Assessing Environmental Risks of Local Contamination of Garden Urban Soils with Heavy Metals Using Ecotoxicological Tests
Abstract
1. Introduction
- Ecotoxicological tests using Heterocypris incongruens offer a more sensitive evaluation of soil contamination compared to traditional chemical analyses.
- The toxicity of trace elements to organisms depends on their chemical forms in the soil and environmental factors that affect their solubility and concentration in soil solutions. These factors include soil processes such as sorption, mobility, and bioavailability, influenced by geochemical, climatic, and biological conditions.
- Local contamination significantly increases environmental risk, as demonstrated by the results of ecotoxicological assessments.
2. Materials and Methods
2.1. Soils
NO | GR. GROUP | FLA. FRA | FRA | pH H2O | pH KCl | C [g/kg] | N [g/kg] | C/N | HYD |
---|---|---|---|---|---|---|---|---|---|
1 | SCL | 24 | 4.4 | 6.91 | 6.71 | 3.64 | 0.25 | 14.66 | 0.1 |
2 | SCL | 26 | - | 7.25 | 6.87 | 4.43 | 0.25 | 17.57 | 0.54 |
3 | SL | 15 | - | 7.48 | 6.80 | 3.88 | 0.31 | 12.53 | 0.35 |
4 | SCL | 21 | 8.4 | 7.94 | 7.16 | 4.10 | 0.22 | 18.37 | 0 |
5 | SCL | 23 | 6.7 | 8.00 | 7.14 | 7.45 | 0.40 | 18.49 | 0 |
6 | LS | 16 | 4.4 | 7.04 | 6.92 | 6.43 | 0.34 | 18.86 | 0.39 |
7 | LS | 17 | 5.6 | 6.9 | 6.87 | 7.64 | 0.37 | 20.68 | 0.2 |
8 | SCL | 20 | 8.2 | 7.78 | 7.58 | 3.64 | 0.25 | 14.66 | 0 |
2.2. The Toxicity Tests
2.3. Data Analysis
3. Results
3.1. The Concentrations of Trace Metals and Their Available Forms Content in the Studied Examined Soils
3.2. The Ecotoxicity Indices
4. Discussion
4.1. Heavy Metal Contamination and Bioavailability
4.2. Ecotoxicity Tests
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aendo, P.; Netvichian, R.; Thiendedsakul, P.; Khaodhiar, S.; Tulayakul, P. Carcinogenic Risk of Pb, Cd, Ni, and Cr and Critical Ecological Risk of Cd and Cu in Soil and Groundwater around the Municipal Solid Waste Open Dump in Central Thailand. J. Environ. Public Health 2022, 2022, 3062215. [Google Scholar] [CrossRef] [PubMed]
- Bidar, G.; Pelfrêne, A.; Schwartz, C.; Waterlot, C.; Sahmer, K.; Marot, F.; Douay, F. Urban Kitchen Gardens: Effect of the Soil Contamination and Parameters on the Trace Element Accumulation in Vegetables–A Review. Sci. Total Environ. 2020, 738, 139569. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, A.; Cortés, J.L.; Delgado, C.; Aguilar, Y.; Aguilar, D.; Cejudo, R.; Quintana, P.; Goguitchaichvili, A.; Bautista, F. Heavy Metal Contamination (Cu, Pb, Zn, Fe, and Mn) in Urban Dust and its Possible Ecological and Human Health Risk in Mexican Cities. Front. Environ. Sci. 2022, 10, 854460. [Google Scholar] [CrossRef]
- Stafilov, T.; Stojanova, K.; Tašev, K.; Bačeva Andonovska, K. Accumulation and Distribution of Heavy Metals in Soil and Food Crops in the Pb-Zn Mine Environ. Case Study: Region of Probištip, North Macedonia. J. Environ. Sci. Health A Toxic/Hazard. Subst. Environ. Eng. 2023, 58, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.M.; Niloy, N.M.; Khirul, M.A.; Alam, M.F.; Tareq, S.M. Appraisal of Probabilistic Human Health Risks of Heavy Metals in Vegetables from Industrial, Non-Industrial and Arsenic Contaminated Areas of Bangladesh. Heliyon 2021, 7, e06309. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yang, H.; Ayyamperumal, R.; Liu, Y. Pollution, Sources, and Human Health Risk Assessment of Heavy Metals in Urban Areas Around Industrialization and Urbanization-Northwest China. Chemosphere 2022, 308, 136396. [Google Scholar] [CrossRef]
