NMR Untargeted and HPLC-MS/MS Targeted Metabolomic Approaches for Evaluating Styrene Exposure in the Urine of Shipyard Workers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Urine Preparation for NMR Analysis
2.3. 1H-NMR Spectroscopy for Urinary Metabolic Profile Assessment
2.4. HPLC/Tandem Mass Spectrometry for Oxidative Stress Biomarkers Assessment
2.5. Chemical and Supplies
2.6. Data analysis and Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, R.R.; Newhook, R.; Poole, A. Styrene Production, Use, and Human Exposure. Crit. Rev. Toxicol. 1994, 24, S1–S10. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Rho, J.; Jung, B. Preparation of Magnetic Ion-Exchange Resins by the Suspension Polymerization of Styrene with Magnetite. J. Appl. Polym. Sci. 2003, 89, 2058–2067. [Google Scholar] [CrossRef]
- La Scala, J.J.; Sands, J.M.; Orlicki, J.A.; Robinette, E.J.; Palmese, G.R. Fatty Acid-Based Monomers as Styrene Replacements for Liquid Molding Resins. Polymer 2004, 45, 7729–7737. [Google Scholar] [CrossRef]
- Bond, J.A.; Bolt, H.M. Review of The Toxicology of Styrene. CRC Crit. Rev. Toxicol. 1989, 19, 227–249. [Google Scholar] [CrossRef]
- Werder, E.J.; Engel, L.S.; Richardson, D.B.; Emch, M.E.; Gerr, F.E.; Kwok, R.K.; Sandler, D.P. Environmental Styrene Exposure and Neurologic Symptoms in U.S. Gulf Coast Residents. Environ. Int. 2018, 121, 480–490. [Google Scholar] [CrossRef]
- Banton, M.I.; Bus, J.S.; Collins, J.J.; Delzell, E.; Gelbke, H.-P.; Kester, J.E.; Moore, M.M.; Waites, R.; Sarang, S.S. Evaluation of Potential Health Effects Associated with Occupational and Environmental Exposure to Styrene—An Update. J. Toxicol. Environ. Health Part B 2019, 22, 1–130. [Google Scholar] [CrossRef]
- IARC Monographs Volume 121: Styrene, Styrene-7,8-Oxide, and Quinolone—IARC. Available online: https://www.iarc.who.int/news-events/iarc-monographs-meetings-volume-121-styrene-styrene-78-oxide-and-quinolone/ (accessed on 16 March 2023).
- Gadberry, M.G.; DeNicola, D.B.; Carlson, G.P. Pneumotoxicity and Hepatotoxicity of Styrene and Styrene Oxide. J. Toxicol. Environ. Health 1996, 48, 273–294. [Google Scholar] [CrossRef] [PubMed]
- Carlson, G.P. Hepatotoxicity and Pneumotoxicity of Styrene and Its Metabolites in Glutathione S-Transferase-Deficient Mice. Drug Chem. Toxicol. 2011, 34, 440–444. [Google Scholar] [CrossRef]
- Vodicka, P.; Hemminki, K. Depurination and Imidazole Ring-Opening in Nucleosides and DNA Alkylated by Styrene Oxide. Chem. Biol. Interact. 1988, 68, 117–126. [Google Scholar] [CrossRef]
- Schrader, W.; Linscheid, M. Styrene Oxide DNA Adducts: In Vitro Reaction and Sensitive Detection of Modified Oligonucleotides Using Capillary Zone Electrophoresis Interfaced to Electrospray Mass Spectrometry. Arch. Toxicol. 1997, 71, 588–595. [Google Scholar] [CrossRef]
- Turner, M.; Mantick, N.A.; Carlson, G.P. Comparison of the Depletion of Glutathione in Mouse Liver and Lung Following Administration of Styrene and Its Metabolites Styrene Oxide and 4-Vinylphenol. Toxicology 2005, 206, 383–388. [Google Scholar] [CrossRef]
