobility and translocation of heavy metals from mine tailings in three plant species after amendment with compost and biosurfactant. Soil Sediment. Contam. 2015, 24, 223–249. [Google Scholar] [CrossRef]
- González, R.C.; González-Chávez, M.C.A. Metal accumulation in wild plants surrounding mining wastes. Environ. Pollut. 2006, 144, 84–92. [Google Scholar] [CrossRef]
- Johnson, D.; Hallberg, K. The microbiology of acidic mine waters. Res. Microbiol. 2003, 154, 466–473. [Google Scholar] [CrossRef]
- Briones-Gallardo, R.; Escot-Espinoza, V.M.; Cervantes-González, E. Removing arsenic and hydrogen sulfide production using arsenic-tolerant sulfate-reducing bacteria. Int. J. Environ. Sci. Technol. 2017, 14, 609–622. [Google Scholar] [CrossRef]
- Rios-Valenciana, E.E.; Briones-Gallardo, R.; Cházaro-Ruiz, L.F.; Martínez-Villegas, N.; Celis, L.B. Role of indigenous microbiota from heavily contaminated sediments in the bioprecipitation of arsenic. J. Hazard. Mater. 2017, 339, 14–21. [Google Scholar] [CrossRef]
- García-Meza, J.V.; Contreras-Aganza, M.I.; Castro-Larragoitia, J.; Lara, R.H. Growth of photosynthetic biofilms and Fe, Pb, Cu, and Zn speciation in unsaturated columns with calcareous mine tailings from arid zones. Appl. Environ. Soil Sci. 2011, 2011, 732984. [Google Scholar] [CrossRef]
- Rodríguez-Sánchez, V.; Guzmán-Moreno, J.; Rodríguez-González, V.; Flores-de la Torre, J.A.; Ramírez-Santoyo, R.M.; Vidales-Rodríguez, L.E. Biosorption of lead phosphates by lead-tolerant bacteria as a mechanism for lead immobilization. World J. Microbiol. Biotechnol. 2017, 33, 150. [Google Scholar] [CrossRef]
- Awa, S.H.; Hadibarata, T. Removal of heavy metals in contaminated soil by phytoremediation mechanism: A review. Water Air Soil Pollut. 2020, 231, 47. [Google Scholar] [CrossRef]
- Lasat, M.M. Phytoextraction of toxic metals: A review of biological mechanisms. J. Environ. Qual. 2002, 31, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Dai, M.; Yang, J.; Sun, L.; Tan, X.; Peng, C.; Naz, I. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere 2022, 291, 132979. [Google Scholar] [CrossRef] [PubMed]
- Puppe, D.; Kaczorek, D.; Stein, M.; Schaller, J. Silicon in plants: Alleviation of metal(loid) toxicity and consequential perspectives for phytoremediation. Plants 2023, 12, 2407. [Google Scholar] [CrossRef] [PubMed]
- Da Cunha, K.P.V.; Do Nascimento, C.W.A. Silicon Effects n Metal Tolerance and Structural Changes in Maize (Zea mays L.) Grown on a Cadmium and Zinc Enriched Soil. Water Air Soil Pollut. 2009, 197, 323–330. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Wang, F. Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: Mechanisms and applications. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1901–1957. [Google Scholar] [CrossRef]
- Meier, S.; Borie, F.; Bolan, N.; Cornejo, P. Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit. Rev. Environ. Sci. Technol. 2012, 42, 741–775. [Google Scholar] [CrossRef]
- Del Pilar Ortega-Larrocea, M.; Xoconostle-Cazares, B.; Maldonado-Mendoza, I.E.; Carrillo-Gonzalez, R.; Hernández-Hernández, J.; Garduño, M.D.; González-Chávez, M. Plant and fungal biodiversity from metal mine wastes under remediation at Zimapan, Hidalgo, Mexico. Environ. Pollut. 2010, 158, 1922–1931. [Google Scholar] [CrossRef]
- Gonzalez-Chavez, M.; Carrillo-Gonzalez, R.; Gutierrez-Castorena, M. Natural attenuation in a slag heap contaminated with cadmium: The role of plants and arbuscular mycorrhizal fungi. J. Hazard. Mater. 2009, 161, 1288–1298. [Google Scholar] [CrossRef]