- Al-Swadi, H.A.; Usman, A.R.A.; Al-Farraj, A.S.; Al-Wabel, M.I.; Ahmad, M.; Al-Faraj, A. Sources, Toxicity Potential, and Human Health Risk Assessment of Heavy Metals-Laden Soil and Dust of Urban and Suburban Areas as Affected by Industrial and Mining Activities. Sci. Rep. 2022, 12, 8972. [Google Scholar] [CrossRef]
- Gupta, N.; Yadav, K.K.; Kumar, V.; Krishnan, S.; Kumar, S.; Nejad, Z.D.; Majeed Khan, M.A.; Alam, J. Evaluating Heavy Metals Contamination in Soil and Vegetables in the Region of North India: Levels, Transfer and Potential Human Health Risk Analysis. Environ. Toxicol. Pharmacol. 2021, 82, 103563. [Google Scholar] [CrossRef]
- Gupta, N.; Yadav, K.K.; Kumar, V.; Prasad, S.; Cabral-Pinto, M.M.S.; Jeon, B.-H.; Kumar, S.; Abdellattif, M.H.; Alsukaibia, A.K.D. Investigation of Heavy Metal Accumulation in Vegetables and Health Risk to Humans from Their Consumption. Front. Environ. Sci. 2022, 10, 791052. [Google Scholar] [CrossRef]
- Kumar Sharma, R.; Agrawal, M.; Marshall, F. Heavy Metals in Vegetables Collected from Production and Market Sites of a Tropical Urban Area of India. Food Chem. Toxicol. 2009, 47, 583–591. [Google Scholar] [CrossRef]
- Masuda, J.R.; Zupancic, T.; Poland, B.; Cole, D.C. Environmental health and vulnerable populations in Canada: Mapping an integrated equity-focused research agenda. Can. Geogr./Géogr. Can. 2008, 52, 427–450. [Google Scholar] [CrossRef]
- Montaño-López, F.; Biswas, A. Are heavy metals in urban garden soils linked to vulnerable populations? A case study from Guelph, Canada. Sci. Rep. 2021, 11, 11286. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, I.; Ahmad, F.; Sharif, A.; Altaf, A.R.; Teng, H. Heavy Metals Assessment in Water, Soil, Vegetables and their Associated Health Risks via Consumption of Vegetables, District Kasur, Pakistan. SN Appl. Sci. 2021, 3, 552. [Google Scholar] [CrossRef]
- Avila, P.F.; Candeias, C.; Ferreira da Silva, E. Health Risk Assessment through Consumption of Vegetables Rich in Heavy Metals: The Case Study of the Surrounding Villages from Panasqueira Mine, Central Portugal. Environ. Geochem. Health 2016, 39, 565–589. [Google Scholar] [CrossRef] [PubMed]
- Bosiacki, M.; Bednorz, L.; Spiżewski, T. Concentration of Heavy Metals in Urban Allotment Soils and their Uptake by Selected Vegetable Crop Species-A Case Study from Gorzów Wielkopolski, Poland. J. Elem. 2022, 27, 405–421. [Google Scholar] [CrossRef]
- Chary, N.S.; Kamala, C.T.; Raj, D.S.S. Assessing Risk of Heavy Metals from Consuming Food Grown on Sewage Irrigated Soils and Food Chain Transfer. Ecotoxicol. Environ. Saf. 2008, 69, 513–524. [Google Scholar] [CrossRef]
- Chodak, T.; Szerszeń, L.; Kabała, C. Metale Ciężkie w Glebach i Warzywach Ogrodów Działkowych Wrocławia. Zesz. Probl. Postępów Nauk. Rol. 1995, 418, 291–298. [Google Scholar]
