Previous Issue
Volume 12, November
 
 

Toxics, Volume 12, Issue 12 (December 2024) – 96 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
15 pages, 2015 KiB  
Communication
Probable New Species of Bacteria of the Genus Pseudomonas Accelerates and Enhances the Destruction of Perfluorocarboxylic Acids
by Sergey Chetverikov, Gaisar Hkudaigulov, Danil Sharipov and Sergey Starikov
Toxics 2024, 12(12), 930; https://doi.org/10.3390/toxics12120930 (registering DOI) - 22 Dec 2024
Abstract
Bacteria of the genus Pseudomonas are the most studied microorganisms that biodegrade persistent perfluoroorganic pollutants, and the research of their application for the remediation of environmental sites using biotechnological approaches remains relevant. The aim of this study was to investigate the ability of [...] Read more.
Bacteria of the genus Pseudomonas are the most studied microorganisms that biodegrade persistent perfluoroorganic pollutants, and the research of their application for the remediation of environmental sites using biotechnological approaches remains relevant. The aim of this study was to investigate the ability of a known destructor of perfluorooctane sulfonic acid from the genus Pseudomonas to accelerate and enhance the destruction of long-chain perfluorocarboxylic acids (PFCAs), specifically perfluorooctanoic acid and perfluorononanoic acid, in water and soil in association with the strain P. mosselii 5(3), which has previously confirmed genetic potential for the degrading of PFCAs. The complete genome (5.86 million base pairs) of the strain 2,4-D, probably belonging to a new species of Pseudomonas, was sequenced, assembled, and analyzed. The genomes of both strains contain genes involved in the defluorination of fluorinated compounds, including haloacetate dehalogenase H-1 (dehH1) and haloalkane dehalogenase (dhaA). The strain 2,4-D also has a multicomponent enzyme system consisting of a dioxygenase component, an electron carrier, and 2-halobenzoate 1,2-dioxygenase (CbdA) with a preference for fluorides. The strain 2,4-D was able to defluorinate PFCAs in an aqueous cultivation system within 7 days, using them as the sole source of carbon and energy and converting them to perfluorheptanoic acid. It assisted strain 5(3) to convert PFCAs to perfluoropentanoic acid, accelerating the process by 24 h. In a model experiment for the bioaugmentation of microorganisms in artificially contaminated soil, the degradation of PFCAs by the association of pseudomonads also occurred faster and deeper than by the individual strains, achieving a degree of biodestruction of 75% over 60 days, with the perfluoropentanoic acid as the main metabolite. These results are of great importance for the development of methods for the biological recultivation of fluorinated organic pollutants for environmental protection and for understanding the fundamental mechanisms of bacterial interactions with these compounds. Full article
Show Figures

Figure 1

15 pages, 6121 KiB  
Article
Network Toxicology and Molecular Docking Analysis of Tetracycline-Induced Acute Pancreatitis: Unveiling Core Mechanisms and Targets
by Hang Lei, Yimao Wu, Wenjun Ma, Jiaqi Yao, Pengcheng Zhang, Yong Tian, Yuhong Jiang, Zhijun Xie, Lv Zhu and Wenfu Tang
Toxics 2024, 12(12), 929; https://doi.org/10.3390/toxics12120929 (registering DOI) - 21 Dec 2024
Abstract
Acute pancreatitis (AP), induced by tetracycline, a widely used antibiotic, poses significant clinical and toxicological challenges, yet its molecular mechanisms remain unclear. This study aims to promote drug toxicology strategies for the effective investigation of the putative toxicity and potential molecular mechanisms of [...] Read more.
Acute pancreatitis (AP), induced by tetracycline, a widely used antibiotic, poses significant clinical and toxicological challenges, yet its molecular mechanisms remain unclear. This study aims to promote drug toxicology strategies for the effective investigation of the putative toxicity and potential molecular mechanisms of antibiotic drugs through the study of tetracycline in AP. Using the SwissTargetPrediction, SEA Search, Super-PRED, GeneCards, Drugbank, Online Mendelian Inheritance in Man (OMIM), and Therapeutic Target Database (TTD), we identified 259 potential targets associated with tetracycline exposure and AP. Further refinement via the STRING database and Cytoscape (version 3.10.1) software highlighted 22 core targets, including TP53, TNF, and AKT1. Functional enrichment via the Database for Annotation, Visualization, and Integrated Discovery (DAVID) identified pathways through Gene Ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, highlighting PI3K-Akt, MAPK, HIF-1, and AGE-RAGE as critical mediators in tetracycline-induced AP. Molecular docking confirmed the strong binding between tetracycline and the core targets. Overall, these findings suggest that tetracycline may affect the occurrence and progression of pancreas-related inflammation by regulating pancreatic cell apoptosis and proliferation, activating inflammatory signaling pathways, and regulating lipid metabolic pathways. This study provides a theoretical basis for understanding the molecular mechanism of tetracycline-induced AP and lays the foundation for the prevention and treatment of digestive system diseases associated with excessive exposure to tetracycline antibiotics and certain tetracyclines. In addition, our network toxicology approach has accelerated the elucidation of toxic pathways in antibiotic drugs that lack specific characteristics. Full article
Show Figures

Figure 1

10 pages, 3149 KiB  
Article
Density Functional Theory Insight in Photocatalytic Degradation of Dichlorvos Using Covalent Triazine Frameworks Modified by Various Oxygen-Containing Acid Groups
by Shouxi Yu and Zhongliao Wang
Toxics 2024, 12(12), 928; https://doi.org/10.3390/toxics12120928 (registering DOI) - 21 Dec 2024
Abstract
Dichlorvos (2,2-dichlorovinyl dimethyl phosphate, DDVP) is a highly toxic organophosphorus insecticide, and its persistence in air, water, and soil poses potential threats to human health and ecosystems. Covalent triazine frameworks (CTFs), with their sufficient visible-light harvesting capacity, ameliorated charge separation, and exceptional redox [...] Read more.
Dichlorvos (2,2-dichlorovinyl dimethyl phosphate, DDVP) is a highly toxic organophosphorus insecticide, and its persistence in air, water, and soil poses potential threats to human health and ecosystems. Covalent triazine frameworks (CTFs), with their sufficient visible-light harvesting capacity, ameliorated charge separation, and exceptional redox ability, have emerged as promising candidates for the photocatalytic degradation of DDVP. Nevertheless, pure CTFs lack effective oxidative active sites, resulting in elevated reaction energy barriers during the photodegradation of DDVP. In this work, density functional theory (DFT) calculations were employed to investigate the impact of various oxygen-containing acid groups (-COOH, -HSO3, -H2PO3) on DDVP photodegradation performance. First, simulations of the structure and optical properties of modified CTFs reveal that oxygen-containing acid groups induce surface distortion and result in a redshift in the absorption edge. Subsequently, analysis of the density of states, frontier molecular orbitals, surface electrostatic potential, work function, and dipole moment demonstrates that oxygen-containing acid groups enhance CTF polarization, facilitate charge separation, and ameliorate their oxidative capability. Additionally, the free-energy diagram of DDVP degradation uncovers that oxygen-containing acid groups lower the energy barrier by elevating the adsorption and activation capability of DDVP. Notably, -H2PO3 presents optimal potential for the photodegradation of DDVP by unique electronic structure and activation capability. This work offers a valuable reference for the development of oxygen-containing acid CTF-based photocatalysts applied in degrading toxic organophosphate pesticides. Full article
Show Figures