- Navarro-Noya, Y.E.; Jan-Roblero, J.; del Carmen González-Chávez, M.; Hernández-Gama, R.; Hernández-Rodríguez, C. Bacterial communities associated with the rhizosphere of pioneer plants (Bahia xylopoda and Viguiera linearis) growing on heavy metals-contaminated soils. Antonie Van Leeuwenhoek 2010, 97, 335–349. [Google Scholar] [CrossRef]
- Navarro-Noya, Y.E.; Hernández-Mendoza, E.; Morales-Jiménez, J.; Jan-Roblero, J.; Martínez-Romero, E.; Hernández-Rodríguez, C. Isolation and characterization of nitrogen fixing heterotrophic bacteria from the rhizosphere of pioneer plants growing on mine tailings. Appl. Soil Ecol. 2012, 62, 52–60. [Google Scholar] [CrossRef]
- González-Valdez, E.; Alarcón, A.; Ferrera-Cerrato, R.; Vega-Carrillo, H.R.; Salas-Luévano, M.Á.; Argumedo-Delira, R. Induced accumulation of Au, Ag and Cu in Brassica napus grown in a mine tailings with the inoculation of Aspergillus niger and the application of two chemical compounds. Ecotoxicol. Environ. Saf. 2018, 154, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Hussain, Z.; Khan, A.; Khan, M.; Rab, A.; Asif, M.; Muhammad, A. The effects of organic amendments on heavy metals bioavailability in mine impacted soil and associated human health risk. Sci. Hortic. 2020, 262, 109067. [Google Scholar] [CrossRef]
- Nunes, N.; Ragonezi, C.; Gouveia, C.S.; Pinheiro de Carvalho, M.Â. Review of sewage sludge as a soil amendment in relation to current international guidelines: A heavy metal perspective. Sustainability 2021, 13, 2317. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.; Lee, S.; Al-Wabel, M.; Ok, Y. Biocharinduced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. J. Soil Sediment. 2017, 17, 717–730. [Google Scholar] [CrossRef]
- Palansooriya, K.; Shaheen, S.; Chen, S.; Tsang, D.; Hou, D.; Ok, Y. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 5046. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, Y.; Xu, C.; Liu, P.; Lv, J.; Liu, Y.; Wang, Q. Removal mechanisms of aqueous Cr(VI) using apple wood biochar: A spectroscopic study. J. Hazard. Mater. 2020, 384, 121371. [Google Scholar] [CrossRef]
- Ghosh, D.; Maiti, S.K. Biochar assisted phytoremediation and biomass disposal in heavy metal contaminated mine soils: A review. Int. J. Phytoremediation 2021, 23, 559–576. [Google Scholar] [CrossRef]
- González-Chávez, M.D.; Carrillo-González, R.; Hernández Godínez, M.I.; Evangelista Lozano, S. Jatropha curcas and assisted phytoremediation of a mine tailing with biochar and a mycorrhizal fungus. Int. J. Phytoremediation 2017, 19, 174–182. [Google Scholar] [CrossRef]
- Barajas-Aceves, M.; Camarillo-Ravelo, D.; Juárez-Sánchez, F.; Rodríguez-Vázquez, R. Lead and zinc distribution in Brassica juncea and arid soil amended with mine tailings and bokashi. Fresenius Environ. Bull. 2012, 21, 2626–2637. [Google Scholar]
Mining District | Mineralization | Deposit | Mining Areas |
---|---|---|---|
San Julián | Au, Ag, Pb, Zn, Cu | Fissure filling | San Julián |
Concepción del Oro | Au, Ag, Pb, Zn, Cu | Veins, mantles, breccias, chimneys, replacement and disseminated bodies | Peñasquito, Melchor Ocampo, Noche Buena y El Salvador |
Miguel Auza–Juan Aldama | Ag, Au, Pb, Cu, Sn | Veins | Miguel Auza—Juan Aldama |
Camino rojo–Nuevo Mercurio | Au, Hg | Fissure-disseminated fillings | Nuevo Mercurio |
