Assessing the Health Risk and Trophic Transfer of Lead and Cadmium in Dairy Farming Systems in the Mantaro Catchment, Central Andes of Peru
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Sample Preparation and Metal Analysis
2.4. Transfer of Pb and Cd from Soil to Pasture and Milk
2.5. Risk Assessment
- DFC is the daily milk consumption, in kg;
- MC is the average metal concentration in the milk sample (mg/kg);
- WB is body weight in kg.
- DFC is the daily feed consumption (milk in kg).
- MC is the average metal concentration in milk (µg).
- WB is body weight in kg.
- TA is the average lifespan in days, which is 25,550 days (70 × 365).
2.6. Data Analysis
3. Results
3.1. Pb and Cd Concentrations in Soil, Pasture, and Milk
3.2. Weekly Intake (WI) in a Peruvian Population Aged 2–85 Years Due to Consumption of Milk Produced in the Mantaro River Middle Basin
3.3. Target Hazard Quotient (THQ) and Hazard Index (HI) in a Peruvian Population Aged 2–85 Years Due to Consumption of Milk Produced in the Mantaro River Middle Basin
3.4. Objective Risk Coefficient (THQ) and Risk Index (HI) in the Peruvian Population Aged 2–85 Years Due to Consumption of Milk Produced in Three Central Highlands Zones in Dry and Rainy Seasons
4. Discussion
4.1. Lead and Cadmium Levels in Soil, Pasture, and Fresh Milk Produced in the Mantaro River Headwaters
4.2. Weekly Intake (WI) of Pb and CD in a Peruvian Population Aged 2–85 Years Due to Consumption of Milk Produced in the Mantaro River Headwaters
4.3. Target Risk Coefficient (THQ) and Risk Index (HI) in a Peruvian Population Aged 2–85 Years Due to Consumption of Milk Produced in the Mantaro River Headwaters
4.4. Objective Risk Coefficient (THQ) and Risk Index (HI) in a Peruvian Population Aged 2–85 Years Due to Consumption of Milk Produced in the Central Plateau at Various Times of the Year
4.5. Implication of Pb and Cd Intake on Human Health
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Milk Fact Nutritional Facts. Nutritional Components of Milk. 2015. Available online: http://milkfacts.info/Nutrition%20Facts/Nutritional%20Components.htm (accessed on 15 November 2023).
- Farré, R. La leche y los productos lácteos: Fuentes dietéticas de calcio. Nutr. Hosp. 2015, 31 (Suppl. S2), 1–9. [Google Scholar] [CrossRef] [PubMed]
- González-Rodríguez, R.; Jiménez-Escobar, I.; Gutiérrez-Castrellón, P. Microbiota de la leche humana y su impacto en la salud humana. Gac. Med. Mex. 2020, 156 (Suppl. S3), S58–S66. [Google Scholar] [CrossRef] [PubMed]
- Givens, D.I. MILK Symposium review: The importance of milk and dairy foods in the diets of infants, adolescents, pregnant women, adults, and the elderly. J. Dairy Sci. 2020, 103, 9681–9699. [Google Scholar] [CrossRef] [PubMed]
- Fukase, E.; Martin, W. Economic growth, convergence, and world food demand and supply. World Dev. 2020, 132, 104954. [Google Scholar] [CrossRef]
- Chandravanshi, L.; Shiv, K.; Kumar, S. Developmental toxicity of cadmium in infants and children: A review. Environ. Anal. Health Toxicol. 2021, 36, e2021003. [Google Scholar] [CrossRef]
- Boudebbouz, A.; Boudalia, S.; Bousbia, A.; Habila, S.; Boussadia, M.I.; Gueroui, Y. Heavy metals levels in raw cow milk and health risk assessment across the globe: A systematic review. Sci. Total Environ. 2021, 751, 141830. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.C.; Nejad, Z.D.; Jung, M.C. Arsenic and heavy metals in paddy soil and polished rice contaminated by mining activities in Korea. Catena 2017, 148, 92–100. [Google Scholar] [CrossRef]
- Castro-Bedriñana, J.; Chirinos-Peinado, D.; García-Olarte, E.; Quispe-Ramos, R.; Gordillo-Espinal, S. Lead transfer in the soil-root-plant system in a highly contaminated Andean area. PeerJ 2021, 9, e10624. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zheng, N.; Su, C.; Wang, J.; Soyeurt, H. Relationships between Pb, As, Cr, and Cd in individual cows’ milk and milk composition and heavy metal contents in water, silage, and soil. Environ. Pollut. 2019, 255, 113322. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Palanisami, T.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. In-situ remediation approaches for the management of contaminated sites: A comprehensive overview. In Reviews of Environmental Contamination and Toxicology; de Voogt, P., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–115. [Google Scholar] [CrossRef]
- Nkwunonwo, U.C.; Odika, P.O.; Onyia, N.I. A Review of the Health Implications of Heavy Metals in Food Chain in Nigeria. Sci. World J. 2020, 2020, 6594109. [Google Scholar] [CrossRef]
- Wei, J.; Cen, K. Contamination and health risk assessment of heavy metals in cereals, legumes, and their products: A case study based on the dietary structure of the residents of Beijing, China. J. Clean. Prod. 2020, 260, 121001. [Google Scholar] [CrossRef]