Figure 1

22 pages, 2216 KiB  
Article
Toxic Effects of Lead Exposure on Freshwater Climbing Perch, Anabas testudineus, and Bioremediation Using Ocimum sanctum Leaf Powder
by Nimai Chandra Saha, Arnab Chatterjee, Priyajit Banerjee, Ritwick Bhattacharya, Auroshree Sadhu, Paolo Pastorino and Shubhajit Saha
Toxics 2024, 12(12), 927; https://doi.org/10.3390/toxics12120927 (registering DOI) - 20 Dec 2024
Abstract
The acute and chronic toxicity of lead to Anabas testudineus was determined in this study using static replacement bioassay testing. During the chronic toxicity studies, an experiment on the bioremediation of lead toxicity using Ocimum sanctum leaf powder was conducted. The 96 h LC [...] Read more.
The acute and chronic toxicity of lead to Anabas testudineus was determined in this study using static replacement bioassay testing. During the chronic toxicity studies, an experiment on the bioremediation of lead toxicity using Ocimum sanctum leaf powder was conducted. The 96 h LC50 values of lead for Anabas testudineus was 1.08 mg/L. Different biomarkers, such as the hepatosomatic index, gonadosomatic index, and fecundity, were significantly lower in fish subjected to 10% and 20% of the 96 h LC50 values of lead, compared to controls. The 45-day chronic exposure of fish to lead concentrations of 0.2 mg/L and above significantly lowered the number of total RBC, hemoglobin content, HCT (%), plasma protein, and cholesterol while decreasing the level of total WBC, plasma glucose, creatinine, serum AST and serum ALT. The leaf powder of Ocimum sanctum plays a significant role in ameliorating lead toxicity. Full article
26 pages, 2877 KiB  
Review
A Comprehensive Review of Multifunctional Nanozymes for Degradation and Detection of Organophosphorus Pesticides in the Environment
by Jijia Liang, Zhongtian Dong, Ning Xu, Tao Chen, Jie Liang, Mingzhu Xia and Fenghe Wang
Toxics 2024, 12(12), 926; https://doi.org/10.3390/toxics12120926 - 20 Dec 2024
Abstract
Organophosphorus pesticides are the most extensively utilized agrichemicals in the world. They play a crucial role in regulating crop growth, immunizing against pests, and improving yields, while their unregulated residues exert serious detrimental effects on both the environment and human health. Many efforts [...] Read more.
Organophosphorus pesticides are the most extensively utilized agrichemicals in the world. They play a crucial role in regulating crop growth, immunizing against pests, and improving yields, while their unregulated residues exert serious detrimental effects on both the environment and human health. Many efforts have been made in the world to monitor organophosphorus pesticides and solve the issues caused by them. Nanozymes, as one kind of enzyme mimic that is artificially designed to simulate the function of natural enzymes, have aroused a lot of attention due to their unparalleled advantages. Nanozymes inherit both the unique properties of nanomaterials and catalytic functions, which could overcome the limitations inherent in natural enzymes and have great versatile and adaptable application prospects. This review presents a recent advancement in synthesizing multifunctional nanozymes with enzymatic-like activities by using various nanomaterials to degrade and detect organophosphorus pesticides. It mainly encompasses metal-based nanozymes, carbon-based nanozymes, metal–organic-framework-based nanozymes, and single-atom-based nanozymes. Additionally, this paper discusses the potential of nanozymes as novel functional environmental materials. Full article
(This article belongs to the Special Issue Novel Remediation Strategies for Soil Pollution)
Show Figures

Figure 1

11 pages, 902 KiB  
Article
Occurrence, Bioaccumulation, and Human Exposure Risk of the Antiandrogenic Fluorescent Dye 7-(Dimethylamino)-4-methylcoumarin and 7-(Diethylamino)-4-methylcoumarin in the Dongjiang River Basin, South China
by Yufeng Lai, Yin Huang, Danlin Yang, Jingchuan Xue, Runlin Chen, Rundong Peng, Siying Zhang, Yufei Li, Guochun Yang and Yuxian Liu
Toxics 2024, 12(12), 925; https://doi.org/10.3390/toxics12120925 - 20 Dec 2024
Abstract
Recently, 7-diethylamino-4-methylcoumarin (DEAMC) has been identified as a potent antiandrogenic compound in the surface water; however, little is known about the antiandrogenic potentials of other synthetic coumarins and their occurrence in the aquatic ecosystem. In this study, for the first time, we observed [...] Read more.
Recently, 7-diethylamino-4-methylcoumarin (DEAMC) has been identified as a potent antiandrogenic compound in the surface water; however, little is known about the antiandrogenic potentials of other synthetic coumarins and their occurrence in the aquatic ecosystem. In this study, for the first time, we observed that 7-dimethylamino-4-methylcoumarin (DAMC) elicited androgen receptor (AR) antagonistic activity with a 50% inhibitory concentration (IC50) of 1.46 µM, which is 14.3 times more potent than that observed for DEAMC (IC50 = 20.92 µM). We further collected abiotic (water and sediment) and biotic (plant, plankton, and fish) samples (n = 208) from a subtropical freshwater ecosystem, the Dongjiang River basin, in southern China, and determined the concentrations of the two coumarins in these samples. Overall, DAMC was the predominant compound found in the sediment, plant, algae, zooplankton, and fish muscle samples, with median concentrations at 0.189, 0.421, 0.832, 0.798, and 0.335 ng/g dry wt. (DW), respectively, although it was not detected in any surface water sample. For DEAMC, the median concentrations observed in the surface water, sediment, plant, algae, zooplankton, and fish muscle samples were 0.105 ng/L, 0.012, 0.051, 0.009, 0.008, and 0.181 ng/g DW, respectively. The bioaccumulation factor (BAF) values of DAMC and DEAMC in the algae, zooplankton, and fish muscle exceeded 5000 L/kg, suggesting that the two coumarins may have significant bioaccumulation potentials in aquatic biota. Additionally, the mean daily intake (EDI) of coumarins through fish consumption was estimated as 0.19 ng/kg BW/day for male toddlers. This is the first field study to illustrate the antiandrogenic potential of DAMC and document the widespread occurrence of the two synthetic coumarins in aquatic ecosystems. Full article
Show Figures

Figure 1

11 pages, 1137 KiB  
Review
The Perils of Methanol Exposure: Insights into Toxicity and Clinical Management
by Mohammed Alrashed, Norah S. Aldeghaither, Shatha Y. Almutairi, Meshari Almutairi, Abdulrhman Alghamdi, Tariq Alqahtani, Ghada H. Almojathel, Nada A. Alnassar, Sultan M. Alghadeer, Abdulmajeed Alshehri, Mohammed Alnuhait and Omar A. Almohammed
Toxics 2024, 12(12), 924; https://doi.org/10.3390/toxics12120924 - 20 Dec 2024
Abstract
Methanol is a widely used industrial and household alcohol that poses significant health risks upon exposure. Despite its extensive use, methanol poisoning remains a critical public health concern globally, often resulting from accidental or intentional ingestion and outbreaks linked to contaminated beverages. Methanol [...] Read more.
Methanol is a widely used industrial and household alcohol that poses significant health risks upon exposure. Despite its extensive use, methanol poisoning remains a critical public health concern globally, often resulting from accidental or intentional ingestion and outbreaks linked to contaminated beverages. Methanol toxicity stems from its metabolic conversion to formaldehyde and formic acid, leading to severe metabolic acidosis and multiorgan damage, including profound CNS effects and visual impairments. Epidemiological data underscore the widespread impact of methanol poisoning, with alarming case fatality rates reported in various countries. Comprehensive prevention and effective management strategies are urgently needed to address the significant morbidity and mortality associated with methanol poisoning. The clinical manifestations of methanol toxicity vary between adult and pediatric populations and between acute and chronic exposure. Adults typically present with gastrointestinal and neurological symptoms, whereas pediatric patients often exhibit more severe outcomes due to differences in metabolism and body weight. The diagnosis of methanol poisoning involves a combination of clinical evaluation, laboratory testing, and advanced diagnostic techniques. The identification of metabolic acidosis, elevated anion and osmolal gaps, and confirmation through methanol and formate levels are critical for accurate diagnosis. Timely intervention is crucial, and the management of methanol poisoning includes securing the airway, breathing, and circulation; addressing metabolic acidosis with sodium bicarbonate; administering antidotes such as fomepizole or ethanol; and administering hemodialysis, which plays a pivotal role in eliminating methanol and its toxic metabolites, especially in severe cases. The complexity of methanol poisoning necessitates a comprehensive approach encompassing early recognition, prompt intervention, and coordinated care among healthcare providers. Increased awareness, effective prevention strategies, and timely treatment protocols are essential to mitigate severe health consequences and improve patient survival and recovery. Full article
(This article belongs to the Special Issue Drug Metabolism and Toxicological Mechanisms)
Show Figures

