Health Risks for Consumers of Forest Ground Cover Produce Contaminated with Heavy Metals
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Collection
2.2. Preparation of the Study Material
- Stage I: Mineralization time 10 min/60% power, pressure 17–20 bar, temperature: 200–220 °C;
- Stage II: Mineralization time 10 min/80% power, pressure 25–28 bar, temperature: 200–220 °C;
- Stage III: Mineralization time 10 min/100% power, pressure 32–35 bar, temperature: 200–220 °C;
- Stage IV: Cooling the sample for 15 min.
2.3. Sample Analysis
2.4. Quality Control and Quality Assurance
3. Health Risk Assessment
- I.
- Consumption of mushrooms with the lowest metal content;
- II.
- Consumption of mushrooms with moderate metal content;
- III.
- Consumption of mushrooms with the highest metal content;
- Ia.
- Consumption of berries with the lowest metal content;
- IIa.
- Consumption of berries with moderate metal content;
- IIIa.
- Consumption of berries with the highest metal content.
4. Results
4.1. Sample Contamination by Heavy Metals
4.2. Health Risk
5. Discussion
6. Conclusions and Future Outlook
- The conducted research revealed high concentrations of cadmium and lead in the examined edible mushrooms and berries from the forests in Miasteczko Śląskie and the Lubliniec region. However, the content of mercury, arsenic, and nickel in the tested samples was negligible;
- A statistically significant impact of the distance from ‘Miasteczko Śląskie’ S.A. zinc smelter on the variation in cadmium concentration in the examined berries was observed;
- The exposure of adult consumers to the most contaminated mushrooms with cadmium and lead poses a significant non-cancer health risk. A much higher health risk was noted in the case of children, among whom a significant health risk was identified in the scenario considering the consumption of mushrooms with moderate cadmium and lead content;
- The level of exposure of adult consumers and children to the studied metals in the consumed berries did not pose a significant health hazard;
- The overall non-cancer health risk arising from the combined exposure of adults to all the investigated metals found in consumed mushrooms and berries was significant when consuming the most heavily contaminated produce. In contrast, among children, the risk was significant even when consuming the forest ground cover produce with average levels of the analyzed metals;
- Dietary exposure of children to cadmium consuming the most contaminated wild mushrooms was associated with a high cancer health risk;
- In order to reduce the health risk to children from the forests in Miasteczko Śląskie and the Lubliniec region, parents should follow the recommendations regarding the ban on wild mushroom consumption by children, especially mushrooms from local sources;
- It is recommended to take action to increase awareness among residents of the areas adjacent to the studied forests regarding the existing health hazard and possible measures to minimize exposure to metals present in mushrooms and berries from local forest ecosystems;
- Further studies are needed to investigate the correlation between heavy metal concentrations in mushrooms/forest fruits and in the soil, taking into consideration wind conditions and different distances from the smelter.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, D.; Wang, X.; Luo, X.; Huang, G.; Tian, Z.; Li, W.; Liu, F. Delineating and identifying risk zones of soil heavy metal pollution in an industrialized region using machine learning. Environ. Pollut. 2023, 318, 120932. [Google Scholar] [CrossRef] [PubMed]
- Manwani, S.; Vanisree, C.R.; Jaiman, V.; Awasthi, K.K.; Yadav, C.S.; Sankhla, M.S.; Pandit, P.P.; Awasthi, G. Heavy Metal Contamination in Vegetables and Their Toxic Effects on Human Health. In Sustainable Crop Production: Recent Advances; IntechOpen: London, UK, 2022. [Google Scholar]
- Costa, F.; Mieiro, C.L.; Pereira, M.E.; Coelho, J.P. Mercury bioaccessibility in fish and seafood: Effect of method, cooking and trophic level on consumption risk assessment. Mar. Pollut. Bull. 2022, 179, 113736. [Google Scholar] [CrossRef] [PubMed]
- Širić, I.; Kumar, P.; Adelodun, B.; Abou Fayssal, S.; Bachheti, R.K.; Bachheti, A.; Ajibade, F.O.; Kumar, V.; Taher, M.A.; Eid, E.M. Risk Assessment of Heavy Metals Occurrence in Two Wild Edible Oyster Mushrooms (Pleurotus spp.) Collected from Rajaji National Park. J. Fungi 2022, 8, 1007. [Google Scholar] [CrossRef] [PubMed]
- Miętus, M. Charakterystyka Wybranych Elementów Klimatu w Polsce w 2022 Roku—Podsumowanie. Instytut Meteorologii i Gospodarki Wodnej—Państwowy Instytut Badawczy. Available online: https://imgw.pl/wydarzenia/charakterystyka-wybranych-elementow-klimatu-w-polsce-w-2022-roku-podsumowanie (accessed on 20 September 2023). (In Polish).
