Long-Term Variation Characteristics and Health Risks of Atmospheric Hg in the Largest City in Northwestern China
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. Measurements of Speciated Mercury
2.3. Health Risk Assessment
2.4. Data Collection and Statistical Analysis
3. Results
3.1. Variation in GEM and GOM in Atmosphere
3.2. Diurnal Variations of Hg Species
3.3. Seasonal Variations and Influence Factor of Hg Species
3.3.1. Seasonal Variations of Hg Species
3.3.2. Influence Factor of Hg in Different Seasons: Further Evidence of Hg Reduction
3.4. Human Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Zhang, Y.; Wang, L.; Li, X.; Zhou, X.; Li, X.; Yan, M.; Lu, Q.; Tang, Z.; Zhang, G.; et al. Characteristics and Risk Assessments of Mercury Pollution Levels at Domestic Garbage Collection Points Distributed within the Main Urban Areas of Changchun City. Toxics 2021, 9, 309. [Google Scholar] [CrossRef]
- Yin, X.; Zhou, W.; Kang, S.; de Foy, B.; Yu, Y.; Xie, J.; Sun, S.; Wu, K.; Zhang, Q. Latest observations of total gaseous mercury in a megacity (Lanzhou) in northwest China. Sci. Total Environ. 2020, 720, 137494. [Google Scholar] [CrossRef]
- Duan, L.; Wang, X.; Wang, D.; Duan, Y.; Cheng, N.; Xiu, G. Atmospheric mercury speciation in Shanghai, China. Sci. Total Environ. 2017, 578, 460–468. [Google Scholar] [CrossRef]
- Zhao, Y.; Mann, M.D.; Olson, E.S.; Pavlish, J.H.; Dunham, G.E. Effects of sulfur dioxide and nitric oxide on mercury oxidation and reduction under homogeneous conditions. J. Air Waste Manag. Assoc. 2006, 56, 628–635. [Google Scholar] [CrossRef][Green Version]
- Edwards, B.A.; Kushner, D.S.; Outridge, P.M.; Wang, F. Fifty years of volcanic mercury emission research: Knowledge gaps and future directions. Sci. Total Environ. 2021, 757, 143800. [Google Scholar] [CrossRef] [PubMed]
- Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R.B.; Friedli, H.R.; Leaner, J.; Mason, R.; Mukherjee, A.B.; Stracher, G.B.; Streets, D.G.; et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 2010, 10, 5951–5964. [Google Scholar] [CrossRef]
- Sherman, L.S.; Blum, J.D.; Keeler, G.J.; Demers, J.D.; Dvonch, J.T. Investigation of Local Mercury Deposition from a Coal-Fired Power Plant Using Mercury Isotopes. Environ. Sci. Technol. 2011, 46, 382–390. [Google Scholar] [CrossRef]
- Xu, H.; Cao, J.; Chow, J.C.; Huang, R.J.; Shen, Z.; Chen, L.W.A.; Ho, K.F.; Watson, J.G. Inter-annual variability of wintertime PM 2.5 chemical composition in Xi’an, China: Evidences of changing source emissions. Sci. Total Environ. 2016, 545–546, 546–555. [Google Scholar] [CrossRef]
- Xu, H.; Sonke, J.E.; Guinot, B.; Fu, X.; Sun, R.; Lanzanova, A.; Candaudap, F.; Shen, Z.; Cao, J. Seasonal and Annual Variations in Atmospheric Hg and Pb Isotopes in Xi’an, China. Environ. Sci. Technol. 2017, 51, 3759–3766. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V. Mercury detoxification by absorption, mercuric ion reductase, and exopolysaccharides: A comprehensive study. Environ. Sci. Pollut. Res. 2019, 27, 27181–27201. [Google Scholar] [CrossRef] [PubMed]
- Niane, B.; Devarajan, N.; Poté, J.; Moritz, R. Quantification and characterization of mercury resistant bacteria in sediments contaminated by artisanal small-scale gold mining activities, Kedougou region, Senegal. J. Geochem. Explor. 2019, 205, 106353. [Google Scholar] [CrossRef]
- Jung-Duck, P.; Wei, Z. Human exposure and health effects of inorganic and elemental mercury. J. Prev. Med. Public Health = Yebang Uihakhoe Chi 2012, 45, 344. [Google Scholar]
- Bjørklund, G.; Dadar, M.; Mutter, J.; Aaseth, J. The toxicology of mercury: Current research and emerging trends. Environ. Res. 2017, 159, 545–554. [Google Scholar] [CrossRef]
- Dai, Q.; Bi, X.; Song, W.; Li, T.; Liu, B.; Ding, J.; Xu, J.; Song, C.; Yang, N.; Schulze, B.C.; et al. Residential coal combustion as a source of primary sulfate in Xi’an, China. Atmos. Environ. 2019, 196, 66–76. [Google Scholar] [CrossRef]
- Feng, X.; Fu, X.; Zhang, H.; Wang, X.; Jia, L.; Zhang, L.; Lin, C.-J.; Huang, J.-H.; Liu, K.; Wang, S. Combating air pollution significantly reduced air mercury concentrations in China. Natl. Sci. Rev. 2024, 11, nwae264. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual; Part F, Supplemental Guidance for Inhalation Risk Assessment (EPA-540-R-070-002); Office of Superfund Remediation and Echnology Innovation: Washington, DC, USA, 2009.