Figure 1

18 pages, 5268 KiB  
Article
Temporal and Spatial Analysis of Trace Metal Ecotoxicity in Sediments of Chaohu Lake, China
by Wenguang Luo, Zongjun Li, Ran Yi, Lijuan Han and Senlin Zhu
Toxics 2024, 12(12), 923; https://doi.org/10.3390/toxics12120923 - 20 Dec 2024
Abstract
The species sensitivity distribution (SSD) analysis for aquatic ecosystems has been increasingly used in risk assessment. However, existing analyses of the impact of trace metals in lake sediments on aquatic organisms often neglect the spatiotemporal variability of trace metal release. This oversight can [...] Read more.
The species sensitivity distribution (SSD) analysis for aquatic ecosystems has been increasingly used in risk assessment. However, existing analyses of the impact of trace metals in lake sediments on aquatic organisms often neglect the spatiotemporal variability of trace metal release. This oversight can result in ecological risk assessments that lack specificity. To address this gap, we collected 32 core sediment samples from Lake Chaohu to systematically investigate the ecological toxicological risks posed by the release of eight trace metal indicators into the overlying water column under four hydrological scenarios throughout the year. Results indicated that only Cu, Pb, and Zn exhibit persistent toxicological risks. The comprehensive ecological toxicological risk of sediment trace metals showed spatial differences, increasing from the western region to the eastern region, i.e., western region < central region < eastern region. Seasonally, the risk levels are ordered as follows: May < September < November to April of the following year < June to August. The eastern region in summer (June to August) was identified as the high-risk area and period for trace metal pollution in sediments. Based on these conclusions, it is recommended to implement pollution control and environmental monitoring measures in the eastern region during the summer to effectively control the pollution and ecological risks of trace metals. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Figure 1

16 pages, 3248 KiB  
Article
The Adsorption Process and Mechanism of Benzo[a]pyrene in Agricultural Soil Mediated by Microplastics
by Zhengyi Zhu, Lijuan Sun, Qin Qin, Yafei Sun, Shiyan Yang, Jun Wang, Yang Yang, Guangkuo Gao and Yong Xue
Toxics 2024, 12(12), 922; https://doi.org/10.3390/toxics12120922 - 19 Dec 2024
Abstract
The coexistence of microplastics and benzo[a]pyrene (BaP) in the environment, and their interactions within agricultural soils in particular, have garnered widespread attention. This study focused on the early-stage interactions between microplastics and BaP, aiming to uncover their initial adsorption mechanisms. Despite the significant [...] Read more.
The coexistence of microplastics and benzo[a]pyrene (BaP) in the environment, and their interactions within agricultural soils in particular, have garnered widespread attention. This study focused on the early-stage interactions between microplastics and BaP, aiming to uncover their initial adsorption mechanisms. Despite the significant environmental toxicity of both pollutants, research on their mutual interactions in soil is still limited. This study conducted adsorption thermodynamics and kinetics experiments to explore the effects and mechanisms of various microplastics (polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC)) on the adsorption of BaP. Using advanced techniques such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy, this study explored the surface characteristics of microplastics and their interactions with BaP. The results demonstrated that PVC microplastics exhibited the highest adsorption capacity for BaP, which was primarily due to π–π interactions and increased hydrophobicity. In the soil–microplastic blend systems, BaP was predominantly found on microplastics, enhancing the soil’s adsorption capacity for BaP, particularly PVC, which showed an adsorption capacity 3.69 times greater than that of soil alone. Density functional theory (DFT) simulation calculations indicated that the binding energy of BaP for PVC pretreated with soil was −59.16 kJ/mol, whereas it was −53.02 kJ/mol for untreated PVC, −39.35 kJ/mol for PE, and −48.84 kJ/mol for PS. These findings suggest that soil pretreatment enhances the adsorption stability of PVC for BaP, further elucidating the potential mechanisms behind the increased adsorption capacity in the soil–microplastic system. These findings confirm that microplastics serve as effective vectors for organic pollutants such as BaP, significantly influencing their environmental behavior in soils, and provide essential theoretical support for assessing the environmental toxicity and migration behaviors of microplastics and associated organic contaminants. Full article
Show Figures

Figure 1

27 pages, 3247 KiB  
Article
Predicted Potential for Aquatic Exposure Effects of Per- and Polyfluorinated Alkyl Substances (PFAS) in Pennsylvania’s Statewide Network of Streams
by Sara E. Breitmeyer, Amy M. Williams, Matthew D. Conlon, Timothy A. Wertz, Brian C. Heflin, Dustin R. Shull and Joseph W. Duris
Toxics 2024, 12(12), 921; https://doi.org/10.3390/toxics12120921 - 19 Dec 2024
Abstract
Per- and polyfluoroalkyl substances (PFAS) are contaminants that can lead to adverse health effects in aquatic organisms, including reproductive toxicity and developmental abnormalities. To assess the ecological health risk of PFAS in Pennsylvania stream surface water, we conducted a comprehensive analysis that included [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are contaminants that can lead to adverse health effects in aquatic organisms, including reproductive toxicity and developmental abnormalities. To assess the ecological health risk of PFAS in Pennsylvania stream surface water, we conducted a comprehensive analysis that included both measured and predicted estimates. The potential combined exposure effects of 14 individual PFAS to aquatic biota were estimated using the sum of exposure-activity ratios (ΣEARs) in 280 streams. Additionally, machine learning techniques were utilized to predict potential PFAS exposure effects in unmonitored stream reaches, considering factors such as land use, climate, and geology. Leveraging a tailored convolutional neural network (CNN), a validation accuracy of 78% was achieved, directly outperforming traditional methods that were also used, such as logistic regression and gradient boosting (accuracies of ~65%). Feature importance analysis highlighted key variables that contributed to the CNN’s predictive power. The most influential features highlighted the complex interplay of anthropogenic and environmental factors contributing to PFAS contamination in surface waters. Industrial and urban land cover, rainfall intensity, underlying geology, agricultural factors, and their interactions emerged as key determinants. These findings may help to inform biotic sampling strategies, water quality monitoring efforts, and policy decisions aimed to mitigate the ecological impacts of PFAS in surface waters. Full article
Show Figures

Graphical abstract

16 pages, 5182 KiB  
Article
Metagenomic Analysis Reveals the Effects of Microplastics on Antibiotic Resistance Genes in Sludge Anaerobic Digestion
by Zhonghong Li and Donghai Yuan
Toxics 2024, 12(12), 920; https://doi.org/10.3390/toxics12120920 - 19 Dec 2024
Abstract
Sewage sludge is recognized as both a source and a reservoir for antibiotic resistance genes (ARGs). Within an anaerobic digestion (AD) system, the presence of microplastics (MPs) has been observed to potentially facilitate the proliferation of these ARGs. Understanding the influence of MPs [...] Read more.
Sewage sludge is recognized as both a source and a reservoir for antibiotic resistance genes (ARGs). Within an anaerobic digestion (AD) system, the presence of microplastics (MPs) has been observed to potentially facilitate the proliferation of these ARGs. Understanding the influence of MPs on microbial behavior and horizontal gene transfer (HGT) within the AD system is crucial for effectively managing the dissemination of ARGs in the environment. This study utilized metagenomic approaches to analyze the dynamics of various types of ARGs and potential microbial mechanisms under exposure to MPs during the AD process. The findings indicated that MPs in the AD process can enhance the proliferation of ARGs, with the extent of this enhancement increasing with the dosage of MPs: polyethylene (PE), polyethylene terephthalate (PET), and polylactic acid (PLA) MPs increased the abundance of ARGs in the anaerobic digestion system by up to 29.90%, 18.64%, and 14.15%, respectively. Additionally, the presence of MPs increased the relative abundance of mobile genetic elements (MGEs) during the AD process. Network correlation analysis further revealed that plasmids represent the predominant category of MGEs involved in the HGT of ARGs. Propionibacterium and Alicycliphilus were identified as the primary potential hosts for these ARGs. The results of gene function annotation indicated that exposure to MPs led to an increased the relative abundance of genes related to the production of reactive oxygen species (ROS), alterations in membrane permeability, ATP synthesis, and the secretion of extracellular polymeric substances (EPS). These genes play crucial roles in influencing the HGT of ARGs. Full article
Show Figures

