DEHP-Induced Glioblastoma in Zebrafish Is Associated with Circadian Dysregulation of PER3
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bioinformatics Data Collection
2.2. Bioinformatics Analysis of Period3 mRNA Expression Levels
2.3. Functional Enrichment Analysis
2.4. Correlation Analysis of PER3 Expression Level, Immune Cell Infiltration and Immune Cell Markers
2.5. Analysis of DNA Methylation Status and Genetic Alterations
2.6. Correlation Analysis of PER3 Expression Level and Pathologic Characteristics
2.7. Prognostic Implications of PER3 Expression in Brain
2.8. Chemicals and Test Solutions
2.9. Breeding of Zebrafish and Collection of Embryos
2.10. Exposure Experimental Protocol
2.11. Behavioral Experiments on Zebrafish Larvae
2.12. Quantitative Real-Time PCR
3. Results
3.1. Expression of PER3 in Multiple Cancers Including GBM
3.2. Functional Enrichment Analysis of PER3-Related Differentially Expressed Genes in GBM
3.3. PER3 Expression Levels Correlate with Multiple Immune Cell Infiltration in Glioblastoma Tissues
3.4. Correlation of PER3 Expression Levels with the Expression of Immune Checkpoint Genes and Oncogenes in Glioblastoma Tissue
3.5. PER3 Gene Methylation Status Is Associated with Prognosis in Patients with Glioblastoma
3.6. PER3 Expression Levels Correlate with Multiple Clinicopathologic Features of Brain GBM
3.7. PER3 Is a Potential Prognostic and Diagnostic Biomarker for Brain GBM
3.8. DEHP Exposure Effects on PER3 Gene Expression in Zebrafish Brain
3.9. Effects of DEHP Exposure on the Growth, Development, and Behavioral Patterns of Larval Zebrafish
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Chen, G.; Christie, P. Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses. Sci. Total Environ. 2015, 523, 129–137. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Qin, N.; Kong, X. Spatio-temporal distributions and the ecological and health risks of phthalate esters (PAEs) in the surface water of a large, shallow Chinese lake. Sci. Total Environ. 2013, 461, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Swan, S.H. Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans. Environ. Res. 2008, 108, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Z.; Lou, Q.; Pan, J.; Wang, J.; Men, S.; Yan, Z. Ecological risk assessment of 50 emerging contaminants in surface water of the Greater Bay Area. Sci. Total Environ. 2023, 907, 168105. [Google Scholar] [CrossRef]
- Li, M.R.; Men, S.H.; Wang, Z.Y.; Liu, C.; Zhou, G.R.; Yan, Z.G. The application of human-derived cell lines in neurotoxicity studies of environmental pollutants. Sci. Total Environ. 2023, 912, 168839. [Google Scholar] [CrossRef]
- Zhou, T.; He, S.; Ye, X.; Wei, Z.; Wan, J.; Zhang, H.; Ding, S. Exposure to dibutyl phthalate adsorbed to multi-walled carbon nanotubes causes neurotoxicity in mice by inducing the release of BDNF. Sci. Total Environ. 2022, 852, 158319. [Google Scholar] [CrossRef]
- Win-Shwe, T.T.; Yanagisawa, R.; Koike, E.; Nitta, H.; Takano, H. Expression levels of neuroimmune biomarkers in hypothalamus of allergic mice after phthalate exposure. J. Appl. Toxicol. 2013, 33, 1070–1078. [Google Scholar] [CrossRef]
- Cai, Q. Telomere length: A possible link between phthalate exposure and cancer development? EBioMedicine 2016, 6, 6–7. [Google Scholar] [CrossRef]
- Agarwal, D.K.; Lawrence, W.H.; Autian, J. Antifertility and mutagenic effects in mice from parenteral administration of di-2-ethylhexyl phthalate (DEHP). J. Toxicol. Environ. Health 1985, 16, 71–84. [Google Scholar] [CrossRef]
- Yi, Q.; Guo, N.; Zhang, L.Y.; Xu, X.X.; Sun, Z.R. Effects of prenatal exposure to Bis (2-ethylhexyl) phthalate on expression of genes associated with circadian rhythm in hypothalamus of adult offspring rats. J. Environ. Health 2018, 10, 867–870. [Google Scholar]