- USEPA. Regional Screening Levels (RSLs)—Resident Ambient Air Table (TR¼1E-06, HQ¼1); Center for Public Health and Environmental Assessment: Washington, DC, USA, 2020.
- USEPA. Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses; Technical Manual, EPA-823-B-01-002; Office of Water: Washington, DC, USA, 2001.
- Air Quality Index Historical Data. Historical Data on PM2.5. Available online: https://www.aqistudy.cn/historydata/ (accessed on 1 December 2024).
- Xi’an Municipal Bureau of Statistics. Xi’an Statistical Yearbook. Available online: http://tjj.xa.gov.cn/ (accessed on 1 December 2024).
- Chow, J.C.; Watson, J.G.; Chen, L.W.A.; Chang, M.C.O.; Robinson, N.F.; Trimble, D.; Kohl, S. The IMPROVE_A Temperature Protocol for Thermal/Optical Carbon Analysis: Maintaining Consistency with a Long-Term Database. J. Air Waste Manag. Assoc. 2012, 57, 1014–1023. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.M.; Cao, J.J.; Ho, K.F.; Ding, H.; Han, Y.M.; Wang, G.H.; Chow, J.C.; Watson, J.G.; Khol, S.D.; Qiang, J.; et al. Lead concentrations in fine particulate matter after the phasing out of leaded gasoline in Xi’an, China. Atmos. Environ. 2012, 46, 217–224. [Google Scholar] [CrossRef]
- Shaanxi Provincial Bureau of Statistics. Xi’an: “Coal to Clean” Has Achieved Significant Results in Improving Energy Efficiency in Large-Scale Industries. Available online: http://tjj.shaanxi.gov.cn/ggbf/sxxx/202004/t20200413_1626597.html (accessed on 1 December 2024).
- Diéguez, M.C.; Bencardino, M.; García, P.E.; D’Amore, F.; Castagna, J.; De Simone, F.; Soto Cárdenas, C.; Ribeiro Guevara, S.; Pirrone, N.; Sprovieri, F. A multi-year record of atmospheric mercury species at a background mountain station in Andean Patagonia (Argentina): Temporal trends and meteorological influence. Atmos. Environ. 2019, 214, 116819. [Google Scholar] [CrossRef]
- Lee, S.-H.; Lee, J.-I.; Kim, P.-R.; Kim, D.-Y.; Jeon, J.-W.; Han, Y.-J. Factors influencing concentrations of atmospheric speciated mercury measured at the farthest island West of South Korea. Atmos. Environ. 2019, 213, 239–249. [Google Scholar] [CrossRef]
- Fu, X.; Feng, X.; Qiu, G.; Shang, L.; Zhang, H. Speciated atmospheric mercury and its potential source in Guiyang, China. Atmos. Environ. 2011, 45, 4205–4212. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.X.; Wang, L.; Hao, J.M. Atmospheric mercury concentration and chemical speciation at a rural site in Beijing, China: Implications of mercury emission sources. Atmos. Chem. Phys. 2013, 13, 10505–10516. [Google Scholar] [CrossRef]
- Xu, L.; Chen, J.; Yang, L.; Niu, Z.; Tong, L.; Yin, L.; Chen, Y. Characteristics and sources of atmospheric mercury speciation in a coastal city, Xiamen, China. Chemosphere 2015, 119, 530–539. [Google Scholar] [CrossRef]
- Sheu, G.-R.; Phu Nguyen, L.S.; Truong, M.T.; Lin, D.-W. Characteristics of atmospheric mercury at a suburban site in northern Taiwan and influence of trans-boundary haze events. Atmos. Environ. 2019, 214, 116827. [Google Scholar] [CrossRef]
- Rao, M.N.; Latha, R.; Nikhil, K.; Murthy, B.S. Atmospheric gaseous mercury and associated health risk assessment in the economic capital of India. Environ. Monit. Assess. 2024, 196, 519. [Google Scholar] [CrossRef] [PubMed]