- Tarnowskie Góry—Portal Powiatu Tarnogórskiego. Tarnogórskie Lasy—Rozległe. Ciekawe i piękne. Available online: https://www.tg.net.pl/przyroda/artykuly/tarnogorskie-lasy/ (accessed on 27 September 2023). (In Polish).
- Rozkrut, D. (Ed.) Statistical Yearbook of Forestry; Central Statistical Office: Warsaw, Poland, 2021. (In Polish) [Google Scholar]
- Kurda, W. Encyklopedia Województwa Śląskiego; Instytut Badań Regionalnych Biblioteki Śląskiej: Katowice, Poland, 2016. (In Polish) [Google Scholar]
- Grochocka, J. Próba zarysowania problematyki wpływu występowania bogactw naturalnych na rozwój miast oraz przemiany środowiska naturalnego na przykładzie gmin miejskich Tarnowskie Góry i Miasteczko Śląskie. In Człowiek i Środowisko; Interakcje w perspektywie interdyscyplinarnej; Adamczyk, M., Chmiel, M., Maciąg, Ł., Szalasta, G., Eds.; Wydawnictwo Naukowe Uniwersytetu Szczecińskiego: Szczecin, Poland, 2013; pp. 49–62. (In Polish) [Google Scholar]
- Adamczyk, Z.; Nowińska, K. Chemical composition of pyrite in the feed mixture into zinc and lead pirometallurgical proces. Syst. Wspomagania W Inżynierii Prod. 2016, 5, 38–47. (In Polish) [Google Scholar] [CrossRef]
- Nowińska, K.; Adamczyk, Z. The mobility of accompanying elements to wastes from metallurgy of the zinc and the leadon in the environment. Górnictwo Geol. 2013, 8, 77–87. (In Polish) [Google Scholar]
- Jędrzejczyk-Korycińska, M.; Rostański, A. Tereny o wysokiej zawartości metali ciężkich w podłożu na Górnym Śląsku. In Ekotoksykologia; Rośliny. gleba. metale. Tereny o wysokiej zawartości metali ciężkich w podłożu na Górnym Śląsku; Wierzbicka, M., Ed.; Wydawnictwa Uniwersytetu Warszawskiego: Warszawa, Poland, 2015; pp. 175–189. (In Polish) [Google Scholar]
- Muss, K.; Lesiów, T. The Early Warning System Against Dangerous Contamination of Food by Variety of Biological, Organic and/or Inorganic Chemical Compounds and Prevention of Food Adulteration. Nauki. Inż. Technol. 2018, 2, 33–55. (In Polish) [Google Scholar] [CrossRef]
- Nadleśnictwo Lubliniec. Lasy Regionu. Available online: https://lubliniec.katowice.lasy.gov.pl/lasy-regionu#.ZCAN4XZBy3A (accessed on 27 September 2023). (In Polish)
- Predanócyová, K.; Árvay, J.; Šnirc, M. Exploring Consumer Behavior and Preferences towards Edible Mushrooms in Slovakia. Foods 2023, 12, 657. [Google Scholar] [CrossRef]
- Erbiai, E.H.; Maouni, A.; da Silva, L.P.; Saidi, R.; Legssyer, M.; Lamrani, Z.; da Silva, J.C.G.E. Antioxidant Properties, Bioactive Compounds Contents, and Chemical Characterization of Two Wild Edible Mushroom Species from Morocco: Paralepista flaccida (Sowerby) Vizzini and Lepista nuda (Bull.) Cooke. Molecules 2023, 28, 1123. [Google Scholar] [CrossRef]
