Rapid Screening of Etomidate and Its Analogs in Seized e-Liquids Using Thermal Desorption Electrospray Ionization Coupled with Triple Quadrupole Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Standard Solution
2.3. Preparation for Samples
2.3.1. Preparation for Blank Samples
2.3.2. Preparation for Spiked e-Liquid Samples
2.3.3. Preparation for Case Samples
2.4. Instrumentation Condition
2.4.1. TD-ESI/MS/MS
2.4.2. GC-MS
2.5. Method Validation
3. Results
3.1. Optimization of Mass Spectrometry of TD-ESI/MS/MS
3.2. Validation Results of Method
3.3. The Result of Application Case
3.4. Reusability of Metal Probe Samplers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Banks, E.A.M.; Yazidjoglou, A.; Brown, S.; Nguyen, M.; Martin, M.; Beckwith, K.; Daluwatta, A.; Campbell, S.; Joshy, G. Electronic cigarettes and health outcomes: Umbrella and systematic review of the global evidence. Med. J. Aust. 2023, 218, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Berry, K.M.; Reynolds, L.M.; Collins, J.M.; Siegel, M.B.; Fetterman, J.L.; Hamburg, N.M.; Bhatnagar, A.; Benjamin, E.J.; Stokes, A. E-cigarette initiation and associated changes in smoking cessation and reduction: The Population Assessment of Tobacco and Health Study, 2013–2015. Tob. Control 2019, 28, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Gades, M.S.; Alcheva, A.; Riegelman, A.L.; Hatsukami, D.K. The Role of Nicotine and Flavor in the Abuse Potential and Appeal of Electronic Cigarettes for Adult Current and Former Cigarette and Electronic Cigarette Users: A Systematic Review. Nicotine Tob. Res. 2022, 24, 1332–1343. [Google Scholar] [CrossRef] [PubMed]
- Gordon, T.; Karey, E.; Rebuli, M.E.; Escobar, Y.H.; Jaspers, I.; Chen, L.C. E-Cigarette Toxicology. Annu. Rev. Pharmacol. Toxicol. 2022, 62, 301–322. [Google Scholar] [CrossRef] [PubMed]
- Malapero, R.J.; Urman, R.; Zaccagnino, M.; Brovman, E.; Kaye, A. Etomidate derivatives: Novel pharmaceutical agents in anesthesia. J. Anaesthesiol. Clin. Pharmacol. 2017, 33, 429–431. [Google Scholar] [PubMed]
- Valk, B.I.; Struys, M.M.R.F. Etomidate and its Analogs: A Review of Pharmacokinetics and Pharmacodynamics. Clin. Pharmacokinet. 2021, 60, 1253–1269. [Google Scholar] [CrossRef]
- Yanong, R.P.E. Preliminary Investigations into Use of Metomidate for Euthanasia of Ornamental Fishes. J. Aquat. Anim. Health 2021, 33, 133–138. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, Q.; Tang, C.; Zhou, X. A case analysis of dependence caused by smoking etomidate-containing e-cigarettes. Chin. J. Drug Depend. 2024, 33, 178–180. [Google Scholar]
- Gleadall, I.G. The effects of prospective anaesthetic substances on cephalopods: Summary of original data and a brief review of studies over the last two decades. J. Exp. Mar. Biol. Ecol. 2013, 447, 23–30. [Google Scholar] [CrossRef]
- Uhm, J.; Hong, S.; Han, E. The need to monitor emerging issues in etomidate usage: The misuse or abuse potential. Forensic Sci. Med. Pathol. 2024, 20, 249–260. [Google Scholar] [CrossRef]