- Sati, P.C.; Khaliq, F.; Vaney, N.; Ahmed, T.; Tripathi, A.K.; Banerjee, B.D. Pulmonary Function and Oxidative Stress in Workers Exposed to Styrene in Plastic Factory: Occupational Hazards in Styrene-Exposed Plastic Factory Workers. Hum. Exp. Toxicol. 2011, 30, 1743–1750. [Google Scholar] [CrossRef]
- Ghelli, F.; Bellisario, V.; Squillacioti, G.; Grignani, E.; Garzaro, G.; Buglisi, M.; Bergamaschi, E.; Bono, R. Oxidative Stress Induction in Woodworkers Occupationally Exposed to Wood Dust and Formaldehyde. J. Occup. Med. Toxicol. 2021, 16, 4. [Google Scholar] [CrossRef]
- Chao, M.-R.; Evans, M.D.; Hu, C.-W.; Ji, Y.; Møller, P.; Rossner, P.; Cooke, M.S. Biomarkers of Nucleic Acid Oxidation – A Summary State-of-the-Art. Redox Biol. 2021, 42, 101872. [Google Scholar] [CrossRef] [PubMed]
- Pigini, D.; Paci, E.; Guglielmetti, R.; Tranfo, G.; Spagnoli, M.; Fetoni, A.; Tricarico, L.; Sisto, R. Oxidative Stress in Occupational Exposure to Styrene Vapors and Dangerous Chemicals in the Shipbuilding Industry. Front. Toxicol. 2023, 5, 1319896. [Google Scholar] [CrossRef] [PubMed]
- Ramazan, Z.K.; Sarı, İ.; Yıldırım, B.G.; Güntürk, İ.; Küçük, E.; Erşan, S.; Seydel, G.Ş. Evaluation of Oxidative Stress, 3-Nitrotyrosine, and HMGB-1 Levels in Patients with Wet Type Age-Related Macular Degeneration. J. Med. Biochem. 2022, 41, 275–281. [Google Scholar] [CrossRef]
- Sumner, S.J.; Fennell, T.R. Review of the Metabolic Fate of Styrene. Crit. Rev. Toxicol. 1994, 24, S11–S33. [Google Scholar] [CrossRef]
- Persoons, R.; Richard, J.; Herve, C.; Montlevier, S.; Marques, M.; Maitre, A. Biomonitoring of Styrene Occupational Exposures: Biomarkers and Determinants. Toxicol. Lett. 2018, 298, 99–105. [Google Scholar] [CrossRef]
- PubChem Styrene. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/7501 (accessed on 23 February 2024).
- Nicholson, J.K.; Lindon, J.C.; Holmes, E. “Metabonomics”: Understanding the Metabolic Responses of Living Systems to Pathophysiological Stimuli via Multivariate Statistical Analysis of Biological NMR Spectroscopic Data. Xenobiotica 1999, 29, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Castelli, F.A.; Rosati, G.; Moguet, C.; Fuentes, C.; Marrugo-Ramírez, J.; Lefebvre, T.; Volland, H.; Merkoçi, A.; Simon, S.; Fenaille, F.; et al. Metabolomics for Personalized Medicine: The Input of Analytical Chemistry from Biomarker Discovery to Point-of-Care Tests. Anal. Bioanal. Chem. 2022, 414, 759–789. [Google Scholar] [CrossRef] [PubMed]
- Walker, D.I.; Valvi, D.; Rothman, N.; Lan, Q.; Miller, G.W.; Jones, D.P. The Metabolome: A Key Measure for Exposome Research in Epidemiology. Curr. Epidemiol. Rep. 2019, 6, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Walker, D.I.; Uppal, K.; Zhang, L.; Vermeulen, R.; Smith, M.; Hu, W.; Purdue, M.P.; Tang, X.; Reiss, B.; Kim, S.; et al. High-Resolution Metabolomics of Occupational Exposure to Trichloroethylene. Int. J. Epidemiol. 2016, 45, 1517–1527. [Google Scholar] [CrossRef] [PubMed]
- Carter, K.A.; Simpson, C.D.; Raftery, D.; Baker, M.G. Short Report: Using Targeted Urine Metabolomics to Distinguish Between Manganese Exposed and Unexposed Workers in a Small Occupational Cohort. Front. Public Health 2021, 9. [Google Scholar] [CrossRef] [PubMed]
