Application of Phosphate-Based Binders for the Stabilization and Solidification of Metal-Contaminated Soil: Mechanisms and Efficacy Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Collection
2.2. Experimental Methodology
Statistical Analysis
3. Results and Discussion
3.1. Unconfined Compressive Strength
3.2. Leachability
Leaching Concentrations of Metals in Contaminated Soils After 7 and 28 Days
3.3. Post-Experimental Characterization of Multi-Metal-Contaminated Soils After 28 Days
3.3.1. X-Ray Diffraction Analysis
3.3.2. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
3.3.3. Thermogravimetric Analysis (TGA) Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheema, A.I.; Amina; Munir, M.A.M.; Rehman, A.; Sarma, H.; Pikon, K.; Yousaf, B. Unraveling the Mechanism of Free Radicals-Based Transformation and Accumulation of Potentially Toxic Metalloids in Biochar and Compost Amended Soil-Plant Systems. J. Clean. Prod. 2024, 449, 141767. [Google Scholar] [CrossRef]
- Cheema, A.I.; Liu, G.; Yousaf, B.; Abbas, Q.; Zhou, H. A Comprehensive Review of Biogeochemical Distribution and Fractionation of Lead Isotopes for Source Tracing in Distinct Interactive Environmental Compartments. Sci. Total Environ. 2020, 719, 135658. [Google Scholar] [CrossRef]
- Cheema, A.I.; Liu, G.; Yousaf, B.; Ashraf, A.; Lu, M.; Irshad, S.; Pikon, K.; Mujtaba Munir, M.A.; Rashid, M.S. Influence of Biochar Produced from Negative Pressure-Induced Carbonization on Transformation of Potentially Toxic Metal(Loid)s Concerning Plant Physiological Characteristics in Industrially Contaminated Soil. J. Environ. Manag. 2023, 347, 119018. [Google Scholar] [CrossRef]
- Devi, P.; Kothari, P.; Dalai, A.K. Stabilization and Solidification of Arsenic and Iron Contaminated Canola Meal Biochar Using Chemically Modified Phosphate Binders. J. Hazard. Mater. 2020, 385, 121559. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Dai, J.-G.; Wang, L.; Tsang, D.C.W.; Poon, C.S. Influence of Lead on Stabilization/Solidification by Ordinary Portland and Magnesium Phosphate Cement. Chemosphere 2018, 190, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Pu, S.; Zhu, Z.; Song, W.; Wang, H.; Huo, W.; Zhang, J. A Novel Acidic Phosphoric-Based Geopolymer Binder for Lead Solidification/Stabilization. J. Hazard. Mater. 2021, 415, 125659. [Google Scholar] [CrossRef] [PubMed]
- Paria, S.; Yuet, P.K. Solidification–Stabilization of Organic and Inorganic Contaminants Using Portland Cement: A Literature Review. Environ. Rev. 2006, 14, 217–255. [Google Scholar] [CrossRef]
- Lang, L.; Chen, B.; Li, J. High-Efficiency Stabilization of Dredged Sediment Using Nano-Modified and Chemical-Activated Binary Cement. J. Rock. Mech. Geotech. Eng. 2023, 15, 2117–2131. [Google Scholar] [CrossRef]
- Caneda-Martínez, L.; Monasterio, M.; Moreno-Juez, J.; Martínez-Ramírez, S.; García, R.; Frías, M. Behaviour and Properties of Eco-cement Pastes Elaborated with Recycled Concrete Powder from Construction and Demolition Wastes. Materials 2021, 14, 1299. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Wang, B.; Ai, H.; Qi, Y.; Liu, Z. A Comparative Study on Solidification/Stabilization Characteristics of Coal Fly Ash-Based Geopolymer and Portland Cement on Heavy Metals in MSWI Fly Ash. J. Clean. Prod. 2021, 319, 128790. [Google Scholar] [CrossRef]
- Mo, L.; Zhang, F.; Panesar, D.K.; Deng, M. Development of Low-Carbon Cementitious Materials via Carbonating Portland Cement–Fly Ash–Magnesia Blends under Various Curing Scenarios: A Comparative Study. J. Clean. Prod. 2017, 163, 252–261. [Google Scholar] [CrossRef]
- Zhao, Z.; Qu, X.; Li, J. Microstructure and Properties of Fly Ash/Cement-Based Pastes Activated with MgO and CaO under Hydrothermal Conditions. Cem. Concr. Compos. 2020, 114, 103739. [Google Scholar] [CrossRef]