- Pap, N.; Fidelis, M.; Azevedo, L.; do Carmo, M.A.V.; Wang, D.; Mocan, A.; Penha Rodrigues Pereira, E.; Xavier-Santos, D.; Sant’Ana, S.; Baoru Yang, A.; et al. Berry polyphenols and human health: Evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Curr. Opin. Food Sci. 2021, 42, 167–186. [Google Scholar] [CrossRef]
- Abd Elnabi, M.K.; Elkaliny, N.E.; Elyazied, M.M.; Azab, S.H.; Elkhalifa, S.A.; Elmasry, S.; Mouhamed, M.S.; Shalamesh, E.M.; Alhorieny, N.A.; Abd Elaty, A.E.; et al. Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review. Toxics 2023, 11, 580. [Google Scholar] [CrossRef]
- Seńczuk, W. (Ed.) Toksykologia Podręcznik Dla Studentów Farmacji; Państwowy Zakład Wydawnictw Lekarskich: Warszawa, Poland, 1990. (In Polish) [Google Scholar]
- Charkiewicz, A.; Backstrand, J. Lead Toxicity and Pollution in Poland. Int. J. Environ. Res. Public Health 2020, 17, 4385. [Google Scholar] [CrossRef] [PubMed]
- Rahimzadeh, M.; Kazemi, S.; Moghadamnia, A. Cadmium toxicity and treatment: An update. Casp. J. Intern. Med. 2017, 8, 135–145. [Google Scholar] [CrossRef]
- Kot, K.; Kosik-Bogacka, D.; Łanocha-Arendarczyk, N.; Ciosek, Ż. The influence of mercury compounds on the human body. Farm Współ. 2016, 9, 210–216. (In Polish) [Google Scholar]
- Basketter, D. Nickel: Intrinsic Skin Sensitization Potency and Relation to Prevalence of Contact Allergy. Dermatitis 2021, 32, 71–77. [Google Scholar] [CrossRef]
- Tramontana, M.; Bianchi, L.; Hansel, K.; Agostinelli, D.; Stingeni, L. Nickel Allergy: Epidemiology, Pathomechanism, Clinical Patterns, Treatment and Prevention Programs. Endocr. Metab. Immune Disord. Drug. Targets 2020, 20, 992–1002. [Google Scholar] [CrossRef]
- Guo, H.; Liu, H.; Wu, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Nickel Carcinogenesis Mechanism: DNA Damage. Int. J. Mol. Sci. 2019, 20, 4690. [Google Scholar] [CrossRef]
- Kalač, P.; Svoboda, L. A review of trace element concentrations in edible mushrooms. Food Chem. 2000, 69, 273–281. [Google Scholar] [CrossRef]
- Kantar Polska. Narodowe badania konsumpcji warzyw i owoców. In Badania Prowadzone Dla Krajowego Związku Grup Producentów Owoców i Warzyw; Kantar Polska: Warsaw, Poland, 2022. (In Polish) [Google Scholar]
- Qing, Y.; Zheng, J.; Tang, T.; Li, S.; Cao, S.; Luo, Y.; Chen, Y.; He, W.; Wang, J.; Zhou, Y.; et al. Risk assessment of combined exposure to lead, cadmium, and total mercury among the elderly in Shanghai, China. Ecotoxicol. Environ. Saf. 2023, 256, 114874. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Cadmium CASRN 7440-43-9. In Integrated Risk Information System. Chemical Assessment Summary National Center for Environmental Assessment; EPA: Washington, DC, USA, 1989. [Google Scholar]