- Yum, H.; Jeong, S.; Jang, M.; Moon, S.; Kang, M.; Kim, B.; Kim, D.; Choe, S.; Yang, W.; Kim, J.; et al. Fast and reliable analysis of veterinary metomidate and etomidate in human blood samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in a postmortem case. J. Forensic Sci. 2021, 66, 2532–2538. [Google Scholar] [CrossRef] [PubMed]
- Frinculescu, A.; Coombes, G.; Shine, T.; Ramsey, J.; Johnston, A.; Couchman, L. Analysis of illicit drugs in purchased and seized electronic cigarette liquids from the United Kingdom 2014–2021. Drug Test. Anal. 2023, 15, 1058–1066. [Google Scholar] [CrossRef] [PubMed]
- Krakowiak, R.I.; Poklis, J.L.; Peace, M.R. The Analysis of Aerosolized Methamphetamine From E-cigarettes Using High Resolution Mass Spectrometry and Gas Chromatography Mass Spectrometry. J. Anal. Toxicol. 2019, 43, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-M.; Hua, Z.D.; Jia, W.; Li, T. Identification of AD-18, 5F-MDA-19, and pentyl MDA-19 in seized materials after the class-wide ban of synthetic cannabinoids in China. Drug Test. Anal. 2022, 14, 307–316. [Google Scholar] [CrossRef]
- Muenster-Mueller, S.; Matzenbach, I.; Knepper, T.; Zimmermann, R.; Pütz, M. Profiling of synthesis-related impurities of the synthetic cannabinoid Cumyl-5F-PINACA in seized samples of e-liquids via multivariate analysis of UHPLC-MSn data. Drug Test. Anal. 2020, 12, 119–126. [Google Scholar]
- Xie, W.; Zhou, L.; Liu, J.; Li, Z.; Li, Z.; Gao, W.; Shi, Y. How to trace etomidate in illegal E-cigarettes from authentic human hair: Identification, quantification and multiple-factor analysis. Forensic Toxicol. 2024. [Google Scholar] [CrossRef]
- Cheng, S.-C.; Lee, R.-H.; Jeng, J.-Y.; Lee, C.-W.; Shiea, J. Fast screening of trace multiresidue pesticides on fruit and vegetable surfaces using ambient ionization tandem mass spectrometry. Anal. Chim. Acta 2020, 1102, 63–71. [Google Scholar] [CrossRef]
- Huang, M.-Z.; Zhou, C.-C.; Liu, D.-L.; Jhang, S.-S.; Cheng, S.-C.; Shiea, J. Rapid Characterization of Chemical Compounds in Liquid and Solid States Using Thermal Desorption Electrospray Ionization Mass Spectrometry. Anal. Chem. 2013, 85, 8956–8963. [Google Scholar] [CrossRef]
- Wang, C.-H.; Su, H.; Chou, J.-H.; Huang, M.-Z.; Lin, H.-J.; Shiea, J. Solid phase microextraction combined with thermal-desorption electrospray ionization mass spectrometry for high-throughput pharmacokinetics assays. Anal. Chim. Acta 2018, 1021, 60–68. [Google Scholar] [CrossRef]
- Hsu, Y.-M.; Wu, C.-F.; Huang, M.-Z.; Shiea, J.; Pan, C.-H.; Liu, C.-C.; Chen, C.-C.; Wang, Y.-H.; Cheng, C.-M.; Wu, M.-T. Avatar-like body imaging of dermal exposure to melamine in factory workers analyzed by ambient mass spectrometry. Chemosphere 2022, 303, 134896. [Google Scholar] [CrossRef]
- Habib, A.; Bi, L.; Hong, H.; Wen, L. Challenges and Strategies of Chemical Analysis of Drugs of Abuse and Explosives by Mass Spectrometry. Front. Chem. 2021, 8, 598487. [Google Scholar] [CrossRef] [PubMed]