Figure 1

10 pages, 3832 KiB  
Communication
Resuspended Nano-Minerals in Coal Ash: A Potential Factor in Elevated Lung Cancer Rates in Xuanwei and Fuyuan, Yunnan, China
by Wenhua Wang, Mengyang Wang, Longyi Shao, Jiajia Shao and Pengju Liu
Toxics 2024, 12(12), 919; https://doi.org/10.3390/toxics12120919 - 19 Dec 2024
Abstract
Xuanwei and the neighboring Fuyuan (XF) counties in Yunnan Province have the highest lung cancer incidence rates in China. Previous studies suggest that the nano-minerals released during the combustion of locally sourced “smoky” (bituminous) coal are the primary contributors to these elevated cancer [...] Read more.
Xuanwei and the neighboring Fuyuan (XF) counties in Yunnan Province have the highest lung cancer incidence rates in China. Previous studies suggest that the nano-minerals released during the combustion of locally sourced “smoky” (bituminous) coal are the primary contributors to these elevated cancer rates. The coal ash generated during combustion predominantly consists of nano-minerals, which can be resuspended into the atmosphere during routine ash-handling activities. In this study, coal ash samples from XF counties and four additional provinces with lower lung cancer incidence rates were resuspended to simulate ash-handling activities and subsequently collected using a cascade PM2.5 sampler. Individual particles were analyzed using a high-resolution scanning electron microscope coupled with energy-dispersive X-ray spectroscopy (SEM-EDX). Based on their morphology and elemental composition, the particles were categorized into five major types: quartz, Si- and Al-rich (SiAl-rich), Ca-rich, Ca- and Mg-rich (CaMg-rich), and Fe-rich particles. The relative abundance of crystalline quartz particles was significantly higher in Xuanwei (22.2%) and Fuyuan (13.7%) compared to the other provinces, where quartz was also detected in lower concentrations. Similarly, the proportion of Fe-rich particles was notably higher in Xuanwei (10.9%) and Fuyuan (5.1%) than in other regions. These findings highlight the potential role of quartz and Fe-rich particles in contributing to the high lung cancer rates observed in XF counties. Further research is warranted to elucidate the toxicological mechanisms underlying the health effects of these particle types. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

17 pages, 1781 KiB  
Article
Associations Between Brominated Flame Retardant Exposure and Depression in Adults: A Cross-Sectional Study
by Yulan Cheng, Yue Fei, Zemin Xu, Ruiyao Huang, Yuling Jiang, Lihan Sun, Xuehai Wang, Shali Yu, Yonghua Luo, Xiaobo Mao and Xinyuan Zhao
Toxics 2024, 12(12), 918; https://doi.org/10.3390/toxics12120918 - 19 Dec 2024
Viewed by 82
Abstract
Background: Brominated flame retardants (BFRs) are a type of widespread pollutant that can be transmitted through particulate matter, such as dust in the air, and have been associated with various adverse health effects, such as diabetes, metabolic syndrome, and cardiovascular disease. However, there [...] Read more.
Background: Brominated flame retardants (BFRs) are a type of widespread pollutant that can be transmitted through particulate matter, such as dust in the air, and have been associated with various adverse health effects, such as diabetes, metabolic syndrome, and cardiovascular disease. However, there is limited research on the link between exposure to mixtures of BFRs and depression in the general population. Methods: To analyze the association between exposure to BFRs and depression in the population, nationally representative data from the National Health and Nutrition Examination Survey (NHANES; 2005–2016) were used. In the final analysis, a total of 8138 adults aged 20 years and older were included. To investigate the potential relationship between BFRs and outcomes, we used binary logistic regression, restricted cubic spline (RCS), quantile-based g computation (QGC), and weighted quantile sum (WQS) regression. Results: The findings showed that serum BFR concentrations were associated with depressive symptoms over a broad spectrum. Binary logistic regression and RCS analysis showed that certain BFRs, particularly PBB153, were significantly and positively associated with the incidence of depression, even after adjustment for various confounders (p < 0.05). Mixed exposure to BFRs was also found to be associated with depression in the population, with a stronger association in men. The two most influential BFRs, PBB153 and PBDE85, were identified in both mixed exposure models and are potential risk factors of concern. Conclusion: Our study identified new insights into the relationship between BFRs and depression, but sizable population-based cohort studies and toxicology mechanism studies will be needed to establish causality. Full article
(This article belongs to the Special Issue Emerging Pollutants in the Air and Health Risks)
Show Figures

Figure 1

13 pages, 5935 KiB  
Article
Function and Potential ceRNA Identification of Circ_009773 in Neodymium Oxide Nanoparticle-Induced Lung Epithelial Mesenchymal Transition
by Lei Gao, Juan Juan, Zimeng Zheng and Lihua Huang
Toxics 2024, 12(12), 917; https://doi.org/10.3390/toxics12120917 - 18 Dec 2024
Viewed by 173
Abstract
Nanoparticles of neodymium oxide (NPs-Nd2O3) can induce respiratory-related diseases, including lung tissue injury when entering the organism through the respiratory tract. However, it is currently unclear whether they can induce epithelial–mesenchymal transition (EMT) in lung tissue and the related [...] Read more.
Nanoparticles of neodymium oxide (NPs-Nd2O3) can induce respiratory-related diseases, including lung tissue injury when entering the organism through the respiratory tract. However, it is currently unclear whether they can induce epithelial–mesenchymal transition (EMT) in lung tissue and the related mechanisms. In this study, we investigated the function of circ_009773 in the process of EMT induced by NPs-Nd2O3 in lung tissue from in vivo as well as in vitro experiments. The findings showed that NPs-Nd2O3 induced EMT in 16HBE cells and SD rat lung tissues. This was characterised by a decrease in epithelial markers and an increase in mesenchymal markers. Additionally, circ_009773 expression was found to decrease in 16HBE cells infected with NPs-Nd2O3 and also decreased in the lung tissues of SD rats. Relevant experiments showed that circ_009773 inhibited EMT in NPs-Nd2O3-treated 16HBE cells and SD rat lung tissues. The previous experiments revealed that circ_009773 was localised in the cytoplasm and functioned at the post-transcriptional level. With the EMT-related pathway used as the basis for circ_009773-related competing endogenous (ce)RNA mechanisms, our observations indicate that circ_009773 is capable of binding to and regulating the expression of miR-135b-5p. In summary, we found that circ_009773 inhibits the EMT induced by NPs-Nd2O3 in lung tissues, and this process likely occurs through competitive binding to miR-135b-5p. Full article
Show Figures

Graphical abstract

21 pages, 12920 KiB  
Article
Contamination Characteristics of Antibiotic Resistance Genes in Multi-Vector Environment in Typical Regional Fattening House
by Kai Wang, Dan Shen, Zhendong Guo, Qiuming Zhong and Kai Huang
Toxics 2024, 12(12), 916; https://doi.org/10.3390/toxics12120916 - 18 Dec 2024
Viewed by 385
Abstract
Antibiotic resistance genes (ARGs) are emerging as significant environmental contaminants, posing potential health risks worldwide. Intensive livestock farming, particularly swine production, is a primary contributor to the escalation of ARG pollution. In this study, we employed metagenomic sequencing and quantitative polymerase chain reaction [...] Read more.
Antibiotic resistance genes (ARGs) are emerging as significant environmental contaminants, posing potential health risks worldwide. Intensive livestock farming, particularly swine production, is a primary contributor to the escalation of ARG pollution. In this study, we employed metagenomic sequencing and quantitative polymerase chain reaction to analyze the composition of microorganisms and ARGs across four vectors in a typical swine fattening facility: dung, soil, airborne particulate matter (PM), and fodder. Surprisingly, soil and PM harbored a higher abundance of microorganisms and ARGs than dung. At the same time, fodder was more likely to carry eukaryotes. Proteobacteria exhibited the highest propensity for carrying ARGs, with proportions 9–20 times greater than other microorganisms. Furthermore, a strong interrelation among various ARGs was observed, suggesting the potential for cooperative transmission mechanisms. These findings underscore the importance of recognizing soil and PM as significant reservoirs of ARGs in swine facilities alongside dung. Consequently, targeted measures should be implemented to mitigate their proliferation, mainly focusing on airborne PM, which can rapidly disseminate via air currents. Proteobacteria, given their remarkable carrying capacity for ARGs with the primary resistance mechanism of efflux, represent a promising avenue for developing novel control strategies against antibiotic resistance. Full article
(This article belongs to the Special Issue Antibiotics and Resistance Genes in Environment)
Show Figures