- Wang, Y.; Qiao, M.; Liu, Y. Health risk assessment of heavy metals in soils and vegetables from wastewater irrigated area, Beijing-Tianjin city cluster, China. J. Environ. Sci. 2012, 24, 690–698. [Google Scholar] [CrossRef]
- Yang, J.; Ma, S.; Zhou, J.; Song, Y.; Li, F. Heavy metal contamination in soils and vegetables and health risk assessment of inhabitants in Daye, China. J. Int. Med. Res. 2018, 46, 3374–3387. [Google Scholar] [CrossRef]
- Li, Z.Y.; Wang, Y.B.; Gou, X.; Su, Y.B.; Wang, G. Risk assessment of heavy metals in soils and vegetables around non-ferrous metals mining and smelting sites, Baiyin, China. J. Environ. Sci. 2006, 18, 1124–1134. [Google Scholar] [CrossRef]
- Barbosa, F., Jr.; Tanus-Santos, J.E.; Gerlach, R.F.; Parsons, P.J. A Critical Review of Biomarkers Used for Monitoring Human Exposure to Lead: Advantages, Limitations, and Future Needs. Environ. Health Perspect. 2005, 113, 1669–1674. [Google Scholar] [CrossRef] [PubMed]
- Collin, M.S.; Venkatraman, S.K.; Vijayakumar, N.; Kanimozhi, V.; Arbaaz, S.M.; Stacey, R.G.S.; Anusha, J.; Choudhary, R.; Lvov, V.; Tovar, G.I.; et al. Bioaccumulation of Lead (Pb) and its Effects on Human: A Review. J. Hazard. Mater. Adv. 2022, 7, 100094. [Google Scholar] [CrossRef]
- Rafati Rahimzadeh, M.; Rafati Rahimzadeh, M.; Kazemi, S.; Moghadamnia, A.-A. Cadmium toxicity and treatment: An update. Casp. J. Intern. Med. 2017, 8, 135–145. [Google Scholar] [CrossRef]
- Anițaș, S.; Coman, M.; Cioruța, B.-V. Some Considerations Regarding the Presence of Heavy Metals in Soil and the Human Body. Asian Soil Res. J. 2020, 3, 39–46. [Google Scholar] [CrossRef]
- Mekonen, N.; Habte, G. Effect of Water and Soil Contamination by Heavy Metals in Lettuce (Lactuca sativa), Cabbage (Brassica oleracea var. capitate), and Turnip (Brassica napus L.) at Different Stage. Ann. Environ. Sci. Toxicol. 2022, 6, 035–040. [Google Scholar] [CrossRef]
- Maslennikov, P.V.; Chupakhina, G.N.; Skrypnik, L.N.; Feduraev, P.V.; Melnik, A.S. The contribution of polyphenols to plant resistance to Pb soil pollution. Int. J. Environ. Stud. 2018, 75, 719–731. [Google Scholar] [CrossRef]
- Gut, K.; Rogala, D.; Marchwińska-Wyrwał, E. Narażenie na Kadm Konsumentów Warzyw Korzeniowych Uprawianych na Zanieczyszc zonych Glebach Województwa Śląskiego. Med. Ogólna Nauk. Zdrowiu 2017, 23, 245–249. [Google Scholar] [CrossRef]
- Kaczyńska, A.; Zajączkowski, M.; Grzybiak, M. Toksyczny Wpływ Kadmu na Rośliny i Człowieka. Ann. Acad. Med. Gedanensis 2015, 45, 65–70. [Google Scholar]
- Angulo-Bejarano, P.I.; Puente-Rivera, J.; Cruz-Ortega, R. Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects. Plants 2021, 10, 635. [Google Scholar] [CrossRef]
- Manara, A.; Fasani, E.; Furini, A.; DalCorso, G. Evolution of the metal hyperaccumulation and hypertolerance traits. Plant Cell Environ. 2020, 43, 2969–2986. [Google Scholar] [CrossRef]
- Verbruggen, N.; Hermans, C.; Schat, H. Mechanisms to Cope with Metal Toxicity in Plants: Adaptive Hyperaccumulation and Tolerance. New Phytol. 2009, 182, 781–796. [Google Scholar] [CrossRef]