- Takáts, Z.; Cotte-Rodriguez, I.; Talaty, N.; Chen, H.; Cooks, R.G. Direct, trace level detection of explosives on ambient surfaces by desorption electrospray ionization mass spectrometry. Chem. Commun. 2005, 15, 1950–1952. [Google Scholar] [CrossRef] [PubMed]
- Jeng, J.-Y.; Jiang, Z.; Cho, Y.; Su, H.; Lee, C.; Shiea, J. Obtaining molecular imagings of pesticide residues on strawberry surfaces with probe sampling followed by ambient ionization mass spectrometric analysis. J. Mass Spectrom. 2021, 56, e4644. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Huang, T.-L.; Chi, C.-T.; Cho, Y.-T.; Lee, C.-W.; Jeng, J.; Shiea, J. Molecular cartography of residue pesticides on grape surface in 3D by ambient ionization tandem mass spectrometry. J. Food Drug Anal. 2021, 29, 751–763. [Google Scholar] [CrossRef]
- Su, H.; Jiang, Z.-H.; Chiou, S.-F.; Shiea, J.; Wu, D.-C.; Tseng, S.-P.; Jain, S.-H.; Chang, C.-Y.; Lu, P.-L. Rapid Characterization of Bacterial Lipids with Ambient Ionization Mass Spectrometry for Species Differentiation. Molecules 2022, 27, 2772. [Google Scholar] [CrossRef]
- Suni, N.M.; Aalto, H.; Kauppila, T.J.; Kotiaho, T.; Kostiainen, R. Analysis of lipids with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) and desorption electrospray ionization-mass spectrometry (DESI-MS). J. Mass Spectrom. 2012, 47, 611–619. [Google Scholar] [CrossRef]
- Cho, Y.-T.; Su, H.; Wu, C.-Y.; Jeng, J.; Lee, C.-W.; Wu, D.; Huang, T.-L.; Shiea, J. The study of distribution of ingested terbinafine on skin with ambient ionization tandem mass spectrometry. J. Food Drug Anal. 2022, 30, 303–315. [Google Scholar] [CrossRef]
- Huang, T.-L.; Su, H.; Chen, J.-C.; Kuo, S.-Y.; Hou, C.-Y.; Shih, S.-Y.; Chu, K.-A.; Ponnusamy, V.K.; Lee, C.-W.; Shiea, J. Rapid detection of ingested acetaminophen on face mask by ambient ionization tandem mass spectrometry. Anal. Chim. Acta 2024, 1329, 343225. [Google Scholar] [CrossRef]
- Shiea, J.; Bhat, S.M.; Su, H.; Kumar, V.; Lee, C.; Wang, C. Rapid quantification of acetaminophen in plasma using solid-phase microextraction coupled with thermal desorption electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2020, 34, e8564. [Google Scholar] [CrossRef]
- Chiang, C.-H.; Lee, H.-H.; Chen, B.-H.; Lin, Y.-C.; Chao, Y.-Y.; Huang, Y.-L. Using ambient mass spectrometry and LC–MS/MS for the rapid detection and identification of multiple illicit street drugs. J. Food Drug Anal. 2019, 27, 439–450. [Google Scholar] [CrossRef]
- Cheng, S.-C.; Tsai, Y.-D.; Lee, C.-W.; Chen, B.-H.; Shiea, J. Direct and rapid characterization of illicit drugs in adulterated samples using thermal desorption electrospray ionization mass spectrometry. J. Food Drug Anal. 2019, 27, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Yu, J.; Li, J.; Tang, X.; Tang, K. Rapid Identification of Illicit Drugs Using Portable Thermal Desorption—Electrospray Ionization (TD-ESI) Ion Trap Mass Spectrometry (IT-MS) with Two-Step Scanning. Anal. Lett. 2023, 56, 981–996. [Google Scholar] [CrossRef]