Figure 1

12 pages, 1185 KiB  
Article
Hydroxylated-Benz[a]anthracenes Induce Two Apoptosis-Related Gene Expressions in the Liver of the Nibbler Fish Girella punctata
by Muhammad Ahya Rafiuddin, Hajime Matsubara, Kaito Hatano, Masato Honda, Kenji Toyota, Kouhei Kuroda, Keito Tsunoda, Yukihiro Furusawa, Yoshiaki Tabuchi, Tetsushi Hirano, Akihiro Sakatoku, Chun-Sang Hong, Ajai K. Srivastav, Thumronk Amornsakun, Nobuaki Shimizu, Mohamed I. Zanaty, Tatsuo Harumi, Kohei Yamauchi, Tamás Müller, Ning Tang, Atsuhiko Hattori, Kazuichi Hayakawa and Nobuo Suzukiadd Show full author list remove Hide full author list
Toxics 2024, 12(12), 915; https://doi.org/10.3390/toxics12120915 - 18 Dec 2024
Viewed by 283
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are known to have toxic effects on fish. In this study, we examined the effects of benz[a]anthracene (BaA), a type of PAH, on fish liver metabolism. Nibbler fish (Girella punctata) were intraperitoneally injected with BaA (10 ng/g [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) are known to have toxic effects on fish. In this study, we examined the effects of benz[a]anthracene (BaA), a type of PAH, on fish liver metabolism. Nibbler fish (Girella punctata) were intraperitoneally injected with BaA (10 ng/g body weight) four times over a 10-day period. BaA significantly decreased known bone metabolism-related plasma factors such as calcium and inorganic phosphorus. Moreover, significant reductions were observed in the plasma levels of known liver metabolism-related factors, including ferrous ions, total bile acids, total bilirubin, free bilirubin, aspartate aminotransferase, and alkaline phosphatase. Interestingly, mono-hydroxylated metabolites of BaA, such as 3 hydroxylbenz[a]anthracene (3-OHBaA), were detected in the bile of BaA-injected nibbler fish. This hydroxylated form of BaA was found in its free form, rather than conjugated with glucuronic acid or sulfuric acid. Due to the lack of whole-genome sequence data for the nibbler fish, two nibbler fish-specific apoptosis-related factors (TNF receptor superfamily member 1A: tnfrsf1a and TNF superfamily member 10: tnfsf10) were isolated by De novo RNA sequencing. In a liver tissue culture, 3-OHBaA (10−6 M) significantly upregulated the expression of tnfrsf1a and tnfsf10 in the liver. These results provide the first evidence that 3-OHBaA metabolites exhibit toxic effects on the liver in teleost. Full article
Show Figures

Graphical abstract

20 pages, 5077 KiB  
Article
Energy, Aromatic, and Medicinal Plants’ Potential and Prospects for the Remediation of Potentially Toxic Element-Contaminated Agricultural Soils: A Critical Meta-Analysis
by Evangelia E. Golia, Edoardo Barbieri, Sotiria G. Papadimou and Dimitrios Alexiadis
Toxics 2024, 12(12), 914; https://doi.org/10.3390/toxics12120914 - 17 Dec 2024
Viewed by 269
Abstract
A critical meta-analysis of the past decade’s investigations was carried out with the aim of assessing the use of plant-based techniques for soil remediation. Potentially toxic element (PTE) contaminated soils were selected since these contaminants are considered hazardous and have long-term effects. Furthermore, [...] Read more.
A critical meta-analysis of the past decade’s investigations was carried out with the aim of assessing the use of plant-based techniques for soil remediation. Potentially toxic element (PTE) contaminated soils were selected since these contaminants are considered hazardous and have long-term effects. Furthermore, energy, aromatic, and medicinal plants were studied as their high-value products seem to be affected by PTEs’ existence. Lead (Pb), Cu, Cd, Zn, Cr, Co, Ni, Hg, and As accumulation in different parts of plant species has been investigated using proper indices. Aromatic plants seem to provide high phytoremediation yields. Increasing toxicity levels and the coexistence of many metals enhance the accumulation capacity of aromatic plants, even of toxic Cd. In plants usable as energy sources, antagonistic effects were observed, as the simultaneous presence of Cu and Cd resulted in lower thermic capacity. Finally, in most of the plants studied, it was observed that the phytostabilization technique, i.e., the accumulation of metals mainly in the roots of the plants, was often used, allowing for the aboveground part to be almost completely free of metallic pollutants. Using plants for remediation was proven to be advantageous within a circular economy model. Such a process is a promising solution, both economically and environmentally, since it provides a useful tool for keeping environmental balance and producing safe goods. Full article
Show Figures

Figure 1

26 pages, 2267 KiB  
Article
Exploring Novel Fungal–Bacterial Consortia for Enhanced Petroleum Hydrocarbon Degradation
by João Paulo Silva Monteiro, André Felipe da Silva, Rubens Tadeu Delgado Duarte and Admir José Giachini
Toxics 2024, 12(12), 913; https://doi.org/10.3390/toxics12120913 - 17 Dec 2024
Viewed by 305
Abstract
Bioremediation, involving the strategic use of microorganisms, has proven to be a cost-effective alternative for restoring areas impacted by persistent contaminants such as polycyclic aromatic hydrocarbons (PAHs). In this context, the aim of this study was to explore hydrocarbon-degrading microbial consortia by prospecting [...] Read more.
Bioremediation, involving the strategic use of microorganisms, has proven to be a cost-effective alternative for restoring areas impacted by persistent contaminants such as polycyclic aromatic hydrocarbons (PAHs). In this context, the aim of this study was to explore hydrocarbon-degrading microbial consortia by prospecting native species from soils contaminated with blends of diesel and biodiesel (20% biodiesel/80% diesel). After enrichment in a minimal medium containing diesel oil as the sole carbon source and based on 16S rRNA, Calmodulin and β-tubulin gene sequencing, seven fungi and 12 bacteria were identified. The drop collapse test indicated that all fungal and four bacterial strains were capable of producing biosurfactants with a surface tension reduction of ≥20%. Quantitative analysis of extracellular laccase production revealed superior enzyme activity among the bacterial strains, particularly for Stenotrophomonas maltophilia P05R11. Following antagonistic testing, four compatible consortia were formulated. The degradation analysis of PAHs and TPH (C5–C40) present in diesel oil revealed a significantly higher degradation capacity for the consortia compared to isolated strains. The best results were observed for a mixed bacterial-fungal consortium, composed of Trichoderma koningiopsis P05R2, Serratia marcescens P10R19 and Burkholderia cepacia P05R9, with a degradation spectrum of ≥91% for all eleven PAHs analyzed, removing 93.61% of total PAHs, and 93.52% of TPH (C5–C40). Furthermore, this study presents the first report of T. koningiopsis as a candidate for bioremediation of petroleum hydrocarbons. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

17 pages, 4274 KiB  
Article
Neurotransmitter Metabolic Disturbance in Methamphetamine Abusers: Focus on Tryptophan and Tyrosine Metabolic Pathways
by Xi Wang, Weilan Wu, Jing Liu, Miaoyang Hu, Jie Cheng, Jianping Xiong, Xufeng Chen, Rong Gao and Jun Wang
Toxics 2024, 12(12), 912; https://doi.org/10.3390/toxics12120912 - 16 Dec 2024
Viewed by 347
Abstract
Methamphetamine (METH) abuse disrupts the homeostasis of neurotransmitter (NT) metabolism, contributing to a wide range of neurological and psychological disorders. However, the specific effects of METH on NT metabolism, particularly for the tryptophan (TRP) and tyrosine (TYR) metabolic pathways, remain poorly understood. In [...] Read more.
Methamphetamine (METH) abuse disrupts the homeostasis of neurotransmitter (NT) metabolism, contributing to a wide range of neurological and psychological disorders. However, the specific effects of METH on NT metabolism, particularly for the tryptophan (TRP) and tyrosine (TYR) metabolic pathways, remain poorly understood. In this study, serum samples from 78 METH abusers and 79 healthy controls were analyzed using Ultra-High-Performance Liquid Chromatography with Tandem Mass Spectrometry (UHPLC-MS/MS). A total of 41 substances, primarily from the TRP and TYR metabolic pathways, were detected and subjected to multivariate analysis. Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) revealed a significant separation of serum metabolites between METH abusers and controls, encompassing the disturbance of serotonergic, kynurenic, and microbial metabolism. In the serotonergic pathway, METH significantly reduced melatonin (MLT) levels and impaired the conversion of serotonin (5-HT) to N-acetylserotonin (NAS), a key precursor of MLT. In the kynurenic pathway, METH promoted a shift to the toxic metabolic pathway, evidenced by elevated levels of 3-hydroxykynurenine (3-HK) and quinolinic acid (QA). Furthermore, microbial metabolic pathway-related indole and its derivatives were markedly suppressed in METH abusers. Gender-specific differences were also observed, with NT metabolism in TRP and TYR pathways showing more pronounced alterations in male or female subgroups. Therefore, the current study provides a comprehensive overview of the disturbance in TRP- and TYR-associated NT metabolism caused by METH abuse and highlights NT metabolism as a promising therapeutic target for METH-induced neural and psychiatric disorders. Full article
(This article belongs to the Section Neurotoxicity)
Show Figures