- Reeves, R.D.; Baker, A.J.M. Metal accumulating plants. In Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment; Raskin, I., Finsley, B.D., Eds.; Wiley: New York, NY, USA, 2000; pp. 193–229. [Google Scholar]
- Van der Ent, A.; Baker, A.J.; Reeves, R.D.; Pollard, A.J.; Schat, H. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 2013, 362, 319–334. [Google Scholar] [CrossRef]
- García-Lorenzo, M.L.; Crespo-Feo, E.; Esbrí, J.M.; Higueras, P.; Grau, P.; Crespo, I.; Sánchez-Donoso, R. Assessment of Potentially Toxic Elements in Technosols by Tailings Derived from Pb–Zn–Ag Mining Activities at San Quintín (Ciudad Real, Spain): Some Insights into the Importance of Integral Studies to Evaluate Metal Contamination Pollution Hazards. Minerals 2019, 9, 346. [Google Scholar] [CrossRef]
- Wróbel, M.; Stojanowska, A.; Nosarzewska, M.; Rutkowski, R.; Rybak, J. The impact of chemical contaminants on biocenosis (ecotoxicological studies). E3S Web Conf. 2019, 100, 00088. [Google Scholar] [CrossRef]
- Wieczorek, J.; Baran, A. Pollution indices and biotests as useful tools for the evaluation of the degree of soil contamination by trace elements. J. Soils Sediments 2022, 22, 559–576. [Google Scholar] [CrossRef]
- Sihlahla, M.; Mouri, H.; Nomngongo, P.N. Assessment of bioavailability and mobility of major and trace elements in agricultural soils collected in Port St Johns, Eastern Cape, South Africa using single extraction procedures and pseudo-total digestion. J. Environ. Health Sci. Eng. 2020, 18, 1615–1628. [Google Scholar] [CrossRef]
- Dradrach, A.; Szopka, K.; Karczewska, A. Ecotoxicity of Pore Water in Meadow Soils Affected by Historical Spills of Arsenic-Rich Tailings. Minerals 2020, 10, 751. [Google Scholar] [CrossRef]
- Paustenbach, D. (Ed.) Human and Ecological Risk Assessment: Theory and Practice; Wiley Classics Library; Wiley: Hoboken, NY, USA, 2015. [Google Scholar]
- Casado-Martinez, M.C.; Burga-Pérez, K.F.; Bebon, R.; Férard, J.-F.; Vermeirssen, E.L.M.; Werner, I. The Sediment-Contact Test Using the Ostracod Heterocypris Incongruens: Effect of Fine Sediments and Determination of Toxicity Thresholds. Chemosphere 2016, 151, 220–224. [Google Scholar] [CrossRef]
- Kokkali, V.; van Delft, W. Overview of Commercially Available Bioassays for Assessing Chemical Toxicity in Aqueous Samples. TrAC Trends Anal. Chem. 2014, 61, 133–155. [Google Scholar] [CrossRef]
- Karczewska, A.; Kabała, C. Environmental Risk Assessment as a New Basis for Evaluation of Soil Contamination in Polish Law. Soil Sci. Ann. 2017, 68, 67–80. [Google Scholar] [CrossRef]
- Szopka, K.; Gruss, I.; Gruszka, D.; Karczewska, A.; Gediga, K.; Gałka, B.; Dradrach, A. The effects of forest litter and waterlogging on the ecotoxicity of soils strongly enriched in arsenic in a historical mining site. Forests 2021, 12, 355. [Google Scholar] [CrossRef]
- Lobos-Moysa, E. Ocena stopnia zanieczyszczenia związkami organicznymi Kanału Gliwickiego i jego wybranych dopływów. Proc. ECOpole 2013, 7, 377–383. [Google Scholar]
- Antoniadis, V.; Shaheen, S.M.; Levizou, E.; Shahid, M.; Niazi, N.K.; Vithanage, M.; Ok, Y.S.; Bolan, N.; Rinklebe, J. A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment?—A review. Environ. Int. 2019, 127, 819–847. [Google Scholar] [CrossRef] [PubMed]