- Traut, N.; Heuer, K.; Lemaître, G.; Beggiato, A.; Germanaud, D.; Elmaleh, M.; Bethegnies, A.; Bonnasse-Gahot, L.; Cai, W.; Chambon, S.; et al. Insights from an Autism Imaging Biomarker Challenge: Promises and Threats to Biomarker Discovery. NeuroImage 2022, 255, 119171. [Google Scholar] [CrossRef] [PubMed]
- Periago, J.F.; Prado, C.; Luna, A. Purge-and-Trap Method for the Determination of Styrene in Urine. J. Chromatogr. A 1996, 719, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Rahimian, F.; Soleimani, E. A Review of Extraction Methods and Analytical Techniques for Styrene and Its Metabolites in Biological Matrices. Biomed. Chromatogr. 2022, 36, e5440. [Google Scholar] [CrossRef]
- Prieto, M.J.; Marhuenda, D.; Cardona, A. Analysis of Styrene and Its Metabolites in Blood and Urine of Workers Exposed to Both Styrene and Acetone. J. Anal. Toxicol. 2002, 26, 23–28. [Google Scholar] [CrossRef]
- Nagana Gowda, G.A.; Raftery, D. NMR Metabolomics Methods for Investigating Disease. Anal. Chem. 2023, 95, 83–99. [Google Scholar] [CrossRef]
- Elyashberg, M. Identification and Structure Elucidation by NMR Spectroscopy. TrAC Trends Anal. Chem. 2015, 69, 88–97. [Google Scholar] [CrossRef]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef] [PubMed]
- Buonaurio, F.; Astolfi, M.L.; Pigini, D.; Tranfo, G.; Canepari, S.; Pietroiusti, A.; D’Alessandro, I.; Sisto, R. Oxidative Stress Biomarkers in Urine of Metal Carpentry Workers Can Be Diagnostic for Occupational Exposure to Low Level of Welding Fumes from Associated Metals. Cancers 2021, 13, 3167. [Google Scholar] [CrossRef]
- Shih, Y.-M.; Cooke, M.S.; Pan, C.-H.; Chao, M.-R.; Hu, C.-W. Clinical Relevance of Guanine-Derived Urinary Biomarkers of Oxidative Stress, Determined by LC-MS/MS. Redox Biol. 2019, 20, 556–565. [Google Scholar] [CrossRef]
- Andreoli, R.; Manini, P.; Palma, G.D.; Alinovi, R.; Goldoni, M.; Niessen, W.M.A.; Mutti, A. Quantitative Determination of Urinary 8-Oxo-7,8-Dihydro-2′-Deoxyguanosine, 8-Oxo-7,8-Dihydroguanine, 8-Oxo-7,8-Dihydroguanosine, and Their Non-Oxidized Forms: Daily Concentration Profile in Healthy Volunteers. Biomarkers 2010, 15, 221–231. [Google Scholar] [CrossRef]
- Kroll, M.H.; Chesler, R.; Hagengruber, C.; Blank, D.W.; Kestner, J.; Rawe, M. Automated Determination of Urinary Creatinine without Sample Dilution: Theory and Practice. Clin. Chem. 1986, 32, 446–452. [Google Scholar] [CrossRef]
- Westerhuis, J.A.; Hoefsloot, H.C.J.; Smit, S.; Vis, D.J.; Smilde, A.K.; van Velzen, E.J.J.; van Duijnhoven, J.P.M.; van Dorsten, F.A. Assessment of PLSDA Cross Validation. Metabolomics 2008, 4, 81–89. [Google Scholar] [CrossRef]