- Takahashi, J.S.; Hong, H.K.; Ko, C.H.; McDearmon, E.L. The Genetics of Mammalian Circadian Order and Disorder: Implications for Physiology and Disease. Nat. Rev. Genet. 2008, 9, 764–775. [Google Scholar] [CrossRef] [PubMed]
- Haus, E.L.; Smolensky, M.H. Shift work and cancer risk: Potential mechanistic roles of circadian disruption, light at night, and sleep deprivation. Sleep Med. Rev. 2013, 17, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Zhang, Y.; Zhang, F.; Xia, Y.; Liu, J.; Huang, R.; Wang, Y.; Hu, Y.; Wu, J.; Dai, C.; et al. CLOCK/BMAL1 regulates circadian change of mouse hepatic insulin sens itivity by SIRT1. Hepatology 2014, 59, 2196–2206. [Google Scholar] [CrossRef] [PubMed]
- Ode, K.L.; Ukai, H.; Susaki, E.A.; Narumi, R.; Matsumoto, K.; Hara, J.; Koide, N.; Abe, T.; Kanemaki, M.T.; Kiyonari, H.; et al. Knockout-Rescue Embryonic Stem Cell-Derived Mouse Reveals Circadian-Period Control by Quality and Quantity of CRY1. Mol. Cell 2017, 65, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Zhang, Y.M.; Wang, C.X.; Li, J.; Pan, Y. Relationship between circadian rhythm sleep-wake disorders and the development of malignant tumor. Chin. J. Clin. Pharmacol. Ther. 2021, 26, 76–81. [Google Scholar]
- Luo, X.; Xiao, P.; Li, L.; Duan, Y.; Sk, C.A.; Xie, J. Research progress in circadian rhythms in the application of psychological rehabilitation of cancer patients. J. Cent. South Univ. 2022, 47, 1740–1747. [Google Scholar]
- Liu, Y.F.; Yuan, G.L.; Ma, L. Progress of the PER gene family in malignant tumours. Chin. J. Breast Dis. 2024, 18, 40–46. [Google Scholar]
- Liu, Y.; Wu, Z.; Li, Y.; Zhang, J.; Gao, Y.; Yuan, G.; Han, M. PER3 plays anticancer roles in the oncogenesis and progression of breast cancer via regulating MEK/ERK signaling pathway. J. Chin. Med. Assoc. 2022, 85, 1051–1060. [Google Scholar] [CrossRef]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef]
- E3 medium (for zebrafish embryos). Cold Spring Harb. Protoc. 2011, 2011, pdb.rec66449. [CrossRef]
- USEPA. Update of Human Health Ambient Water Quality Criteria: Di-2-Ethylhexyl-Phthalate; USEPA: Washington, DC, USA, 2015. [Google Scholar]
- Niu, J.P.; Liu, Y.P.; Ruan, Y. Pollution levels of environmental hormones in Lanzhou section of Yellow River. J. Environ. Health 2006, 23, 527–529. [Google Scholar]
- Lu, J.L.; Hao, J.B.; Wang, C.Z. Distribution characteristics of phthalates in water in the middle and lower reaches of the Second Songhua River. Environ. Sci. Technol. 2007, 30, 35–38. [Google Scholar]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. PNAS 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013, 14, 7. [Google Scholar] [CrossRef]
- Bindea, G.; Mlecnik, B.; Tosolini, M.; Kirilovsky, A.; Waldner, M.; Obenauf, A.C.; Angell, H.; Fredriksen, T.; Lafontaine, L.; Berger, A.; et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013, 39, 782–795. [Google Scholar] [CrossRef]
- Liao, G.Z. Effect and mechanism of combined exposure of lead and cadmium on circadian rhythm of exercise behavior of juvenile zebrafish. South. Univ. Sci. Technol. 2019, 77. [Google Scholar]
- Wang, X.; Yan, D.; Teng, M.; Fan, J.; Zhou, C.; Li, D.; Qiu, G.; Sun, X.; Li, T.; Xing, T.; et al. Reduced Expression of PER3 Is Associated with Incidence and Development of Colon Cancer. Ann. Surg. Oncol. 2012, 19, 3081–3088. [Google Scholar] [CrossRef]
- Wang, G.; Wang, J.; Niu, C.; Zhao, Y.; Wu, P. Neutrophils: New Critical Regulators of Glioma. Front. Immunol. 2022, 4, 927233. [Google Scholar] [CrossRef]
- Lawrence, T.; Natoli, G. Transcriptional regulation of macrophage polarization: Enabling diversity with identity. Nat. Rev. Immunol. 2023, 11, 750–761. [Google Scholar] [CrossRef]