- Kicińska, A.J.; Smreczak, B.; Jadczyszyn, J. Soil Bioavailability of Cadmium, Lead, and Zinc in Areas of Zn-Pb Ore Mining and Processing (Bukowno, Olkusz). J. Ecol. Eng. 2019, 20, 84–92. [Google Scholar] [CrossRef]
- Ruiz, F.; Abad, M.; Bodergat, A.M.; Carbonel, P.; Rodríguez-Lázaro, J.; González-Regalado, M.L.; Toscano, A.; García, E.X.; Prenda, J. Freshwater ostracods as environmental tracers. Int. J. Environ. Sci. Technol. 2013, 10, 1115–1128. [Google Scholar] [CrossRef]
- Grygar, T.M.; Elznicová, J.; Bábek, O.; Hošek, M.; Engel, Z.; Kiss, T. Obtaining Isochrones from Pollution Signals in a Fluvial Sediment Record: A Case Study in a Uranium-Polluted Floodplain of the Ploučnice River, Czech Republic. Appl. Geochem. 2014, 48, 1–15. [Google Scholar] [CrossRef]
- Ciszewski, D.; Grygar, T.M. A Review of Flood-Related Storage and Remobilization of Heavy Metal Pollutants in River Systems. Water Air Soil Pollut. 2016, 227, 239. [Google Scholar] [CrossRef]
- Tan, K. Soil Sampling, Preparation, and Analysis, 2nd ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2005. [Google Scholar]
- ISO 17586:2016; Soil Quality—Determination of the Potentially Bioavailable Fraction of Metals and Metalloid—Pseudo Total Extraction Method. International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO 19730:2008; Soil Quality—Extraction of Trace Elements Using Ammonium Nitrate Solution. International Organization for Standardization: Geneva, Switzerland, 2008.
- FAIRsharing.org. USDA Soil Taxonomy Classification Guide. Available online: https://doi.org/10.25504/FAIRsharing.670b83 (accessed on 1 October 2024).
- Ministry of the Environment. Regulation of the Minister of the Environment of 1 September 2016 on the Method of Assessing Soil Surface Contamination. Dz.U. 2016, 1395. Available online: http://isap.sejm.gov.pl (accessed on 1 October 2024).
- Belanger, S.; Barron, M.; Craig, P.; Dyer, S.; Galay-Burgos, M.; Hamer, M.; Marshall, S.; Posthuma, L.; Raimondo, S.; Whitehouse, P. Future Needs and Recommendations in the Development of Species Sensitivity Distributions: Estimating Toxicity Thresholds for Aquatic Ecological Communities and Assessing Impacts of Chemical Exposures. Integr. Environ. Assess. Manag. 2016, 12, 539–545. [Google Scholar] [CrossRef]
- Carlon, C. Derivation Methods of Soil Screening Values in Europe. A Review and Evaluation of National Procedures Towards Harmonization; European Commission, Joint Research Centre, ISPRA: Via Enrico Fermi, Italy, 2007. [Google Scholar]
- Chernova, O.; Beketskaya, O. Permissible and Background Concentrations of Pollutants in Environmental Regulation (Heavy Metals and Other Chemical Elements). Eurasian Soil Sci. 2011, 44, 1008–1017. [Google Scholar] [CrossRef]
- Government of Ontario. Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. Available online: https://www.ontario.ca (accessed on 1 October 2024).
- Canadian Council of Ministers of the Environment. Canadian Environmental Quality Guidelines (CEQGs). Available online: https://www.cme.ca (accessed on 1 October 2024).