- Westad, F.; Marini, F. Validation of Chemometric Models – A Tutorial. Anal. Chim. Acta 2015, 893, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Laffon, B.; Lema, M.; Méndez, J. Simultaneous High-Performance Liquid Chromatographic Determination of Urinary Mandelic and Phenylglyoxylic Acids as Indirect Evaluation of Styrene Exposure. J. Chromatogr. B Biomed. Sci. Appl. 2001, 753, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Solveig Walles, S.A.; Orsén, I. Single-Strand Breaks in DNA of Various Organs of Mice Induced by Styrene and Styrene Oxide. Cancer Lett. 1983, 21, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Savela, K.; Hesso, A.; Hemminki, K. Characterization of Reaction Products between Styrene Oxide and Deoxynucleosides and DNA. Chem.-Biol. Interact. 1986, 60, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Vodicka, P.E.; Linhart, I.; Novak, J.; Koskinen, M.; Vodickova, L.; Hemminki, K. 7-Alkylguanine Adduct Levels in Urine, Lungs and Liver of Mice Exposed to Styrene by Inhalation. Toxicol. Appl. Pharmacol. 2006, 210, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Phillips, D.H.; Farmer, P.B. Evidence for DNA and Protein Binding by Styrene and Styrene Oxide. Crit. Rev. Toxicol. 1994, 24, S35–S46. [Google Scholar] [CrossRef] [PubMed]
- Charette, M.; Gray, M.W. Pseudouridine in RNA: What, Where, How, and Why. IUBMB Life 2000, 49, 341–351. [Google Scholar] [CrossRef]
- Sjølin, K.-E. Correlations of Pseudouridine in 8-Hour and 24-Hour Urinary Samples Determined by High-Performance Liquid Chromatography. Urol. Res. 1982, 10, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Sander, G.; Topp, H.; Heller-Schöch, G.; Wieland, J.; Schöch, G. Ribonucleic Acid Turnover in Man: RNA Catabolites in Urine as Measure for the Metabolism of Each of the Three Major Species of RNA. Clin. Sci. 1986, 71, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Ofengand, J. Ribosomal RNA Pseudouridines and Pseudouridine Synthases. FEBS Lett. 2002, 514, 17–25. [Google Scholar] [CrossRef]
- Morales, J.; Li, L.; Fattah, F.J.; Dong, Y.; Bey, E.A.; Patel, M.; Gao, J.; Boothman, D.A. Review of Poly (ADP-Ribose) Polymerase (PARP) Mechanisms of Action and Rationale for Targeting in Cancer and Other Diseases. Crit. Rev. Eukaryot. Gene Expr. 2014, 24, 15–28. [Google Scholar] [CrossRef]
- Kennedy, B.E.; Sharif, T.; Martell, E.; Dai, C.; Kim, Y.; Lee, P.W.K.; Gujar, S.A. NAD+ Salvage Pathway in Cancer Metabolism and Therapy. Pharmacol. Res. 2016, 114, 274–283. [Google Scholar] [CrossRef]
- Mann, G.; Mora, S.; Madu, G.; Adegoke, O.A.J. Branched-Chain Amino Acids: Catabolism in Skeletal Muscle and Implications for Muscle and Whole-Body Metabolism. Front. Physiol. 2021, 12. [Google Scholar] [CrossRef]
- Topping, D.L.; Clifton, P.M. Short-Chain Fatty Acids and Human Colonic Function: Roles of Resistant Starch and Nonstarch Polysaccharides. Physiol. Rev. 2001, 81, 1031–1064. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Lu, W.; Shi, J.; Su, Y.; Liu, Y.; Wang, L.; Xiao, C.; Chen, C.; Lu, Q. The Gut Microbial Metabolite Phenylacetylglycine Protects against Cardiac Injury Caused by Ischemia/Reperfusion through Activating β2AR. Arch. Biochem. Biophys. 2021, 697, 108720. [Google Scholar] [CrossRef] [PubMed]