- Zhao, K.; Dai, Y.; Wang, Y.; Liu, J.; Gu, J.; Bai, H.; Wurita, A.; Hasegawa, K. Quantification of the benzimidazole opioid analog isotonitazene in human hair using liquid chromatography-tandem mass spectrometry. Leg. Med. 2023, 64, 102295. [Google Scholar] [CrossRef] [PubMed]
- Niebel, A.; Krumbiegel, F.; Hartwig, S.; Parr, M.K.; Tsokos, M. Detection and quantification of synthetic cathinones and selected piperazines in hair by LC-MS/MS. Forensic Sci. Med. Pathol. 2020, 16, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Fernandez, O.; Domínguez, R.; Santos, E.M.; Pateiro, M.; Munekata, P.E.S.; Campagnol, P.C.B.; Lorenzo, J.M. Comparison Between HPLC-PAD and GC-MS Methods for the Quantification of Cholesterol in Meat. Food Anal. Methods 2022, 15, 1118–1131. [Google Scholar] [CrossRef]
- Barhdadi, S.; Courselle, P.; Deconinck, E.; Vanhee, C. The analysis of cannabinoids in e-cigarette liquids using LC-HRAM-MS and LC-UV. J. Pharm. Biomed. Anal. 2023, 230, 115394. [Google Scholar] [CrossRef]
- Liu, C.-M.; Jia, W.; Song, C.-H.; Qian, Z.-H.; Hua, Z.-D.; Chen, Y.-M. Qualitative and Quantitative Analysis of Five Indoles or Indazole Amide Synthetic Cannabinoids in Suspected E-Cigarette Oil by GC-MS. Fa Yi Xue Za Zhi 2023, 39, 457–464. [Google Scholar]
- Yang, Z.; Jiang, L.-W.; Yang, S.-Y.; Wu, Y.-D.; Lyu, J.-X. Simultaneous determination of 102 synthetic cannabinoids in electronic cigarette oil by liquid chromatography-tandem mass spectrometry. Se Pu = Chin. J. Chromatogr. 2024, 42, 943–953. [Google Scholar]
- Yu, W.; Wang, T.; Yang, J.; Cai, Z.; Hong, Y.; Liu, B.; Sun, D.; Zhang, D. Q-TOF LC/MS analysis of new synthetic cannabinoids ADB-BUTINACA and MDMB-4en-PINACA in electronic cigarette oil. Chin. J. Drug Depend. 2023, 32, 286–289. [Google Scholar]
- Dai, Y.; Zhang, X.; Zhao, K.; Wang, Y.; Liu, J.; Gu, J.; Bai, H.; Hasegawa, K.; Wurita, A. Detection and quantification of etomidate and metomidate in human hairs by ultraperformance liquid chromatography with triple quadrupole mass spectrometry (UPLC−MS/MS). Forensic Toxicol. 2024, 42, 232–241. [Google Scholar] [CrossRef]
- Yang, Z.; Lyu, J.; Wu, Y.; Jiang, L.; Li, D. Simultaneous determination of five indole/indazole amide-based synthetic cannabinoids in electronic cigarette oil by ultra performance liquid chromatography. Chin. J. Chromatogr. 2023, 41, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Grafinger, K.E.; Krönert, S.; Broillet, A.; Weinmann, W. Cannabidiol and tetrahydrocannabinol concentrations in commercially available CBD E-liquids in Switzerland. Forensic Sci. Int. 2020, 310, 110261. [Google Scholar] [CrossRef] [PubMed]
- Jiao, T.-F.; Li, Y.-Q.; Kang, G.; Chen, S.-S.; Cheng, L.-H. Detection of Synthetic Cannabinoid CUMYL-PEGACLONE in E-Cigarette Oil and Hair. Fa Yi Xue Za Zhi 2022, 38, 595–600. [Google Scholar] [PubMed]
Analyte | Structural Formula | Precursor Ion (m/z) | Product Ion (m/z) | Fragmentor (eV) | CE (eV) | Polarity |
---|---|---|---|---|---|---|
Etomidate | 245.1 | 141.0 | 100 | 5 | Positive | |
95.0 | 100 | 25 | Positive | |||
Metomidate | 231.1 | 127.0 | 80 | 4 | Positive | |
105.0 | 80 | 28 | Positive | |||