- Attanayake, C.P.; Hettiarachchi, G.M.; Harms, A.; Presley, D.; Martin, S.; Pierzynski, G.M. Field Evaluations on Soil Plant Transfer of Lead from an Urban Garden Soil. J. Environ. Qual. 2014, 43, 475–487. [Google Scholar] [CrossRef]
- Mitchell, R.G.; Spliethoff, H.M.; Ribaudo, L.N.; Lopp, D.M.; Shayler, H.A.; Marquez-Bravo, L.G.; Lambert, V.T.; Ferenz, G.S.; Russell-Anelli, J.M.; Stone, E.B.; et al. Lead (Pb) and other metals in New York City community garden soils: Factors influencing contaminant distributions. Environ. Pollut. 2014, 187, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Kabala, C.; Chodak, T.; Szerszen, L. Factors Influencing the Concentration of Heavy Metals in Soils of Allotment Gardens in the City of Wroclaw, Poland. Fresenius Environ. Bull. 2009, 18, 1118–1124. [Google Scholar]
- Antoniadis, V.; Shaheen, S.M.; Boersch, J.; Frohne, T.; Du Laing, G.; Rinklebe, J. Bioavailability and Risk Assessment of Potentially Toxic Elements in Garden Edible Vegetables and Soils around a Highly Contaminated Former Mining Area in Germany. J. Environ. Manag. 2017, 186, 192–200. [Google Scholar] [CrossRef]
- Karczewska, A.; Bogda, A.; Gałka, B.; Szulc, A.; Czwarkiel, D.; Duszyńska, D. Natural and anthropogenic soil enrichment in heavy metals in areas of former metallic ore mining in the Sudety Mts. Pol. J. Soil Sci. 2006, 39, 131–142. [Google Scholar]
- Tipping, E.; Rieuwerts, J.; Pan, G.; Ashmore, M.R.; Lofts, S.; Hill, M.T.R.; Farago, M.E.; Thornton, I. The solid–solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales. Environ. Pollut. 2003, 125, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Römkens, P.F.; Guo, H.Y.; Chu, C.L.; Liu, T.S.; Chiang, C.F.; Koopmans, G.F. Characterization of soil heavy metal pools in paddy fields in Taiwan: Chemical extraction and solid-solution partitioning. J. Soils Sediments 2009, 9, 216–228. [Google Scholar] [CrossRef]
- Pinto, F.A.; Ferracciú Alleoni, L.R. Extractors for barium, cadmium, copper, nickel, and zinc in tropical soils. Commun. Soil Sci. Plant Anal. 2018, 49, 2478–2495. [Google Scholar] [CrossRef]
- Schuijt, L.M.; Peng, F.-J.; van den Berg, S.J.P.; Dingemans, M.M.L.; Van den Brink, P.J. (Eco)toxicological Tests for Assessing Impacts of Chemical Stress to Aquatic Ecosystems: Facts, Challenges, and Future. Sci. Total Environ. 2021, 795, 148776. [Google Scholar] [CrossRef]
- Rashid, A.; Schutte, B.J.; Ulery, A.; Deyholos, M.K.; Sanogo, S.; Lehnhoff, E.A.; Beck, L. Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy 2023, 13, 1521. [Google Scholar] [CrossRef]
- Ding, C.; Chen, J.; Zhu, F.; Chai, L.; Lin, Z.; Zhang, K.; Shi, Y. Biological Toxicity of Heavy Metal(loid)s in Natural Environments: From Microbes to Humans. Front. Environ. Sci. 2022, 10, 920957. [Google Scholar] [CrossRef]
- Pueyo, M.; López-Sánchez, J.; Rauret, G. Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb, and Zn extractability in contaminated soils. Anal. Chim. Acta 2004, 504, 217–226. [Google Scholar] [CrossRef]