Graphical abstract

17 pages, 1935 KiB  
Article
Exogenously Applied Triacontanol Mitigates Cadmium Toxicity in Vigna radiata L. by Optimizing Growth, Nutritional Orchestration, and Metal Accumulation
by Saba Mudassar, Shakil Ahmed, Rehana Sardar, Nasim Ahmad Yasin, Muhammad Jabbar and Maximilian Lackner
Toxics 2024, 12(12), 911; https://doi.org/10.3390/toxics12120911 - 14 Dec 2024
Viewed by 573
Abstract
Cadmium (Cd) is one of the foremost phytotoxic elements. Its proportion in agricultural soil is increasing critically due to anthropogenic activities. Cd stress is a major crop production threat affecting food security globally. Triacontanol (TRIA) is a phytohormone that promotes growth, development, and [...] Read more.
Cadmium (Cd) is one of the foremost phytotoxic elements. Its proportion in agricultural soil is increasing critically due to anthropogenic activities. Cd stress is a major crop production threat affecting food security globally. Triacontanol (TRIA) is a phytohormone that promotes growth, development, and metabolic processes in plants. The current study explicates the mitigation of Cd toxicity in Vigna radiata L. (mung bean) seedlings through the application of TRIA by a seed priming technique under Cd stress. The role of TRIA in improving metabolic processes to promote Vigna radiata (mung bean, green gram) vegetative growth and performance under both stressed and unstressed conditions was examined during this study. To accomplish this, three doses of TRIA (10, 20, and 30 µmol L−1) were used to pretreat V. radiata seeds before they were allowed to grow for 40 days in soil contaminated with 20 mg kg−1 Cd. Cd stress lowered seed germination, morphological growth, and biomass in V. radiata plants. The maximum root and shoot lengths, fresh and dry weights of roots, and shoot and seed germination rates were recorded for TRIA2 compared with those of TRIA1 and TRIA3 under Cd stress. In Cd-stressed V. radiata plants, TRIA2 increased the content of chlorophyll a (2.1-fold) and b (3.1-fold), carotenoid (4.3-fold), total chlorophyll (3.1-fold), and gas exchange attributes, such as the photosynthetic rate (2.9-fold), stomatal conductance (6.0-fold), and transpiration rate (3.5-fold), compared with those in plants treated with only Cd. TRIA seed priming increased nutrient uptake (K1+, Na1+, Mg2+, and Zn2+), total phenolic content, total soluble protein content, and DPPH (2,2-diphenyl-1-picrylhydrazyl) activity. Additionally, TRIA2 significantly reduced the quantity of Cd in the plants (3.0-fold) and increased the metal tolerance index (6.6-fold) in plants contrasted with those in the Cd-treated plants. However, TRIA2 promoted plant growth and biomass production by lowering Cd-induced stress through modifying the plant antioxidant machinery and reducing oxidative stress. The improved yield characteristics of V. radiata seedlings treated with TRIA suggest that exogenous TRIA may be used to increase plant tolerance to Cd stress. Full article
(This article belongs to the Special Issue Cadmium and Trace Elements Toxicity)
Show Figures

Figure 1

18 pages, 5075 KiB  
Article
Integrative Analysis of Pharmacology and Transcriptomics Predicts Resveratrol Will Ameliorate Microplastics-Induced Lung Damage by Targeting Ccl2 and Esr1
by Yadong Zhang, Jingyi Ren, Siqi Zhu, Zihao Guo, Huanting Pei, Xiaoya Sun, Jiarui Wu, Weijie Yang, Jinshi Zuo and Yuxia Ma
Toxics 2024, 12(12), 910; https://doi.org/10.3390/toxics12120910 - 14 Dec 2024
Viewed by 639
Abstract
Background: Microplastics (MPs) are ubiquitous on earth, posing a growing threat to human health. Previous studies have shown that the lung is a primary organ for MPs exposure. Resveratrol (RES) is a common dietary polyphenol that exhibits anti-inflammatory and antioxidant effects. However, whether [...] Read more.
Background: Microplastics (MPs) are ubiquitous on earth, posing a growing threat to human health. Previous studies have shown that the lung is a primary organ for MPs exposure. Resveratrol (RES) is a common dietary polyphenol that exhibits anti-inflammatory and antioxidant effects. However, whether RES exerts a protective effect against MPs-induced lung damage is still unknown. Methods: The targets of RES were retrieved from five databases. Differentially expressed genes (DEGs) were identified through comprehensive bioinformatic analysis. Multiple algorithms were employed to screen for the core targets. Ultimately, molecular docking analysis and molecular dynamics (MD) simulations were utilized to confirm the binding affinity between RES and the core targets. Results: In total, 1235 DEGs were identified in the transcriptomes. After removing duplicates, a total of 739 RES targets were obtained from five databases, and 66 of these targets intersected with DEGs. The potential core targets (Esr1, Ccl2) were further identified through topological analysis and machine learning. These findings were subsequently verified by molecular docking and MD simulations. Conclusions: This study demonstrated that RES may mitigate lung injury induced by MPs by targeting Esr1 and Ccl2. Our research offers a novel perspective on the prevention and treatment of MPs-induced lung injury. Full article
(This article belongs to the Special Issue Health Effects and Toxicology Studies of Emerging Contaminants)
Show Figures

Figure 1

29 pages, 3426 KiB  
Review
Microplastics as an Emerging Potential Threat: Toxicity, Life Cycle Assessment, and Management
by Sameh S. Ali, Mohammed Hussein M. Alsharbaty, Rania Al-Tohamy, Maha A. Khalil, Michael Schagerl, Majid Al-Zahrani and Jianzhong Sun
Toxics 2024, 12(12), 909; https://doi.org/10.3390/toxics12120909 - 14 Dec 2024
Viewed by 635
Abstract
The pervasiveness of microplastics (MPs) in terrestrial and aquatic ecosystems has become a significant environmental concern in recent years. Because of their slow rate of disposal, MPs are ubiquitous in the environment. As a consequence of indiscriminate use, landfill deposits, and inadequate recycling [...] Read more.
The pervasiveness of microplastics (MPs) in terrestrial and aquatic ecosystems has become a significant environmental concern in recent years. Because of their slow rate of disposal, MPs are ubiquitous in the environment. As a consequence of indiscriminate use, landfill deposits, and inadequate recycling methods, MP production and environmental accumulation are expanding at an alarming rate, resulting in a range of economic, social, and environmental repercussions. Aquatic organisms, including fish and various crustaceans, consume MPs, which are ultimately consumed by humans at the tertiary level of the food chain. Blocking the digestive tracts, disrupting digestive behavior, and ultimately reducing the reproductive growth of entire living organisms are all consequences of this phenomenon. In order to assess the potential environmental impacts and the resources required for the life of a plastic product, the importance of life cycle assessment (LCA) and circularity is underscored. MPs-related ecosystem degradation has not yet been adequately incorporated into LCA, a tool for evaluating the environmental performance of product and technology life cycles. It is a technique that is designed to quantify the environmental effects of a product from its inception to its demise, and it is frequently employed in the context of plastics. The control of MPs is necessary due to the growing concern that MPs pose as a newly emergent potential threat. This is due to the consequences of their use. This paper provides a critical analysis of the formation, distribution, and methods used for detecting MPs. The effects of MPs on ecosystems and human health are also discussed, which posed a great challenge to conduct an LCA related to MPs. The socio-economic impacts of MPs and their management are also discussed. This paper paves the way for understanding the ecotoxicological impacts of the emerging MP threat and their associated issues to LCA and limits the environmental impact of plastic. Full article
Show Figures