- European Food Safety Authority. Scientific Opinion on Lead in Food. EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA J. 2010, 8, 1570. [Google Scholar]
- United States Environmental Protection Agency. Arsenic, Inorganic, CASRN 7440-38-2. In Integrated Risk Information System. Chemical Assessment Summary National Center for Environmental Assessment; Last Revised 1991; EPA: Washington, DC, USA, 1988. [Google Scholar]
- United States Environmental Protection Agency. Nickel, Soluble Salts, CASRN Various. In Integrated Risk Information System. Chemical Assessment Summary National Center for Environmental Assessment; Last Revised 1991; EPA: Washington, DC, USA, 1987. [Google Scholar]
- United States Environmental Protection Agency. Mercuric Chloride (HgCl2), CASRN 7487-94-7. In Integrated Risk Information System. Chemical Assessment Summary National Center for Environmental Assessment; EPA: Washington, DC, USA, 1995. [Google Scholar]
- Commission Regulation (EC) No 2023/915 of 25 April 2023 Setting Maximum Levels for Certain Contaminants in Foodstuffs and Repealing the Regulation (EC) No 1881/2006. Available online: https://sip.lex.pl/akty-prawne/dzienniki-UE/rozporzadzenie-2023-915-w-sprawie-najwyzszych-dopuszczalnych-poziomow-72159585 (accessed on 27 September 2023). (In Polish).
- Pająk, M. The content of zinc, lead and cadmium in bay bolete (Xerocomus badius (fr.) E.) collected from a strongly polluted forest complex. Inż. Ekolog. 2016, 49, 221–226. (In Polish) [Google Scholar] [CrossRef]
- Pająk, M.; Jasik, M. Concentration of zinc, cadmium and lead in the fruits of bilberry (Vaccinium myrtillus L.) growing in the Świerklaniec Forest District. Sylwan 2012, 156, 233–240. (In Polish) [Google Scholar]
- Pająk, M.; Jasik, M. The level of Zn, Cd and Pb accumulation in top layer of forest soil in the neighbourhood of metallurgic complex ‘Miasteczko Śląskie’. Zeszyty Naukowe Uniwersytetu Zielonogórskiego. Inż. Sr. 2010, 137, 112–122. (In Polish) [Google Scholar]
- Lepsová, A.; Král, R. Lead and cadmium in fruiting bodies of macrofungi in the vicinity of a lead smelter. Sci. Total Environ. 1988, 76, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Punia, A. Role of temperature, wind, and precipitation in heavy metal contamination at copper mines: A review. Environ. Sci. Pollut. Res. 2021, 28, 4056–4072. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Cheng, G.; Wang, Y.; Zhuang, D. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions. Sci. Total Environ. 2017, 578, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Gałgowska, M.; Pietrzak-Fiećko, R. Cadmium and Lead Content in Selected Fungi from Poland and Their Edible Safety Assessment. Molecules 2021, 26, 7289. [Google Scholar] [CrossRef] [PubMed]