- Gratz, L.E.; Keeler, G.J.; Marsik, F.J.; Barres, J.A.; Dvonch, J.T. Atmospheric transport of speciated mercury across southern Lake Michigan: Influence from emission sources in the Chicago/Gary urban area. Sci. Total Environ. 2013, 448, 84–95. [Google Scholar] [CrossRef]
- Choi, H.-D.; Huang, J.; Mondal, S.; Holsen, T.M. Variation in concentrations of three mercury (Hg) forms at a rural and a suburban site in New York State. Sci. Total Environ. 2013, 448, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Luke, W.T.; Kelley, P.; Cohen, M.D.; Artz, R.; Olson, M.L.; Schmeltz, D.; Puchalski, M.; Goldberg, D.L.; Ring, A.; et al. Atmospheric mercury measurements at a suburban site in the Mid-Atlantic United States: Inter-annual, seasonal and diurnal variations and source-receptor relationships. Atmos. Environ. 2016, 146, 141–152. [Google Scholar] [CrossRef]
- Nguyen, L.S.P.; Hien, T.T. Long-Range Atmospheric Mercury Transport from Across East Asia to a Suburban Coastal Area in Southern Vietnam. Bull. Environ. Contam. Toxicol. 2023, 112, 14. [Google Scholar] [CrossRef]
- Marumoto, K.; Suzuki, N.; Shibata, Y.; Takeuchi, A.; Takami, A.; Fukuzaki, N.; Kawamoto, K.; Mizohata, A.; Kato, S.; Yamamoto, T.; et al. Long-Term Observation of Atmospheric Speciated Mercury during 2007–2018 at Cape Hedo, Okinawa, Japan. Atmosphere 2019, 10, 362. [Google Scholar] [CrossRef]
- Fu, X.; Marusczak, N.; Heimbürger, L.-E.; Sauvage, B.; Gheusi, F.; Prestbo, E.M.; Sonke, J.E. Atmospheric mercury speciation dynamics at the high-altitude Pic du Midi Observatory, southern France. Atmos. Chem. Phys. 2016, 16, 5623–5639. [Google Scholar] [CrossRef]
- Cheng, I.; Zhang, L.; Mao, H.; Blanchard, P.; Tordon, R.; Dalziel, J. Seasonal and diurnal patterns of speciated atmospheric mercury at a coastal-rural and a coastal-urban site. Atmos. Environ. 2014, 82, 193–205. [Google Scholar] [CrossRef]
- Laurier, F.; Mason, R. Mercury concentration and speciation in the coastal and open ocean boundary layer. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Lu, R.; Wu, Y.; Zhang, X.; Shen, Y.; Wu, F.; Xue, Y.; Zou, Q.; Ma, C. Distribution Characteristics and Source Analysis of Mercury Forms in the Atmosphere of Suzhou City. Environ. Sci. 2020, 41, 3102–3111. (In Chinese) [Google Scholar]
- Xu, Z.; Chen, L.; Zhang, Y.; Han, G.; Chen, Q.; Chu, Z.; Zhang, Y.; Li, C.; Yang, Y.; Wang, X. Meteorological Drivers of Atmospheric Mercury Seasonality in the Temperate Northern Hemisphere. Geophys. Res. Lett. 2022, 49, e2022GL100120. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.; Zhu, Y.; Lin, C.-J.; Jang, C.; Wang, S.; Xing, J.; Yu, B.; Xu, H.; Pan, Y. Source attribution for mercury deposition with an updated atmospheric mercury emission inventory in the Pearl River Delta Region, China. Front. Environ. Sci. Eng. 2019, 13, 2. [Google Scholar] [CrossRef]
- Wang, X.; Lin, C.J.; Feng, X.; Yuan, W.; Fu, X.; Zhang, H.; Wu, Q.; Wang, S. Assessment of Regional Mercury Deposition and Emission Outflow in China’s mainland. J. Geophys. Res. Atmos. 2018, 123, 9868–9890. [Google Scholar] [CrossRef]
- Shanxi Municipal Bureau of Statistics. Shanxi Statistical Yearbook. Available online: https://tjj.shanxi.gov.cn/ (accessed on 1 December 2024).