Isopropoxate | 259.1 | 155.0 | 100 | 6 | Positive | |
95.0 | 100 | 28 | Positive |
Compound | LOD (ng/mL) | Quality (ng/mL) | Inter-Day (n= 6) | Intra-Day (n= 6) | Matrix Effect (%) | ||
---|---|---|---|---|---|---|---|
Accuracy (%) | Precision (%) | Accuracy (%) | Precision (%) | ||||
Etomidate | 3 | 20 | 9.5 | 19.1 | 8.2 | 16.7 | 12.7 |
100 | 4.9 | 10.6 | 4.5 | 9.4 | 4.3 | ||
500 | −4.2 | 6.2 | −0.3 | 7.0 | 2.0 | ||
Metomidate | 3 | 20 | −15.1 | 19.9 | −16.1 | 17.1 | 16.5 |
100 | 5.6 | 12.6 | 4.0 | 13.9 | 5.3 | ||
500 | −2.7 | 5.7 | −0.4 | 5.1 | 1.8 | ||
Isopropoxate | 3 | 20 | 13.1 | 11.5 | 13.6 | 8.3 | 19.5 |
100 | −8.4 | 7.6 | −11.8 | 12.6 | 6.4 | ||
500 | −4.1 | 10.1 | 0.1 | 7.5 | 1.9 |
Compound | RT (min) | Precursor Ion (m/z) | Product Ion (m/z) | LOD (μg/mL) | LLOQ (μg/mL) | Linearity and Range (μg/mL) | Correlation Coefficient | Concentration (μg/mL) | Inter-Day (n = 6) | Intra-Day (n = 6) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Accuracy (%) | Precision (%) | Accuracy (%) | Precision (%) | |||||||||
Etomidate | 8.090 | 244 | 105 *, 77 | 0.3 | 1 | 20–500 | 0.998 | 20 | 4.5 | 1.3 | 3.9 | 2.6 |
100 | 3.6 | 2.2 | 4.7 | 4.1 | ||||||||
400 | 3.0 | 2.5 | 4.3 | 4.5 | ||||||||
Metomidate | 7.845 | 230 | 105 *, 77 | 0.3 | 1 | 20–500 | 0.998 | 20 | 3.7 | 2.6 | 2.9 | 3.4 |
100 | 2.3 | 1.5 | 3.3 | 2.8 | ||||||||
400 | 2.4 | 2.3 | 4.6 | 2.7 | ||||||||
Isopropoxate | 8.179 | 258 | 105 *, 77 | 0.3 | 1 | 20–500 | 0.998 | 20 | 2.1 | 2.2 | 2.8 | 3.0 |
100 | 3.8 | 1.7 | 3.7 | 4.7 | ||||||||
400 | 1.1 | 1.9 | 2.2 | 2.6 |
Case No. | Sample No. | Appearance | TD-ESI/MS/MS | GC-MS | |
---|---|---|---|---|---|
Qualitative Results | Quantitative Results (%) | ||||
1 | 1–15 | 2 mL of colorless liquid, packed in cartridges | etomidate | etomidate | 23.8–25.9 |
2 | 1–3 | 2 mL of colorless liquid, packed in cartridges | etomidate | etomidate | 24.9–26.9 |
3 | 1–9 | 2 mL of colorless liquid, packed in cartridges | etomidate | etomidate | 24.4–27.2 |
4 | 1 | 1 mL of tawny liquid, packed in cartridges | etomidate | etomidate | 23.2 |
5 | 1 | 1 mL of colorless liquid, packed in cartridges | etomidate | etomidate | 19.2 |
6 | 1 | 2 mL of tawny liquid, packed in cartridges | etomidate | etomidate | 12.1 |
7 | 1 | 1 mL of colorless liquid, packed in cartridges | etomidate | etomidate | 16.9 |
8 | 14 | 1 mL of colorless liquid, packed in cartridges | etomidate | etomidate | 18.4–20.2 |
9 | 1 | 2 mL of colorless liquid, packed in cartridges | isopropoxate | isopropoxate | 17.3 |
10 | 1 | 2 mL of colorless liquid, packed in cartridges | etomidate | etomidate | 24.2 |
11 | 1 | 1 mL of colorless liquid, packed in cartridges | isopropoxate | isopropoxate | 18.5 |
12 | 1–22 | 2 mL of colorless liquid, packed in cartridges | 1–11: etomidate and metomidate, 12–22: isopropoxate | 1–11: etomidate and metomidate, 12–22: isopropoxate | 1–11: etomidate 17.1–23.4, metomidate 9.9–13.5; 12–22: isopropoxate 23.5–27.3 |
Pre-Treatment | Instrument | Analytes | LOD | LLOQ | Conclusions | Reference |