- Long, L.; Zhao, Y.; Lv, G.; Duan, Y.; Liu, X.; Jiang, X. Improving Stabilization/Solidification of MSWI Fly Ash with Coal Gangue Based Geopolymer via Increasing Active Calcium Content. Sci. Total Environ. 2023, 854, 158594. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.J.; Wei, M.L.; Reddy, K.R.; Jin, F.; Wu, H.L.; Liu, Z. Bin New Phosphate-Based Binder for Stabilization of Soils Contaminated with Heavy Metals: Leaching, Strength and Microstructure Characterization. J. Environ. Manag. 2014, 146, 179–188. [Google Scholar] [CrossRef]
- Bilal, M.; Alshammari, A.M.; Ali, A. Binder-Based Remediation of Heavy Metal Contaminated Soils: A Review of Solidification/Stabilization Methods. Knowl.-Based Eng. Sci. 2023, 4, 17–34. [Google Scholar] [CrossRef]
- Islam, R.; Barman, D.K.; Kabir, M.; Sabur, M.A. Salinity-Induced Phosphate Binding to Soil Particles: Effects of Divalent Cations. Water Air Soil. Pollut. 2023, 234, 697. [Google Scholar] [CrossRef]
- Shand, M.A. The Chemistry and Technology of Magnesia; John Wiley & Sons: Hoboken, NJ, USA, 2006; ISBN 0471980560. [Google Scholar]
- Cao, Y.; Wang, Y.; Zhang, Z.; Ma, Y.; Wang, H. Recent Progress of Utilization of Activated Kaolinitic Clay in Cementitious Construction Materials. Compos. B Eng. 2021, 211, 108636. [Google Scholar] [CrossRef]
- BS EN 12457-4; Characterisation of Waste. Leaching. Compliance Test for Leaching of Granular Waste Materials and Sludges Part 2: One Stage Batch Test at a Liquid to Solid Ratio of 10 L/Kg for Materials with Particle Size below 4 mm. The British Standards Institution: London, UK, 2002.
- Zhang, Y.; Ong, Y.J.; Yi, Y. Comparison between CaO- and MgO-Activated Ground Granulated Blast-Furnace Slag (GGBS) for Stabilization/Solidification of Zn-Contaminated Clay Slurry. Chemosphere 2022, 286, 131860. [Google Scholar] [CrossRef] [PubMed]
- Calgaro, L.; Contessi, S.; Bonetto, A.; Badetti, E.; Ferrari, G.; Artioli, G.; Marcomini, A. Calcium Aluminate Cement as an Alternative to Ordinary Portland for the Remediation of Heavy Metals Contaminated Soil: Mechanisms and Performance. J. Soil. Sediments 2021, 21, 1755–1768. [Google Scholar] [CrossRef]
- Du, Y.J.; Jiang, N.J. Stabilization/Solidification of Contaminated Soils: A Case Study. In Low Carbon Stabilization and Solidification of Hazardous Wastes; Elsevier: Amsterdam, The Netherlands, 2021; pp. 75–92. ISBN 9780128240045. [Google Scholar]
- Dung, N.T.; Chang, T.-P.; Chen, C.-T. Hydration Process and Compressive Strength of Slag-CFBC Fly Ash Materials without Portland Cement. J. Mater. Civ. Eng. 2015, 27, 04014213. [Google Scholar] [CrossRef]
- Duan, Y.; Liu, X.; Ma, X.; Hong, W.; Lv, G.; Jiang, X. Comparison and Mechanism Analysis of MgO, CaO, and Portland Cement for Immobilization of Heavy Metals in MSWI Fly Ash. Waste Manag. 2024, 187, 285–295. [Google Scholar] [CrossRef]
- Ma, Q.; Lei, J.; He, J.; Chen, Z.; Li, W. Epoxy Resin for Solidification/Stabilization of Soil Contaminated with Copper (II): Leaching, Mechanical, and Microstructural Characterization. Environ. Res. 2024, 240, 117512. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, S.; Al-Tabbaa, A. Application of Two Novel Magnesia-Based Cements in the Stabilization/Solidification of Contaminated Soils. In Geotechnics of Waste Management and Remediation; ASCE Library: Reston, VA, USA, 2008. [Google Scholar] [CrossRef]
- Chen, S.; Kang, B.; Zha, F.; Shen, Y.; Chu, C.; Tao, W. Effects of Different Mg/Ca Molar Ratio on the Formation of Carbonate Minerals in Microbially Induced Carbonate Precipitation (MICP) Process. Constr. Build. Mater. 2024, 442, 137643. [Google Scholar] [CrossRef]
- Shah, S.S.H.; Nakagawa, K.; Yokoyama, R.; Berndtsson, R. Heavy Metal Immobilization and Radish Growth Improvement Using Ca(OH)2-Treated Cypress Biochar in Contaminated Soil. Chemosphere 2024, 360, 142385. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Li, P.; Xiao, T.; Wang, J. Influence of Compaction Condition on the UCS and Structure of Compacted Loess. Environ. Earth Sci. 2023, 82, 411. [Google Scholar] [CrossRef]