Total Concentration of Selected Trace Elements (mg/kg, Soil Dry Mass) | ||||
No. of Sampling Point | Zn | Cu | Pb | Cd |
1 | 222.00 | 45.00 | 56.00 | 1.00 |
2 | 3465.00 | 157.00 | 170.00 | 4.00 |
3 | 1739.00 | 322.00 | 214.00 | 5.00 |
4 | 1384.00 | 232.00 | 237.00 | 6.00 |
5 | 1290.00 | 219.00 | 222.00 | 6.00 |
6 | 1304.00 | 266.00 | 351.00 | 2.00 |
7 | 1098.00 | 216.00 | 329.00 | 2.00 |
8 | 1059.00 | 234.00 | 402.00 | 2.00 |
Available Forms of Trace Metals Extracted in 0.43 M HNO3 (mg/kg, Soil Dry Mass) | ||||
No. of Sampling Point | Zn | Cu | Pb | Cd |
1 | - | - | - | - |
2 | 394.40 | 77.30 | 119.90 | 2.90 |
3 | 1079.00 | 140.30 | 132.60 | 3.50 |
4 | 1090.00 | 186.20 | 206.70 | 6.10 |
5 | 1060.00 | 182.20 | 189.60 | 6.30 |
6 | 486.60 | 81.00 | 126.80 | 0.70 |
7 | 493.40 | 85.30 | 158.40 | 0.70 |
8 | 613.20 | 96.40 | 129.10 | 0.80 |
Available Forms of Trace Metals Extracted in 1 M NH4NO3 (mg/kg, Soil Dry Mass) | ||||
No. of Sampling Point | Zn | Cu | Pb | Cd |
1 | - | - | - | - |
2 | 0.55 | 0.25 | <0.0050 | <0.0050 |
3 | 2.55 | 0.50 | <0.0050 | <0.0050 |
4 | 0.85 | 0.68 | <0.0050 | 0.03 |
5 | 0.65 | 0.95 | <0.0050 | 0.03 |
6 | 0.20 | 0.28 | <0.0050 | <0.0050 |
7 | 0.18 | 0.30 | <0.0050 | <0.0050 |
8 | 0.05 | 0.43 | <0.0050 | <0.0050 |
Zn | ||
Pearson Corr. | p-Value | |
Total | −0.0552 | 0.7092 |
Available in NH4NO3 | −0.4360 | 0.0020 |
Available in HNO3 | −0.2899 | 0.0456 |
Cu | ||
Pearson Corr. | p-Value | |
Total | 0.1447 | 0.3266 |
Available in NH4NO3 | −0.2712 | 0.0623 |
Available in HNO3 | −0.2772 | 0.0565 |
Pb | ||
Pearson Corr. | p-Value | |
Total | 0.6715 | <0.0001 |
Available in NH4NO3 | 0.2858 | 0.0489 |
Available in HNO3 | 0.0356 | 0.8103 |
Cd | ||
Pearson Corr. | p-Value | |
Total | −0.5406 | <0.0001 |
Available in NH4NO3 | −0.2782 | 0.0555 |
Available in HNO3 | −0.5753 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruszka, D.; Gruss, I.; Szopka, K. Assessing Environmental Risks of Local Contamination of Garden Urban Soils with Heavy Metals Using Ecotoxicological Tests. Toxics 2024, 12, 873. https://doi.org/10.3390/toxics12120873
Gruszka D, Gruss I, Szopka K. Assessing Environmental Risks of Local Contamination of Garden Urban Soils with Heavy Metals Using Ecotoxicological Tests. Toxics. 2024; 12(12):873. https://doi.org/10.3390/toxics12120873
Chicago/Turabian StyleGruszka, Dariusz, Iwona Gruss, and Katarzyna Szopka. 2024. "Assessing Environmental Risks of Local Contamination of Garden Urban Soils with Heavy Metals Using Ecotoxicological Tests" Toxics 12, no. 12: 873. https://doi.org/10.3390/toxics12120873
APA StyleGruszka, D., Gruss, I., & Szopka, K. (2024). Assessing Environmental Risks of Local Contamination of Garden Urban Soils with Heavy Metals Using Ecotoxicological Tests. Toxics, 12(12), 873. https://doi.org/10.3390/toxics12120873