Francisco R. Murguía | Au, Ag, Pb, Zn, Sb | Irregular veins | Santa Rita, San Gregorio, Concordia, El Rosario y Nieves |
Sombrerete–Chalchihuites | Au, Ag, Pb, Zn, Cu, Sn, Hg | Replacement bodies veins, chimneys and mantles | Sombrerete, San Martín, Chalchihuites |
Saín Alto | Hg, Sn | Veins, lenses, irregular bodies and stockworks | Cerro Colorado, Bonancita, Sauz y Nuevo Mercurio |
Villa de Cos | Mn, Hg, Sb, F, Ónix, Salt | - | La Abundancia, Manganita, La Prieta, San Felipe, Tenango, El Capirote y Sarteneja |
Jiménez del Teúl | Au, Ag, Pb, Zn, Cu | Veins | Jiménez del Teúl |
Fresnillo | Ag, Au, Pb, Zn | Disseminated bodies, chimney mantles and veins | Fresnillo |
Valparaíso | Au, Ag, Sn, Bi | Veins | Valparaíso |
Zacatecas | Ag, Pb, Zn, Cu, Cd | Veins and stratiform bodies | Zacatecas |
Villanueva–Jalpa | Fluorite, Ag, Pb, Zn, Cu | Veins | Villanueva, Jalpa |
Pánfilo Natera–Ojocaliente | Ag, Pb, Zn, Wollastonite | Veins and replacement bodies | Pánfilo Natera, Ojocaliente, Luis Moya |
Noria de Ángeles | Pb, Ag, Zn | Irregular body | Noria de Ángeles-Real de Ángeles |
Pinos | Au, Ag, Sn, Kaolín | Breccias and veins | Pinos |
Mezquital del Oro | Au, Ag, Mn, Opal | Lenticular veins | Mezquital del Oro |
Country | Types of Mines or Mine Dump | PTEs | Ref | ||||||
---|---|---|---|---|---|---|---|---|---|
As | Pb | Cr | Cd | Cu | Zn | Hg | |||
Soils | |||||||||
United States | Arizona, mined tailings | 2200 | 7.1 | 127 | 2000 | [22] | |||
United States | Nevada, Hg mine | 170 | [23] | ||||||
South Africa | Krugersdorp, gold mine dump | 1401 | 72.4 | 249 | 8.4 | 5340 | [24] | ||
Korea | AMD-contaminated soil | 32.9 | 35.8 | 1.1 | [25] | ||||
China | Copper mine dump | 43.25 | 102.35 | 90.51 | 1.46 | 355.7 | 260.9 | [26] | |
China | Lead–zinc mine | 1093.03 | 30.91 | 7.14 | 57.8 | 867.1 | [27] | ||
China | Tongguan mine, gold mine dump | 16 | 252 | 2.45 | 46.4 | 286 | 2.9 | [28] | |
France | Les Malines mining district | 338 | 34,289 | 225 | 30,364 | [29] | |||
Spain | Cartagena mining district, mine dumps | 348 | 5950 | 70 | 67.2 | 323 | 23,361 | [30] | |
Spain | Touro mine, Galicia, copper mine dump | 19.3 | 118 | 911 | 78.2 | [31] | |||
Spain | Pb/Zn mining wastes | 6761 | 43.7 | 32,287 | [32] | ||||
Cyprus | Limni mine, copper mine dump | 28.6 | 6.4 | 1534 | 4132 | [33] | |||
Tunisia | Jebel Ressas mining. Pb/Zn mining wastes | 14,500 | 184 | 14.25 | 4240 | [34] | |||
Turkey | Gumuskoy, gold mine dump | 4771 | 4320 | [35] | |||||
Nigeria | The gold mining regions (Osun) | 6.1 | 65.7 | 0.36 | 3.8 | 10.8 | [36] | ||
Algeria | Tamesguida, copper mine dump. | 127.07 | 70.04 | 93.05 | 599.6 | 390 | [37] | ||
Bangladesh | AMD-contaminated soils | 17.5 | 433 | [38] | |||||
Oman | Gold mine dump | 97 | 486 | 6 | 3240 | [39] | |||
Zambia | Copper mine dump | 41.6 | 8980 | 83.3 | [40] | ||||
India | Open cast mine-impacted soil | 27.3 | 98 | [41] | |||||
Portugal | Waste-impacted soil | 38.5 | 31 | 93 | [42] | ||||
Stream sediment | |||||||||
Spain | Pb/Zn mining wastes | 4650 | 31.5 | 12,772 | [43] | ||||
Australia | Pb/Zn mining wastes | 1796 | 8.7 | 6818 | [44] | ||||
Mexico | Zimapan—Pb/Zn mining wastes | 4785 | 193 | 1228 | [45] | ||||
Mexico | Gold mine dump | 1500 | 3908 | 66 | 90 | 8305 | [46] | ||
Water | |||||||||
United States | Gold mine dump, groundwater | 2700 | [47] | ||||||
Oman | Gold mine dump, surface water | 1560 | 105 | 790 | [39] |
Mineral | Tons Extracted | Average Grades (g/tons) | Tons of Waste Generated |
---|---|---|---|