Figure 1

20 pages, 1292 KiB  
Review
Unmasking the Invisible Threat: Biological Impacts and Mechanisms of Polystyrene Nanoplastics on Cells
by Wenxia Bu, Ye Cui, Yueyuan Jin, Xuehai Wang, Mengna Jiang, Ruiyao Huang, JohnPaul Otuomasiri Egbobe, Xinyuan Zhao and Juan Tang
Toxics 2024, 12(12), 908; https://doi.org/10.3390/toxics12120908 - 14 Dec 2024
Viewed by 383
Abstract
Polystyrene nanoplastics (PS-NPs), a pervasive component of plastic pollution, have emerged as a significant environmental and health threat due to their microscopic size and bioaccumulative properties. This review systematically explores the biological effects and mechanisms of PS-NPs on cellular systems, encompassing oxidative stress, [...] Read more.
Polystyrene nanoplastics (PS-NPs), a pervasive component of plastic pollution, have emerged as a significant environmental and health threat due to their microscopic size and bioaccumulative properties. This review systematically explores the biological effects and mechanisms of PS-NPs on cellular systems, encompassing oxidative stress, mitochondrial dysfunction, DNA damage, inflammation, and disruptions in autophagy. Notably, PS-NPs induce multiple forms of cell death, including apoptosis, ferroptosis, necroptosis, and pyroptosis, mediated through distinct yet interconnected molecular pathways. The review also highlights various factors that influence the cytotoxicity of PS-NPs, such as particle size, surface modifications, co-exposure with other pollutants, and protein corona formation. These complex interactions underscore the extensive and potentially hazardous impacts of PS-NPs on cellular health. The findings presented here emphasize the need for continued research on the mechanisms underlying PS-NP toxicity and the development of effective strategies for mitigating their effects, thereby informing regulatory frameworks aimed at minimizing environmental and biological risks. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

15 pages, 1818 KiB  
Article
Application of Phosphate-Based Binders for the Stabilization and Solidification of Metal-Contaminated Soil: Mechanisms and Efficacy Evaluation
by Shiliang Xu, Ayesha Imtiyaz Cheema, Yunhui Zhang and Bin Dong
Toxics 2024, 12(12), 907; https://doi.org/10.3390/toxics12120907 - 13 Dec 2024
Viewed by 376
Abstract
At present, contamination due to toxic metals is a global concern. The management of problems caused by heavy metals relies on stabilization/solidification, which is the most effective technique for the control of metal pollution in soil. This study examined the immobilization efficiency of [...] Read more.
At present, contamination due to toxic metals is a global concern. The management of problems caused by heavy metals relies on stabilization/solidification, which is the most effective technique for the control of metal pollution in soil. This study examined the immobilization efficiency of various phosphate-based binders (Na3PO4, Na2HPO4, NaH2PO4), in addition to ordinary Portland cement (OPC), MgO, and CaO, for the stabilization of multi-metal-contaminated soils. Moreover, this study focused on the leachability of copper, nickel, zinc, lead, cadmium, and manganese (Cu, Ni, Zn, Pb, Cd, Mn, respectively) over different time periods and with different concentrations. Batch leaching experiments were conducted to determine the leaching ratios and percentages of the various metal concentrations, along with measuring the pH values of the leachates. Our results indicate that the use of OPC was validated due to its superior immobilization performance across all metals present in the soil, but particularly with regard to metals in high concentrations. This was due to the formation of stable hydroxides and the high pH values, which assisted in abating the metals’ solubility. Additionally, phosphate-based binders, despite being environmentally favorable, were found to be less effective, particularly for Pb and Cu, and the leaching results exceeded non-hazardous waste limits. MgO showed reasonable immobilization results but was less effective compared to OPC; on the other hand, CaO exhibited increased leaching over time. Therefore, the present research serves primarily to highlight that OPC is more suitable for soil remediation at industrial sites and in the construction of infrastructure. Meanwhile, phosphate-based binders are shown to be more appropriate for eco-friendly, non-load-bearing applications. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

23 pages, 3699 KiB  
Article
Multigenerational Consequences of Prenatal Exposure to Benzophenone-3 Demonstrate Sex- and Region-Dependent Neurotoxic and Pro-Apoptotic Effects in Mouse Brain
by Karolina Przepiórska-Drońska, Andrzej Łach, Bernadeta Angelika Pietrzak-Wawrzyńska, Joanna Rzemieniec, Małgorzata Kajta, Agnieszka Wawrzczak-Bargieła, Wiktor Bilecki, Karolina Noworyta and Agnieszka Wnuk
Toxics 2024, 12(12), 906; https://doi.org/10.3390/toxics12120906 - 13 Dec 2024
Viewed by 473
Abstract
Benzophenone-3 (BP-3), commonly used as a UV filter in personal care products and as a stabilizer, is an alleged endocrine disruptor with potential neurodevelopmental impacts. Despite its abundance in the environment, the studies on its effect on brain development are scarce, especially in [...] Read more.
Benzophenone-3 (BP-3), commonly used as a UV filter in personal care products and as a stabilizer, is an alleged endocrine disruptor with potential neurodevelopmental impacts. Despite its abundance in the environment, the studies on its effect on brain development are scarce, especially in terms of multigenerational impact. In this work, for the first time, we examined neurotoxic and pro-apoptotic effects of BP-3 on mouse brain regions (cerebral cortex and hippocampus) in both the first (F1) and second (F2) generations after maternal exposure to environmentally relevant BP-3 levels. We found disregulated markers of cell damage (LDH, H2O2, caspase-3 and -8) and observed increased expression of pro-apoptotic Fas/FAS or Fasl/FASL. BP-3 exposure disrupted the BAX/BCL2 pathway, showing stronger effects in the F1 than in the F2 generation, with a dominance of extrinsic pathway (FAS, FASL, caspase-8) over intrinsic one (BAX, BCL2), suggesting that BP-3-induced apoptosis primarily operates via the extrinsic pathway and could impair brain homeostasis across generations. This study underscores the potential of BP-3 to increase multigenerational risks associated with disrupted neurodevelopment and highlights the importance of understanding its long-term neurotoxic effects. Full article
Show Figures

Graphical abstract

14 pages, 2155 KiB  
Article
Integration of Copper Toxicity Mechanisms in Raphidocelis subcapitata: Advancing Insights at Environmentally Relevant Concentrations
by Manuela D. Machado and Eduardo V. Soares
Toxics 2024, 12(12), 905; https://doi.org/10.3390/toxics12120905 - 13 Dec 2024
Viewed by 468
Abstract
This work aimed to characterize the impact of copper (Cu), at environmentally relevant concentrations, using the freshwater microalga Raphidocelis subcapitata. Algae were incubated with 33 or 53 µg/L Cu, in OECD medium, and toxic impacts were evaluated over 72 h, using different [...] Read more.
This work aimed to characterize the impact of copper (Cu), at environmentally relevant concentrations, using the freshwater microalga Raphidocelis subcapitata. Algae were incubated with 33 or 53 µg/L Cu, in OECD medium, and toxic impacts were evaluated over 72 h, using different cellular and biochemical biomarkers. The exposure to 33 µg/L Cu had an algistatic effect: slowing growth and reducing algal population (53%, at 72 h) without compromising the cell membrane. This Cu concentration promoted a transient reduction in chlorophyll a (chla) content and typical markers of oxidative stress: increased levels of reactive oxygen species (ROS), augmented catalase (CAT) activity, and lipid peroxidation (malondialdehyde, MDA). Algae exposed to 53 µg/L Cu, suffered a severe effect with a 93% reduction in the number of cells, 50% decrease in chla content, and diminished (17%) maximum photochemical quantum yield of PSII (Fv/Fm). This population also presented increased levels of ROS and MDA, 33 and 20 times higher than the control, respectively, at 72 h, augmented CAT activity, and permeabilized cell membrane (5%, at 72 h). These findings provide valuable insights into Cu toxicity in aquatic ecosystems, highlighting the biochemical and physiological impacts at environmentally relevant concentrations. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