- Klebanoff, C.A.; Gattinoni, L.; Restifo, N.P. Sorting through subsets: Which T-cell populations mediate highly effective adoptive immunotherapy? J. Immunother. 2012, 35, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Krenács, L.; Krenács, D.; Borbényi, Z.; Tóth, E.; Nagy, A.; Piukovics, K.; Bagdi, E. Comparison of Follicular Helper T-Cell Markers with the Expression of the Follicular Homing Marker CXCR5 in Peripheral T-Cell Lymphomas-A Reappraisal of Follicular Helper T-Cell Lymphomas. Int. J. Mol. Sci. 2023, 25, 428. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, V.R.; Graca, L. Contribution of FoxP3+ Tfr cells to overall human blood CXCR5+ T cells. Clin. Exp. Immunol. 2019, 195, 302–304. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.F.; Liu, C.J.; Liu, L.L.; Zhang, Q.; Guo, A.Y. Expression profile of immune checkpoint genes and their roles in predicting immunotherapy response. Brief. Bioinform. 2021, 22, 176. [Google Scholar] [CrossRef]
- Picarda, E.; Ohaegbulam, K.C.; Zang, X. Molecular Pathways: Targeting B7-H3 (CD276) for Human Cancer Immunotherapy. Clin. Cancer Res. 2016, 22, 3425–3431. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, Z.; Li, M.; Chen, C.; Wang, X. Immunogenomics Analysis Reveals that TP53 Mutations Inhibit Tumor Immunity in Gastric Cancer. Transl. Oncol. 2018, 11, 1171–1187. [Google Scholar] [CrossRef]
- Xiao, W.; Du, N.; Huang, T.; Guo, J.; Mo, X.; Yuan, T.; Chen, Y.; Ye, T.; Xu, C.; Wang, W.; et al. TP53 Mutation asPoten-tial Negative Predictor for Response of Anti-CTLA-4 Therapy in Metastatic Melanoma. EBioMedicine 2018, 32, 119–124. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, S.; Jiang, L.; Tan, Z.; Wang, J. A Systematic Pan-Cancer Analysis of CASP3 as a Potential Target for Immunotherapy. Front. Mol. Biosci. 2022, 9, 776808. [Google Scholar] [CrossRef]
- Eskandari, E.; Negri, G.L.; Tan, S.; MacAldaz, M.E.; Ding, S.; Long, J.; Nielsen, K.; Spencer, S.E.; Morin, G.B.; Eaves, C.J. Dependence of human cell survival and proliferation on the CASP3 prodomain. Cell Death Discov. 2024, 10, 63. [Google Scholar] [CrossRef]
- Gu, X.; Schafer, N.P.; Wang, Q.; Song, S.S.; Chen, M.; Waxham, M.N.; Wolynes, P.G. Exploring the F-actin/CPEB3 interaction and its possible role in the molecular mechanism of long-term memory. PNAS 2020, 117, 22128–22134. [Google Scholar] [CrossRef]
- Cheng, J.; Demeulemeester, J.; Wedge, D.C.; Vollan, H.K.M.; Pitt, J.J.; Russnes, H.G.; Pandey, B.P.; Nilsen, G.; Nord, S.; Bignell, G.R.; et al. Pan-cancer analysis of ho-mozygous deletions in primary tumours uncovers rare tumour suppressors. Nat. Commun. 2017, 8, 1221. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Chen, Z.; Chang, B.; Tu, M.; Li, S.; Wang, X.; Chen, M. Prediction of BRAF mutation status in glioblastoma multiforme by preoperative ring enhancement appearances on MRI. Front. Oncol. 2022, 12, 937345. [Google Scholar] [CrossRef] [PubMed]
- Higa, N.; Akahane, T.; Hamada, T.; Yonezawa, H.; Uchida, H.; Makino, R.; Watanabe, S.; Takajo, T.; Yokoyama, S.; Kirishima, M.; et al. Distribution and favorable prognostic implication of genomic EGFR alterations in IDH-wildtype glioblastoma. Cancer Med. 2023, 12, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lichtenberg, T.; Hoadley, K.A.; Poisson, L.M.; Lazar, A.J.; Cherniack, A.D.; Kovatich, A.J.; Benz, C.C.; Levine, D.A.; Lee, A.V.; et al. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell 2018, 173, 400–416. [Google Scholar] [CrossRef]
- GB 3838-2002; Environmental Quality Standards for Surface Water. Ministry of Ecology and Environment of the People’s Republic of China; China Environment Publishing Group: Beijing, China, 2002.