- Orywal, K.; Socha, K.; Nowakowski, P.; Zoń, W.; Kaczyński, P.; Mroczko, B.; Łozowicka, B.; Perkowski, M. Health risk assessment of exposure to toxic elements resulting from consumption of dried wild-grown mushrooms available for sale. PLoS ONE 2021, 16, e0252834. [Google Scholar] [CrossRef] [PubMed]
- Šnirc, M.; Jančo, I.; Hauptvogl, M.; Jakabová, S.; Demková, L.; Árvay, J. Risk Assessment of the Wild Edible Leccinum Mushrooms Consumption According to the Total Mercury Content. J. Fungi 2023, 9, 287. [Google Scholar] [CrossRef]
- Piekut, A.; Baranowska, R.; Marchwińska-Wyrwał, E.; Ćwieląg-Drabek, M.; Hajok, I.; Dziubanek, G.; Grochowska-Niedworok, E. Is the soil quality monitoring an effective tool in consumers’ protection of agricultural crops from cadmium soil contamination?—A case of the Silesia region (Poland). Environ. Monit. Assess. 2018, 190, 25. [Google Scholar] [CrossRef]
- Nitu, M.; Pruteanu, A.; Gagenanu, I. Research on the accumulation and transfer of heavy metals from the soil to berries (Blueberries—Vaccinium myrtillus L. and Raspberries—Rubus idaeus). INMATEH Agric. Eng. 2022, 68, 722–728. [Google Scholar] [CrossRef]
Metal | The Threshold Dose | [µg/kg per Day] | References |
---|---|---|---|
Cd | RfD | 1.00 | [29] |
Pb | BMDL10 adults | 0.63 | [30] |
BMDL01 children | 0.50 | [30] | |
As | RfD | 0.30 | [31] |
Ni | RfD | 0.02 | [32] |
Hg | RfD | 0.30 | [33] |
Edible Fungi | Berries | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
[mg/kg/Fresh Mass] | [mg/kg/Fresh Mass] | |||||||||
Cd | Pb | Hg | As | Ni | Cd | Pb | Hg | As | Ni | |
Mean ± SD Range (min–max) | 0.98 ± 0.82 0.13–3.35 | 0.60 ± 0.58 0.08–2.05 | 0.0274 ± 0.0407 0.0013–0.1242 | ND ND | ND ND | 0.05 ± 0.06 0.01–0.20 | 0.52 ± 0.48 0.09–1.44 | ND ND | ND ND | ND ND |
Maximum Allowable Concentration [34] | 0.50 | 0.80 | 0.50 | 0.50 | ND | 0.03 | 0.10 | 0.01 | ND | ND |
Exposure Scenario [µg/kg/Day] | HQ | |||||||
---|---|---|---|---|---|---|---|---|
Metal | Scenario | Total | S1 | S2 | Scenario | Total | S1 | S2 |
ADULTS | ||||||||
Cd | Min. | 0.05 | 0.14 | 0.05 | Min. | 0.05 | 0.14 | 0.05 |
Mean | 0.38 | 0.48 | 0.32 | Mean | 0.38 | 0.48 | 0.32 | |
Max. | 1.31 | 1.31 | 0.71 | Max. | 1.31 | 1.31 | 0.71 | |
Pb | Min. | 0.03 | 0.03 | 0.04 | Min. | 0.05 | 0.05 | 0.06 |
Mean | 0.24 | 0.26 | 0.20 | Mean | 0.38 | 0.42 | 0.32 | |
Max. | 0.80 | 0.68 | 0.80 | Max. | 1.27 | 1.08 | 1.27 | |
Hg | Min. | 0.0005 | 0.0006 | 0.0005 | Min. | 0.0017 | 0.0019 | 0.0017 |
Mean | 0.0107 | 0.0053 | 0.0139 | Mean | 0.0356 | 0.0177 | 0.0463 | |
Max. | 0.0484 | 0.0231 | 0.0484 | Max. | 0.1615 | 0.0769 | 0.1615 | |
CHILDREN | ||||||||
Cd | Min. | 0.12 | 0.30 | 0.12 | Min. | 0.12 | 0.30 | 0.12 |