- He, Z.; Xu, Y.; Wang, W.; Yang, X.; Jin, Z.; Zhang, D.; Pan, X. Synergistic Mechanism and Application of Microbially Induced Carbonate Precipitation (MICP) and Inorganic Additives for Passivation of Heavy Metals in Copper-Nickel Tailings. Chemosphere 2023, 311, 136981. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Nakamura, K.; Hama, T. Review on Stabilization/Solidification Methods and Mechanism of Heavy Metals Based on OPC-Based Binders. J. Environ. Manag. 2023, 332, 117362. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Wang, L.; Wang, H.; Liu, S.; Liu, M. Solidification/Stabilization of Lead-Contaminated Soils by Phosphogypsum Slag-Based Cementitious Materials. Sci. Total Environ. 2023, 857, 159552. [Google Scholar] [CrossRef]
- Reddy, A.S.; Chavali, R.V.P. Solidification/Stabilization of Copper-Contaminated Soil Using Magnesia-Activated Blast Furnace Slag. Innov. Infrastruct. Solut. 2023, 8, 79. [Google Scholar] [CrossRef]
- Hou, S.; Lai, Z.; Zhang, H.; Han, J. Toxic Leaching and Engineering Properties of Copper Contaminated Soil Cured by Magnesium Phosphate Cement. In Australasian Conference on the Mechanics of Structures and Materials; Chouw, N., Zhang, C., Eds.; Springer: Singapore, 2024; pp. 45–54. [Google Scholar]
- Chen, Y.X.; Zhu, G.W.; Tian, G.M.; Chen, H.L. Phosphorus and Copper Leaching from Dredged Sediment Applied on a Sandy Loam Soil: Column Study. Chemosphere 2003, 53, 1179–1187. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, H.; Wang, C.; Xing, P. Transformation Mechanism and Selective Leaching of Nickel and Cobalt from Limonitic Laterite Ore Using Sulfation-Roasting-Leaching Process. J. Clean. Prod. 2024, 445, 141327. [Google Scholar] [CrossRef]
- Ribeiro, P.P.M.; dos Santos, I.D.; Neumann, R.; Fernandes, A.; Dutra, A.J.B. Roasting and Leaching Behavior of Nickel Laterite Ore. Metall. Mater. Trans. B 2021, 52, 1739–1754. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Li, X.; Zheng, C. Study on the Improvement of the Zinc Pressure Leaching Process. Hydrometallurgy 2020, 195, 105400. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, W.; Li, Y.; Song, X.; Wei, J.; Wang, J.; Bai, Y.; Yu, G. Illustrating the Effect of CaO and MgO Charge Compensation Capacity on the Fluidity of SiO2-Al2O3-CaO-MgO Slag in Industrial Processes: Insights from Molecular Dynamics Simulations. J. Mol. Liq. 2024, 409, 125476. [Google Scholar] [CrossRef]
- Li, W.; Qin, J.; Yi, Y. Carbonating MgO for Treatment of Manganese- and Cadmium-Contaminated Soils. Chemosphere 2021, 263, 128311. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.; Liu, R.; Liu, Z.; Chen, H.; Du, J.; Tao, C. Solidification/Stabilization of Electrolytic Manganese Residue Using Phosphate Resource and Low-Grade MgO/CaO. J. Hazard. Mater. 2016, 317, 267–274. [Google Scholar] [CrossRef]
- Islam, M.S.; Rezwan, F.; Kashem, M.A.; Moniruzzaman, M.; Parvin, A.; Das, S.; Hu, H. Impact of a Phosphate Compound on Plant Metal Uptake When Low Molecular Weight Organic Acids Are Present in Artificially Contaminated Soils. Environ. Adv. 2024, 15, 100468. [Google Scholar] [CrossRef]
- Contessi, S.; Calgaro, L.; Dalconi, M.C.; Bonetto, A.; Bellotto, M.P.; Ferrari, G.; Marcomini, A.; Artioli, G. Stabilization of Lead Contaminated Soil with Traditional and Alternative Binders. J. Hazard. Mater. 2020, 382, 120990. [Google Scholar] [CrossRef]
- Cardoza, A.; Colorado, H.A. Alkaline Activation of Brick Waste with Partial Addition of Ordinary Portland Cement (OPC) for Reducing Brick Industry Pollution and Developing a Feasible and Competitive Construction Material. Open Ceram. 2024, 18, 100569. [Google Scholar] [CrossRef]