CpG Island | HR | p-Value |
---|---|---|
Body-S_Shore-cg00019458 | 0.744 | 0.2004 |
3′UTR-Open_Sea-cg00811891 | 1.297 | 0.2570 |
Body-Island-cg04725166 | 0.701 | 0.1295 |
Body-N_Shore-cg04837231 | 0.683 | 0.1097 |
TSS1500-Island-cg06487986 | 0.476 | 0.0011 |
Body-S_Shore-cg08134286 | 1.160 | 0.5408 |
5′UTR;1stExon-Island-cg08764927 | 0.506 | 0.0013 |
Body-Island-cg08926642 | 0.708 | 0.1354 |
Body-S_Shore-cg09168692 | 0.726 | 0.1773 |
Body-S_Shelf-cg09327610 | 1.200 | 0.4652 |
TSS1500-Island-cg11753033 | 0.795 | 0.3440 |
TSS1500-Island-cg11843502 | 0.811 | 0.3937 |
Body-Open_Sea-cg11978441 | 0.569 | 0.0156 |
TSS200-Island-cg12258811 | 0.524 | 0.0032 |
5′UTR;1stExon-Island-cg14204433 | 0.544 | 0.0174 |
Body-Island-cg17328665 | 0.682 | 0.0949 |
TSS1500-Island-cg17465881 | 0.536 | 0.0260 |
Body-Island-cg17724687 | 1.660 | 0.0293 |
Body-Open_Sea-cg22507406 | 0.897 | 0.6443 |
TSS1500-Island-cg23927002 | 0.602 | 0.0223 |
Body-S_Shore-cg24454741 | 0.712 | 0.1076 |
Body-Island-cg25514503 | 1.321 | 0.2389 |
Characteristics | Low Expression of PER3 | High Expression of PER3 | p-Value |
---|---|---|---|
Total number of patients | 349 | 350 | |
Race, n (%) | 0.8315 | ||
Asian | 6 (0.9%) | 7 (1%) | |
Black or African American | 18 (2.6%) | 15 (2.2%) | |
White | 318 (46.4%) | 322 (46.9%) | |
Histological type, n (%) | <0.001 | ||
Astrocytoma | 66 (9.4%) | 130 (18.6%) | |
Glioblastoma | 153 (21.9%) | 15 (2.1%) | |
Oligodendroglioma | 85 (12.2%) | 115 (16.5%) | |
Oligoastrocytoma | 45 (6.4%) | 90 (12.9%) | |
WHO grade, n (%) | <0.001 | ||
G2 | 62 (9.7%) | 162 (25.4%) | |
G3 | 109 (17.1%) | 136 (21.4%) | |
G4 | 153 (24%) | 15 (2.4%) | |
IDH status, n (%) | <0.001 | ||
WT | 185 (26.9%) | 61 (8.9%) | |
Mut | 157 (22.8%) | 286 (41.5%) | |
Primary therapy outcome, n (%) | 0.0052 | ||
PD | 53 (11.4%) | 59 (12.7%) | |
SD | 62 (13.3%) | 86 (18.5%) | |
PR | 17 (3.7%) | 48 (10.3%) | |
CR | 42 (9%) | 98 (21.1%) | |
OS event, n (%) | <0.001 | ||
Alive | 152 (21.7%) | 275 (39.3%) | |
Dead | 197 (28.2%) | 75 (10.7%) | |
DSS event, n (%) | <0.001 | ||
No | 156 (23%) | 278 (41%) | |
Yes | 176 (26%) | 68 (10%) | |
PFI event, n (%) | <0.001 | ||
No | 129 (18.5%) | 224 (32%) | |
Yes | 220 (31.5%) | 126 (18%) |
Characteristics | Total (N) | OR (95% CI) | p Value |
---|---|---|---|
WHO grade (G4 and G3 vs. G2) | 637 | 0.221 (0.155–0.314) | <0.001 |
IDH status (Mut vs. WT) | 689 | 5.525 (3.898–7.830) | <0.001 |
Primary therapy outcome (PD and SD vs. CR and PR) | 465 | 0.510 (0.345–0.752) | <0.001 |
Gender (Male vs. Female) | 699 | 0.915 (0.678–1.235) | 0.562 |
Race (Black or African American and White vs. Asian) | 686 | 0.860 (0.286–2.585) | 0.788 |
Age (>60 vs. ≤60) | 699 | 0.271 (0.180–0.408) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Men, S.; Xu, J.; Yang, Z.; Yan, Z. DEHP-Induced Glioblastoma in Zebrafish Is Associated with Circadian Dysregulation of PER3. Toxics 2024, 12, 835. https://doi.org/10.3390/toxics12120835
Men S, Xu J, Yang Z, Yan Z. DEHP-Induced Glioblastoma in Zebrafish Is Associated with Circadian Dysregulation of PER3. Toxics. 2024; 12(12):835. https://doi.org/10.3390/toxics12120835
Chicago/Turabian StyleMen, Shuhui, Jiayun Xu, Zhanhong Yang, and Zhenguang Yan. 2024. "DEHP-Induced Glioblastoma in Zebrafish Is Associated with Circadian Dysregulation of PER3" Toxics 12, no. 12: 835. https://doi.org/10.3390/toxics12120835
APA StyleMen, S., Xu, J., Yang, Z., & Yan, Z. (2024). DEHP-Induced Glioblastoma in Zebrafish Is Associated with Circadian Dysregulation of PER3. Toxics, 12(12), 835. https://doi.org/10.3390/toxics12120835