Mean | 0.89 | 1.12 | 0.54 | Mean | 0.89 | 1.12 | 0.54 | |
Max. | 3.04 | 3.04 | 1.66 | Max. | 3.04 | 3.04 | 1.66 | |
Pb | Min. | 0.07 | 0.07 | 0.09 | Min. | 0.15 | 0.15 | 0.18 |
Mean | 0.55 | 0.61 | 0.45 | Mean | 1.10 | 1.23 | 0.89 | |
Max. | 1.86 | 1.59 | 1.86 | Max. | 3.72 | 3.17 | 3.72 | |
Hg | Min. | 0.0012 | 0.0014 | 0.0008 | Min. | 0.0039 | 0.0045 | 0.0026 |
Mean | 0.0248 | 0.0124 | 0.0259 | Mean | 0.0827 | 0.0412 | 0.0866 | |
Max. | 0.1130 | 0.0537 | 0.1130 | Max. | 0.3750 | 0.179 | 0.3750 |
Exposure Scenario [µg/kg/day] | HQ | |||||||
---|---|---|---|---|---|---|---|---|
Metal | Scenario | Total | S1 | S2 | Scenario | Total | S1 | S2 |
ADULTS | ||||||||
Cd | Min. | 0.0004 | 0.0007 | 0.0004 | Min. | 0.0004 | 0.0007 | 0.0004 |
Mean | 0.0021 | 0.0028 | 0.0005 | Mean | 0.0021 | 0.0028 | 0.0005 | |
Max. | 0.0079 | 0.0079 | 0.0008 | Max. | 0.0079 | 0.0079 | 0.0008 | |
Pb | Min. | 0.0035 | 0.0035 | 0.0120 | Min. | 0.0055 | 0.0055 | 0.0190 |
Mean | 0.0201 | 0.0209 | 0.0120 | Mean | 0.0320 | 0.0332 | 0.0190 | |
Max. | 0.0555 | 0.0555 | 0.0120 | Max. | 0.0882 | 0.0882 | 0.0190 | |
CHILDREN | ||||||||
Cd | Min. | 0.0008 | 0.0012 | 0.0008 | Min. | 0.0008 | 0.0012 | 0.0008 |
Mean | 0.0051 | 0.0067 | 0.0013 | Mean | 0.0051 | 0.0067 | 0.0013 | |
Max. | 0.0190 | 0.0190 | 0.0019 | Max. | 0.0190 | 0.0190 | 0.0019 | |
Pb | Min. | 0.0084 | 0.0084 | 0.0289 | Min. | 0.0168 | 0.0168 | 0.0579 |
Mean | 0.0487 | 0.0507 | 0.0289 | Mean | 0.0974 | 0.1014 | 0.0579 | |
Max. | 0.1344 | 0.1344 | 0.0289 | Max. | 0.2688 | 0.2688 | 0.0579 |
Population | Exposure Scenario | HI | ||
---|---|---|---|---|
Total | S1 | S2 | ||
Adults | Min. | 0.11 | 0.19 | 0.13 |
Mean | 0.83 | 0.96 | 0.70 | |
Max. | 2.83 | 2.56 | 2.16 | |
Children | Min. | 0.29 | 0.46 | 0.36 |
Mean | 2.17 | 2.50 | 1.58 | |
Max. | 7.42 | 6.68 | 5.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niezgoda, M.; Dziubanek, G.; Rogala, D.; Niesler, A. Health Risks for Consumers of Forest Ground Cover Produce Contaminated with Heavy Metals. Toxics 2024, 12, 101. https://doi.org/10.3390/toxics12020101
Niezgoda M, Dziubanek G, Rogala D, Niesler A. Health Risks for Consumers of Forest Ground Cover Produce Contaminated with Heavy Metals. Toxics. 2024; 12(2):101. https://doi.org/10.3390/toxics12020101
Chicago/Turabian StyleNiezgoda, Magdalena, Grzegorz Dziubanek, Danuta Rogala, and Anna Niesler. 2024. "Health Risks for Consumers of Forest Ground Cover Produce Contaminated with Heavy Metals" Toxics 12, no. 2: 101. https://doi.org/10.3390/toxics12020101
APA StyleNiezgoda, M., Dziubanek, G., Rogala, D., & Niesler, A. (2024). Health Risks for Consumers of Forest Ground Cover Produce Contaminated with Heavy Metals. Toxics, 12(2), 101. https://doi.org/10.3390/toxics12020101