- Barago, N.; Floreani, F.; Acquavita, A.; Esbrí, J.M.; Covelli, S.; Higueras, P. Spatial and Temporal Trends of Gaseous Elemental Mercury over a Highly Impacted Coastal Environment (Northern Adriatic, Italy). Atmosphere 2020, 11, 935. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Wang, C.; Zhang, X. Concentrations and gas-particle partitioning of atmospheric reactive mercury at an urban site in Beijing, China. Environ. Pollut. 2019, 249, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Si, L.; Ariya, P. Recent Advances in Atmospheric Chemistry of Mercury. Atmosphere 2018, 9, 76. [Google Scholar] [CrossRef]
- Maximilian, K.A.; Olivier, M.; Paolo, L.; Marcos, A.; Isabel, M.; Fernando, V.; Grover, S.; René, G.; Luis, B.; Diego, A.; et al. Seasonal patterns of atmospheric mercury in tropical South America as inferred by a continuous total gaseous mercury record at Chacaltaya station (5240 m) in Bolivia. Atmos. Chem. Phys. 2021, 21, 3447–3472. [Google Scholar]
- Lin, C.-C.; Macrohon, J.K.E.; Brimblecombe, P.; Adyanis, L.N.; Yeh, C.-F.; Lai, C.-H.; Wang, L.-C. Atmospheric mercury speciation and concentration at the urban and industrial sites in Taiwan over a three-year period. Atmos. Environ. 2023, 313, 120070. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.; Tang, Z.; Cai, N.; Zhang, N.; Liu, J. The heavy metals in indoor and outdoor PM2.5 from coal-fired and non-coal-fired area. Urban Clim. 2021, 40, 101000. [Google Scholar] [CrossRef]
- Hu, Y.; You, M.; Liu, G.; Dong, Z. Characteristics and potential ecological risks of heavy metal pollution in surface soil around coal-fired power plant. Environ. Earth Sci. 2021, 80, 566. [Google Scholar] [CrossRef]
- Mor, S.; Vig, N.; Ravindra, K. Distribution of heavy metals in surface soil near a coal power production unit: Potential risk to ecology and human health. Environ. Monit. Assess. 2022, 194, 263. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Balasubramanian, R.; Zhu, Q.; Behera, S.N.; Bo, D.; Huang, X.; Xie, H.; Cheng, J. Characteristics of atmospheric particulate mercury in size-fractionated particles during haze days in Shanghai. Atmos. Environ. 2016, 131, 400–408. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, R.; Wang, Y.; Cui, X.; Qi, J. Change characteristic of atmospheric particulate mercury during dust weather of spring in Qingdao, China. Atmos. Environ. 2015, 102, 376–383. [Google Scholar] [CrossRef]
- Li, B.; Zhou, Z.; Xue, Z.; Wei, P.; Ren, Y.; Cao, L.; Feng, X.; Yao, Q.; Ma, J.; Xu, P.; et al. Study on the Pollution Characteristics and Sources of Ozone in Typical Loess Plateau City. Atmosphere 2020, 11, 555. [Google Scholar] [CrossRef]
- Liu, K.; Wu, Q.; Wang, S.; Chang, X.; Tang, Y.; Wang, L.; Liu, T.; Zhang, L.; Zhao, Y.; Wang, Q.G.; et al. Improved atmospheric mercury simulation using updated gas-particle partition and organic aerosol concentrations. J. Environ. Sci. 2022, 119, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Ariya, P.A.; Amyot, M.; Dastoor, A.; Deeds, D.; Feinberg, A.; Kos, G.; Poulain, A.; Ryjkov, A.; Semeniuk, K.; Subir, M.; et al. Mercury Physicochemical and Biogeochemical Transformation in the Atmosphere and at Atmospheric Interfaces: A Review and Future Directions. Chem. Rev. 2015, 115, 3760–3802. [Google Scholar] [CrossRef]