- Spohn, M.; Diáková, K.; Aburto, F.; Doetterl, S.; Borovec, J. Sorption and Desorption of Organic Matter in Soils as Affected by Phosphate. Geoderma 2022, 405, 115377. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, W.; He, X.; Zheng, Q.; Wang, H.; Wu, Y.; Zhong, Z. Changes in Soil Properties, X-Ray-Mineral Diffractions and Infrared-Functional Groups in Bulk Soil and Fractions Following Afforestation of Farmland, Northeast China. Sci. Rep. 2017, 7, 12829. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Li, S.; Li, Y.; Guo, P.; Zhao, X.; Cai, Y. Resource, Characteristic, Purification and Application of Quartz: A Review. Min. Eng. 2022, 183, 107600. [Google Scholar] [CrossRef]
- Tarnawski, V.R.; Momose, T.; Leong, W.H.; Piper, D.J.W. Estimation of Quartz Content in Mineral Soils. In Encyclopedia of Agrophysics; Gliński, J., Horabik, J., Lipiec, J., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 275–280. ISBN 978-90-481-3585-1. [Google Scholar]
- Gao, J.; Han, H.; Gao, C.; Wang, Y.; Dong, B.; Xu, Z. Organic Amendments for in Situ Immobilization of Heavy Metals in Soil: A Review. Chemosphere 2023, 335, 139088. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, F.; Singh, I.; Krishnan, P.; Celik, K. Life Cycle Assessment of Brucite and Synthetic MgO Produced from Reject Brine Using Different Alkalis. J. Clean. Prod. 2022, 380, 135071. [Google Scholar] [CrossRef]
- Li, C.; Song, B.; Chen, Z.; Liu, Z.; Yu, L.; Zhi, Z.J.; Zhao, Y.; Wei, H.; Song, M. Immobilization of Heavy Metals in Ceramsite Prepared Using Contaminated Soils: Effectiveness and Potential Mechanisms. Chemosphere 2023, 310, 136846. [Google Scholar] [CrossRef]
- Kumararaja, P.; Manjaiah, K.M.; Datta, S.C.; Sarkar, B. Remediation of Metal Contaminated Soil by Aluminium Pillared Bentonite: Synthesis, Characterisation, Equilibrium Study and Plant Growth Experiment. Appl. Clay Sci. 2017, 137, 115–122. [Google Scholar] [CrossRef]
- Peiris, C.; Alahakoon, Y.A.; Malaweera Arachchi, U.; Mlsna, T.E.; Gunatilake, S.R.; Zhang, X. Phosphorus-Enriched Biochar for the Remediation of Heavy Metal Contaminated Soil. J. Agric. Food Res. 2023, 12, 100546. [Google Scholar] [CrossRef]
- Jiang, Q.; He, Y.; Wu, Y.; Dian, B.; Zhang, J.; Li, T.; Jiang, M. Solidification/Stabilization of Soil Heavy Metals by Alkaline Industrial Wastes: A Critical Review. Environ. Pollut. 2022, 312, 120094. [Google Scholar] [CrossRef]
- Chen, L.; Wang, L.; Zhang, Y.; Ruan, S.; Mechtcherine, V.; Tsang, D.C.W. Roles of Biochar in Cement-Based Stabilization/Solidification of Municipal Solid Waste Incineration Fly Ash. Chem. Eng. J. 2022, 430, 132972. [Google Scholar] [CrossRef]
- Xu, D.M.; Fu, R.B.; Wang, J.X.; Shi, Y.X.; Guo, X.P. Chemical Stabilization Remediation for Heavy Metals in Contaminated Soils on the Latest Decade: Available Stabilizing Materials and Associated Evaluation Methods—A Critical Review. J. Clean. Prod. 2021, 321, 128730. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Cheema, A.I.; Zhang, Y.; Dong, B. Application of Phosphate-Based Binders for the Stabilization and Solidification of Metal-Contaminated Soil: Mechanisms and Efficacy Evaluation. Toxics 2024, 12, 907. https://doi.org/10.3390/toxics12120907
Xu S, Cheema AI, Zhang Y, Dong B. Application of Phosphate-Based Binders for the Stabilization and Solidification of Metal-Contaminated Soil: Mechanisms and Efficacy Evaluation. Toxics. 2024; 12(12):907. https://doi.org/10.3390/toxics12120907
Chicago/Turabian StyleXu, Shiliang, Ayesha Imtiyaz Cheema, Yunhui Zhang, and Bin Dong. 2024. "Application of Phosphate-Based Binders for the Stabilization and Solidification of Metal-Contaminated Soil: Mechanisms and Efficacy Evaluation" Toxics 12, no. 12: 907. https://doi.org/10.3390/toxics12120907
APA StyleXu, S., Cheema, A. I., Zhang, Y., & Dong, B. (2024). Application of Phosphate-Based Binders for the Stabilization and Solidification of Metal-Contaminated Soil: Mechanisms and Efficacy Evaluation. Toxics, 12(12), 907. https://doi.org/10.3390/toxics12120907