- Karl, J.P.; Hatch, A.M.; Arcidiacono, S.M.; Pearce, S.C.; Pantoja-Feliciano, I.G.; Doherty, L.A.; Soares, J.W. Effects of Psychological, Environmental and Physical Stressors on the Gut Microbiota. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Shandilya, S.; Kumar, S.; Kumar Jha, N.; Kumar Kesari, K.; Ruokolainen, J. Interplay of Gut Microbiota and Oxidative Stress: Perspective on Neurodegeneration and Neuroprotection. J. Adv. Res. 2022, 38, 223–244. [Google Scholar] [CrossRef] [PubMed]
- Kunst, C.; Schmid, S.; Michalski, M.; Tümen, D.; Buttenschön, J.; Müller, M.; Gülow, K. The Influence of Gut Microbiota on Oxidative Stress and the Immune System. Biomedicines 2023, 11, 1388. [Google Scholar] [CrossRef] [PubMed]
- Curthoys, N.P.; Watford, M. Regulation of Glutaminase Activity and Glutamine Metabolism. Annu. Rev. Nutr. 1995, 15, 133–159. [Google Scholar] [CrossRef] [PubMed]
- Watford, M. Glutamine and Glutamate: Nonessential or Essential Amino Acids? Anim. Nutr. 2015, 1, 119–122. [Google Scholar] [CrossRef]
- Strafella, E.; Bracci, M.; Staffolani, S.; Manzella, N.; Giantomasi, D.; Valentino, M.; Amati, M.; Tomasetti, M.; Santarelli, L. Occupational Styrene Exposure Induces Stress-Responsive Genes Involved in Cytoprotective and Cytotoxic Activities. PLoS ONE 2013, 8, e75401. [Google Scholar] [CrossRef]
- Brodkin, C.A. Serum Hepatic Biochemical Activity in Two Populations of Workers Exposed to Styrene. Occup. Environ. Med. 2001, 58, 95–102. [Google Scholar] [CrossRef]
- Czaja, M.J. Induction and Regulation of Hepatocyte Apoptosis by Oxidative Stress. Antioxid. Redox Signal. 2002, 4, 759–767. [Google Scholar] [CrossRef]
Age (Mean ± SD) | Males (N) | Females (N) | Smokers (N) | Alcohol Consumption (N) | |
---|---|---|---|---|---|
Controls | 59.4 ± 4.8 | 17 | 0 | 0 | 0 |
Workers | 45.8 ± 7.1 | 17 | 0 | 6 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giampaoli, O.; Sciubba, F.; Tranfo, G.; Sisto, R.; Pigini, D.; De Rosa, M.; Patriarca, A.; Miccheli, A.; Fetoni, A.R.; Tricarico, L.; et al. NMR Untargeted and HPLC-MS/MS Targeted Metabolomic Approaches for Evaluating Styrene Exposure in the Urine of Shipyard Workers. Toxics 2024, 12, 182. https://doi.org/10.3390/toxics12030182
Giampaoli O, Sciubba F, Tranfo G, Sisto R, Pigini D, De Rosa M, Patriarca A, Miccheli A, Fetoni AR, Tricarico L, et al. NMR Untargeted and HPLC-MS/MS Targeted Metabolomic Approaches for Evaluating Styrene Exposure in the Urine of Shipyard Workers. Toxics. 2024; 12(3):182. https://doi.org/10.3390/toxics12030182
Chicago/Turabian StyleGiampaoli, Ottavia, Fabio Sciubba, Giovanna Tranfo, Renata Sisto, Daniela Pigini, Michele De Rosa, Adriano Patriarca, Alfredo Miccheli, Anna Rita Fetoni, Laura Tricarico, and et al. 2024. "NMR Untargeted and HPLC-MS/MS Targeted Metabolomic Approaches for Evaluating Styrene Exposure in the Urine of Shipyard Workers" Toxics 12, no. 3: 182. https://doi.org/10.3390/toxics12030182
APA StyleGiampaoli, O., Sciubba, F., Tranfo, G., Sisto, R., Pigini, D., De Rosa, M., Patriarca, A., Miccheli, A., Fetoni, A. R., Tricarico, L., & Spagnoli, M. (2024). NMR Untargeted and HPLC-MS/MS Targeted Metabolomic Approaches for Evaluating Styrene Exposure in the Urine of Shipyard Workers. Toxics, 12(3), 182. https://doi.org/10.3390/toxics12030182