Gold | 127.1 | 0.25 | 508,520,000 |
Silver | 39,592.6 | 29 | 1,365,262,862 |
Copper | 748,426 | 52 | 14,392,807,692 |
Lead | 1,918,079 | 3.2 | 599,399,678 |
Zinc | 4602.9 | 6.9 | 667,080,724 |
Location | Type of Sample | Sample Processing and Analytical Technique | Concentration (µg/L) | Ref. | |||
---|---|---|---|---|---|---|---|
As | Pb | Hg | F− | ||||
Jerez | Tap water in primary schools | Microwave-digested samples. Determination by ICP-OES (1) coupled to a hydride generator | 19 (8–62) | 1800 (1600–2300) | [61] | ||
El Visitador | 22 (18–25) | 1300 (800–2400) | |||||
Guadalupe | 78 (21–233) | 450 (300–500) | |||||
Ojocaliente | 186 (125–298) | 700 (600–800) | |||||
Villanueva | 6 (4–74) | 400 (300–600) | |||||
Tabasco | 14 (8–25) | 1900 (800–3000) | |||||
Huanusco | 26 (25–26) | 1100 (400–1900) | |||||
Calera aquifer (between Zacatecas and Fresnillo) | Water for human consumption | As was analyzed using FAAS, (2) F− was determined by colorimetry method | 18.5 | 1160 | [62] | ||
Morelos–Maderos mine | Agricultural irrigation water | Samples filtered, acidified and measured using FAAS (2) and HGAAS (3) | 158 ± 49 | 353 ± 21 | 2.7 ± 4 | [63] | |
Fresnillo mining district | Water from stream beds and storage tanks | Microwave-digested samples. Analyzed using FAAS (2) and HGAAS (3) | 0.6 to 380 | 0.2 to 84 | 0.002 to 53 | [64] | |
Calera aquifer flow system | Underground water | Samples filtered, acidified and measured using FAAS (2) and HGAAS (3) | 0.1 to 241.3 | 280 to 5400 | [65] | ||
Guadalupe–Bañuelos aquifer | Storm drain in Zacatecas | Samples filtered, acidified and measured using ICP-MS (4) | 27.2 | 730 | [66] | ||
Well in the community of San Ramon | 30 | 3200 | |||||
San Ramon aquifer system, Guadalupe–Zacatecas | Well water | Not reported | 292 to 407 | 3050 to 3090 | [60] | ||
Tap water (Zacatecas) | 34 to 40 | 1570 to 1630 | |||||
Tap water (Guadalupe) | 42 to 85 | 1450 to 1720 | |||||
Vetagrande mining district | Blood in infants (MPL = 10 ug/dL) | Sample collected in capillary tube with EDTA. Sample measured using anodic stripping voltammetry | ~13.6 ± 7 ug/dL | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escot-Espinoza, V.M.; Rodríguez-Márquez, S.; Briseño-Bugarín, J.; López-Luna, M.A.; Flores de la Torre, J.A. Presence of Potentially Toxic Elements in Historical Mining Areas in the North-Center of Mexico and Possible Bioremediation Strategies. Toxics 2024, 12, 813. https://doi.org/10.3390/toxics12110813
Escot-Espinoza VM, Rodríguez-Márquez S, Briseño-Bugarín J, López-Luna MA, Flores de la Torre JA. Presence of Potentially Toxic Elements in Historical Mining Areas in the North-Center of Mexico and Possible Bioremediation Strategies. Toxics. 2024; 12(11):813. https://doi.org/10.3390/toxics12110813
Chicago/Turabian StyleEscot-Espinoza, Victor Manuel, Susana Rodríguez-Márquez, Jorge Briseño-Bugarín, Maria Argelia López-Luna, and Juan Armando Flores de la Torre. 2024. "Presence of Potentially Toxic Elements in Historical Mining Areas in the North-Center of Mexico and Possible Bioremediation Strategies" Toxics 12, no. 11: 813. https://doi.org/10.3390/toxics12110813
APA StyleEscot-Espinoza, V. M., Rodríguez-Márquez, S., Briseño-Bugarín, J., López-Luna, M. A., & Flores de la Torre, J. A. (2024). Presence of Potentially Toxic Elements in Historical Mining Areas in the North-Center of Mexico and Possible Bioremediation Strategies. Toxics, 12(11), 813. https://doi.org/10.3390/toxics12110813