9 pages, 623 KiB  
Article
Ecotoxicity of a Representative Urban Mixture of Rare Earth Elements to Hydra vulgaris
by Joelle Auclair, Chantale André, Eva Roubeau-Dumont and François Gagné
Toxics 2024, 12(12), 904; https://doi.org/10.3390/toxics12120904 - 12 Dec 2024
Viewed by 402
Abstract
Rare earth elements (REEs) are considered as emerging contaminants due to their use in the fabrication process of current technologies. As such, their aquatic toxicity, especially as a mixture, is not well understood, as it has been scarcely investigated. The purpose of this [...] Read more.
Rare earth elements (REEs) are considered as emerging contaminants due to their use in the fabrication process of current technologies. As such, their aquatic toxicity, especially as a mixture, is not well understood, as it has been scarcely investigated. The purpose of this study was to shed light on the sublethal and lethal toxicity of a realistic mixture of five REE in Hydra vulgaris. The REE mixture was composed of five elements (Gd, Ce, Nd, Y and Dy, with a total REE concentration of 0.137 µg/L = 1× concentration) that were found in six municipal effluents in Canada at the same concentration ratios. The organisms were exposed to increasing concentrations (0.5, 1, 5, 10, 25, 50 and 100×) of the mixture for 96 h at 20 °C. The lethal and sublethal toxicities were evaluated by morphological changes and the gene expression (mRNA) involved in oxidative stress, damaged protein salvaging (autophagy for the reabsorption of damaged proteins), regeneration, neural activity and DNA repair of oxidatively damaged DNA. The data revealed that the total REE concentration of the environmental mixture was well below the lethal concentrations of the individual REEs, which occur generally at concentrations > 200 µg/L. This study proposes a novel gene transcription set to investigate the mode of action where gene expression changes occurred at concentrations below those reported in municipal effluents, suggesting long-term toxic effects in hydras close to municipal effluent discharges. This suggests that the release of REEs by municipal/hospital (for Gd) effluents should be more closely monitored. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

11 pages, 238 KiB  
Article
A Health Risk Assessment of Workers Exposed to Organic Paint Solvents Used in the Korean Shipbuilding Industry
by Sue-Ji Seo, Sae-Mi Shin, Wonsuck Yoon and Sang-Hoon Byeon
Toxics 2024, 12(12), 903; https://doi.org/10.3390/toxics12120903 - 11 Dec 2024
Viewed by 459
Abstract
In the shipbuilding industry, during the painting process, workers are exposed to various substances in paint, including organic solvents that can adversely affect their health. Most workplace exposures to organic solvents involve mixtures of organic compounds. Therefore, in this study, the hazard quotient [...] Read more.
In the shipbuilding industry, during the painting process, workers are exposed to various substances in paint, including organic solvents that can adversely affect their health. Most workplace exposures to organic solvents involve mixtures of organic compounds. Therefore, in this study, the hazard quotient (HQ) and hazard index (HI) were derived using data from the Workplace Environmental Monitoring Program in Korea for six organic solvents (xylene, n-butanol, ethylbenzene, isobutyl alcohol, toluene, and methylisobutyl ketone [MIBK]) commonly used in the steel shipbuilding industry. The non-carcinogenic risk was assessed using Monte Carlo simulations, and sensitivity analysis was performed using the Spearman rank correlation coefficient with the R program. The HI for neurotoxicity and developmental toxicity exceeded 1 in the 25th and 75th percentile, respectively. According to the sensitivity analysis, the HI for neurotoxicity was correlated with the concentration of xylene and its exposure duration, whereas that for developmental toxicity was correlated with the concentration of ethylbenzene and MIBK and their exposure duration. This study investigated the health risks posed by organic solvents among workers involved in the painting process of shipbuilding. Additional research on percutaneous exposure to organic solvents and a detailed process analysis are needed. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
21 pages, 8373 KiB  
Article
Analysis of Acute and Short-Term Fluoride Toxicity in Zebrafish Embryo and Sac–Fry Stages Based on Bayesian Model Averaging
by Tingxu Jin, Xiumei Yang, Yuanhui Zhu, Cheng Yan, Rui Yan, Qianlei Yang, Hairu Huang and Yan An
Toxics 2024, 12(12), 902; https://doi.org/10.3390/toxics12120902 - 11 Dec 2024
Viewed by 476
Abstract
Acute and short-term toxicity tests are foundational to toxicology research. These tests offer preliminary insights into the fundamental toxicity characteristics of the chemicals under evaluation and provide essential data for chronic toxicity assessments. Fluoride is a common chemical in aquatic environments; however, the [...] Read more.
Acute and short-term toxicity tests are foundational to toxicology research. These tests offer preliminary insights into the fundamental toxicity characteristics of the chemicals under evaluation and provide essential data for chronic toxicity assessments. Fluoride is a common chemical in aquatic environments; however, the findings of toxicological data, such as LC50 for aquatic organisms, often exhibit inconsistency. Consequently, this study employed zebrafish as a model organism during their early life stages to assess the acute and short-term toxicity of fluoride exposure. Bayesian model averaging was utilized to calculate the LC50/EC50 values and establish baseline concentrations. The results indicated a dose–response relationship between water fluoride concentration and harmful outcomes. The 20 mg/L group was identified as the lowest observed adverse effect level (LOAEL) for the majority of toxicity indicators and warrants special attention. Based on the BBMD model averages, the LC50 of fluoride for 1 to 5 days post-fertilization (dpf) zebrafish was 147.00, 80.80, 61.25, 56.50, and 37.50 mg/L, while the EC50 of cumulative malformation rate for 5 dpf zebrafish was 59.75 mg/L. As the benchmark response (BMR) increased, both the benchmark concentrations (BMCs) and benchmark dose levels (BMDLs) also increased. The research aims to provide essential data for the development of environmental water guidelines and to mitigate ecological risks associated with fluoride in aquatic ecosystems. Full article
Show Figures

Graphical abstract

16 pages, 974 KiB  
Article
Determinants of Indoor NO2 and PM2.5 Concentration in Senior Housing with Gas Stoves
by Khafayat Kadiri, David Turcotte, Rebecca Gore, Anila Bello and Susan R. Woskie
Toxics 2024, 12(12), 901; https://doi.org/10.3390/toxics12120901 - 11 Dec 2024
Viewed by 484
Abstract
Nitrogen dioxide (NO2) and particulate matter of 2.5 microns (PM2.5) are air pollutants that impact health, especially among vulnerable populations with respiratory disease. This study identifies factors influencing indoor NO2 and PM2.5 in low-income households of older [...] Read more.
Nitrogen dioxide (NO2) and particulate matter of 2.5 microns (PM2.5) are air pollutants that impact health, especially among vulnerable populations with respiratory disease. This study identifies factors influencing indoor NO2 and PM2.5 in low-income households of older adults with asthma who use gas stoves in Lowell, Massachusetts. Environmental sampling was conducted in 73 homes, measuring NO2, PM2.5, fractional stove-use, temperature, and humidity for 5–7 days. Participants were recruited between December 2020 and July 2022. Questionnaires were used to collect data on factors influencing indoor NO2 and PM2.5 concentrations. Daily outdoor NO2 and PM2.5 concentrations were obtained from a United States Environmental Protection Agency (EPA) monitoring station. Paired t-tests were conducted between indoor and outdoor NO2 and PM2.5 concentrations, and linear regression was used to evaluate factors influencing indoor NO2 and PM2.5 concentrations. The average indoor concentration for NO2 and PM2.5 were 21.8 (GSD = 2.1) ppb and 16.2 (GSD = 2.7) µg/m3, respectively. Indoor NO2 and PM2.5 concentrations exceeded outdoor concentrations significantly. In multiple regression models, season and pilot light stove use significantly predicted indoor NO2. Season and air freshener use for 6–7 days/week significantly predicted indoor PM2.5. Season-influenced higher indoor concentrations are likely due to reduced ventilation in colder months in the Northeast U.S. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

Previous Issue
Back to TopTop