---|---|---|---|---|---|---|
The seized e-liquid sample was diluted with methanol. | UPLC−MS/MS | etomidate and metomidate | 0.5 pg/mg | 1 pg/mg | The concentrations of etomidate and metomidate in the seized e-liquid were 95.8 μg/mg and 2.8 μg/mg, respectively. | [40] |
10 mg of e-liquid was added to 10 mL of methanol. The mixture was then subjected to ultrasonic extraction for 20 min. Following high-speed centrifugation, the supernatant was collected and filtered through a microporous membrane. | GC-MS | CUMYL-PEGACLONE | 1 ng/mg | 2 ng/mg | The mass fractions of CUMYL-PEGACLONE in the two e-liquid samples were 0.17% and 0.21%, respectively. | [43] |
Dilute 20 μL of e-liquid sample with 1 mL of methanol. | GC-MS | MDMB-4en-PINACA, 4F-MDMB-BUTINACA, ADB-BUTINACA, 4F-MDMB-BUTICA, 5F-MDMB-PICA | - | 0.025 mg/mL | The concentration of synthetic cannabinoids in 25 e-liquid samples ranged from 0.05% to 2.74%. | [37] |
50 mg of e-liquid were added to 10 mL of methanol, shaken and thoroughly mixed, followed by ultrasonic extraction for 30 min. | UPLC | MDMB-4en-PINACA, ADB-BUTINACA, 4F-MDMB-BUTICA, 4F-ABUTINACA, 5F-MDMB-PICA | 0.2 mg/L | 0.6 mg/L | This method could fully isolate and quantify the five synthetic cannabinoids in e-liquid samples within 10 min. | [41] |
200 μL of e-liquid was extracted with 1000 μL of n-hexane/ethyl acetate (7:3, v/v), shaken for 5 min, centrifuged at 8 °C and 17,000g for 10 min, and a 10 μL aliquot of the supernatant was diluted with 990 μL of ethyl acetate. | FTIR-UATR, LC-DAD | Tetrahydrocannabinol (THC) | - | 0.001 mg/mL | All analyzed samples exhibited a total THC content of less than 0.1059% by weight. | [42] |
E-liquid samples were diluted to 1:50 with acetonitrile/water (50:50). | LC- HRAM-MS | Cannabidiol and THC | 1 μg/g | 5 μg/g | An optimized method was developed to screen for 17 different cannabinoids in CBD e-liquids and to accurately quantify the major cannabinoids. | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Lin, B.; Zhu, B. Rapid Screening of Etomidate and Its Analogs in Seized e-Liquids Using Thermal Desorption Electrospray Ionization Coupled with Triple Quadrupole Mass Spectrometry. Toxics 2024, 12, 884. https://doi.org/10.3390/toxics12120884
Li M, Lin B, Zhu B. Rapid Screening of Etomidate and Its Analogs in Seized e-Liquids Using Thermal Desorption Electrospray Ionization Coupled with Triple Quadrupole Mass Spectrometry. Toxics. 2024; 12(12):884. https://doi.org/10.3390/toxics12120884
Chicago/Turabian StyleLi, Meng, Bicheng Lin, and Binling Zhu. 2024. "Rapid Screening of Etomidate and Its Analogs in Seized e-Liquids Using Thermal Desorption Electrospray Ionization Coupled with Triple Quadrupole Mass Spectrometry" Toxics 12, no. 12: 884. https://doi.org/10.3390/toxics12120884
APA StyleLi, M., Lin, B., & Zhu, B. (2024). Rapid Screening of Etomidate and Its Analogs in Seized e-Liquids Using Thermal Desorption Electrospray Ionization Coupled with Triple Quadrupole Mass Spectrometry. Toxics, 12(12), 884. https://doi.org/10.3390/toxics12120884