- Yawei, S.; Jianhai, L.; Junxiu, Z.; Xiaobo, P.; Zewu, Q. Epidemiology, clinical presentation, treatment, and follow-up of chronic mercury poisoning in China: A retrospective analysis. BMC Pharmacol. Toxicol. 2021, 22, 25. [Google Scholar] [CrossRef] [PubMed]
Location | Sampling Period | GEM (ng/m3) | GOM (pg/m3) | Reference |
---|---|---|---|---|
Xi’an, China | April 2019–December 2020 | 5.78 ± 7.36 | 14.2 ± 20.8 | This study |
Guiyang, China | August–December 2009 | 9.72 ± 10.2 | 35.7 ± 43.9 | [27] |
Beijing, China | December 2008–November 2009 | 3.22 ± 1.74 | 10.1 ± 18.8 | [28] |
Xiamen, China | March 2012–February 2013 | 3.50 | 61.1 | [29] |
Taoyuan, Taiwan | October 2017–September 2018 | 2.61 ± 6.47 | 12.1 ± 34.3 | [30] |
Gyodong Island, Korea | August 2015–September 2017 | 2.80 ± 2.90 | 3.60 ± 3.50 | [26] |
Patagonia, Argentina | October 2012–July 2017 | 0.860 ± 0.160 | / | [25] |
March 2014–July 2017 | / | 4.61 ± 4.00 | ||
Mumbai, India | January–December 2017 | 3.10 ± 1.10 | / | [31] |
Chicago, USA | July–November 2007 | 2.50 ± 1.50 | 17.0 ± 87.0 | [32] |
Rochester, USA | December 2007–November 2009 | 1.60 ± 0.400 | 5.30 ± 10.7 | [33] |
Beltsville, USA | 2007–2015 | 1.41 ± 0.230 | 4.60 ± 33.7 | [34] |
HCMC, Vietnam | July–October 2022 | 1.61 ± 0.32 | / | [35] |
Okinawa, Japan | October 2009–December 2018 | 1.81 ± 0.43 | 1.70 ± 2.90 | [36] |
Pic Du Midi Observatory, France | November 2011–November 2012 | 1.86 ± 0.27 | 27.0 ± 34.0 | [37] |
Dartmouth, Canada | January 2010–December 2011 | 1.67 ± 1.01 | 2.10 ± 3.40 | [38] |
North Atlantic Ocean | 2003 | 1.63 ± 0.08 | 5.9 ± 4.9 | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, Y.; Xu, H.; Yang, M.; Zhang, B.; Liu, L.; Chen, S.; Xue, J.; Zhang, H.; Shen, Z. Long-Term Variation Characteristics and Health Risks of Atmospheric Hg in the Largest City in Northwestern China. Toxics 2024, 12, 935. https://doi.org/10.3390/toxics12120935
Pang Y, Xu H, Yang M, Zhang B, Liu L, Chen S, Xue J, Zhang H, Shen Z. Long-Term Variation Characteristics and Health Risks of Atmospheric Hg in the Largest City in Northwestern China. Toxics. 2024; 12(12):935. https://doi.org/10.3390/toxics12120935
Chicago/Turabian StylePang, Yuqi, Hongmei Xu, Mengyun Yang, Bin Zhang, Liyan Liu, Sulin Chen, Jing Xue, Hui Zhang, and Zhenxing Shen. 2024. "Long-Term Variation Characteristics and Health Risks of Atmospheric Hg in the Largest City in Northwestern China" Toxics 12, no. 12: 935. https://doi.org/10.3390/toxics12120935
APA StylePang, Y., Xu, H., Yang, M., Zhang, B., Liu, L., Chen, S., Xue, J., Zhang, H., & Shen, Z. (2024). Long-Term Variation Characteristics and Health Risks of Atmospheric Hg in the Largest City in Northwestern China. Toxics, 12(12), 935. https://doi.org/10.3390/toxics12120935