- Atkinson, N.J.; Urwin, P.E. The interaction of plant biotic and abiotic stresses: From genes to field. J. Exp. Bot. 2012, 63, 3523–3543. [Google Scholar] [CrossRef] [PubMed]
- González-Montaña, J.R.; Senís, E.; Gutiérrez, A.; Prieto, F. Cadmium and lead in bovine milk in the mining area of the Caudal River (Spain). Environ. Monit. Assess. 2012, 184, 4029–4034. [Google Scholar] [CrossRef] [PubMed]
- Shamimeh, A.S.; Narges, S.O.; Zeinab, D.; Zahra, H.; Arvin, A.; Ehsan, S.; Moein, B. A comprehensive image of environmental toxic heavy metals in red meat: A global systematic review and meta-analysis and risk assessment study. Sci. Total Environ. 2023, 889, 164100. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.; López de Romaña, D.; Bedregal, P.; López de Romaña, G.; Chirinos, D. Lead and cadmium in maternal blood and placenta in pregnant women from a mining-smelting zone of Peru and transfer of these metals to their newborns. J. Toxicol. Environ. Health Sci. 2013, 5, 156–165. [Google Scholar]
- Castro-Bedriñana, J.; Chirinos-Peinado, D.; Ríos-Ríos, E.; Machuca-Campuzano, M.; Gómez-Ventura, E. Dietary risk of milk contaminated with lead and cadmium in areas near mining-metallurgical industries in the Central Andes of Peru. Ecotoxicol. Environ. Saf. 2021, 220, 112382. [Google Scholar] [CrossRef]
- Karimi, A.; Naghizadeh, A.; Biglari, H.; Peirovi, R.; Ghasemi, A.; Zarei, A. Assessment of human health risks and pollution index for heavy metals in farmlands irrigated by effluents of stabilization ponds. Environ. Sci. Pollut. Res. 2020, 27, 0317–10327. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, S.C.; Loaiza, D.C.; Mesa, G.P. Determinación de cadmio en leches crudas usando un biosensor amperométrico. Rev. Lasallista Investig. 2013, 9, 32–40. [Google Scholar]
- Assi, M.A.; Hezmee, M.N.; Haron, A.W.; Sabri, M.Y.; Rajion, M.A. The detrimental effects of lead on human and animal health. Vet. World 2016, 9, 660–671. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Mnayer, D.; Roointan, A.; Shahri, F.; Ayatollahi, S.A.; Sharifi-Rad, M.; Molaee, N.; Sharifi-Rad, M. Antibacterial activities of essential oils from Iranian medicinal plants on extended-spectrum β-lactamase-producing Escherichia coli. Cell. Mol. Biol. 2016, 62, 75–82. [Google Scholar] [PubMed]
- López-Rodríguez, G.; Galván, M.; González-Unzaga, M.; Hernández-Ávila, J.; Pérez-Labra, M. Blood toxic metals and hemoglobin levels in Mexican children. Environ. Monit. Assess. 2017, 189, 28342047. [Google Scholar] [CrossRef] [PubMed]
- Minkina, T.M.; Mandzhieva, S.S.; Burachevskaya, M.V.; Bauer, T.V.; Sushkova, S.N. Method of determining loosely bound compounds of heavy metals in the soil. Methods X 2018, 5, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Castro-González, N.P.; Calderón-Sánchez, F.; Pérez-Sato, M.; Soní-Guillermo, E.; Reyes-Cervantes, E. Health risk due to chronic heavy metal consumption via cow’s milk produced in Puebla, Mexico, in irrigated wastewater areas. Food Addit. Contam. Part B 2019, 12, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.I.; Mohamed, L.A.; Mahmoud, M.G.; Shaban, K.S.; Fahmy, M.A.; Ebeid, M.H. Potential ecological hazards assessment and prediction of sediment heavy metals pollution along the Gulf of Suez, Egypt. Egypt J. Aquat. Res. 2019, 45, 329–335. [Google Scholar] [CrossRef]
- Zhou, Q.; Fellows, A.; Flerchinger, G.N.; Flores, A.N. Examining Interactions Between and Among Predictors of Net Ecosystem Exchange: A Machine Learning Approach in a Semi-arid Landscape. Sci. Rep. 2019, 9, 2222. [Google Scholar] [CrossRef] [PubMed]
- Affum, A.O.; Osae, S.D.; Kwaansa-Ansah, E.E.; Miyittah, M.K. Quality assessment and potential health risk of heavy metals in leafy and non-leafy vegetables irrigated with groundwater and municipal-waste-dominated stream in the Western Region, Ghana. Heliyon 2020, 6, e05829. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Gao, Y.; Qu, X.; Zhou, X.; Yang, X.; Huang, S.; Han, L.; Zheng, N.; Wang, J. The Occurrence, Pathways, and Risk Assessment of Heavy Metals in Raw Milk from Industrial Areas in China. Toxics 2021, 9, 320. [Google Scholar] [CrossRef]
- Varol, M.; Sünbül, M.R. Macroelements and toxic trace elements in muscle and liver of fish species from the largest three reservoirs in Turkey and human risk assessment based on the worst-case scenarios. Environ. Res. 2020, 184, 26. [Google Scholar] [CrossRef]
- Amarh, F.A.; Agorku, E.S.; Voegborlo, R.B.; Ashong, G.W.; Atongo, G.A. Health risk assessment of some selected heavy metals in infant food sold in Wa, Ghana. Heliyon 2023, 9, e16225. [Google Scholar] [CrossRef]
- Hama Aziz, K.H.; Mustafa, F.S.; Omer, K.M.; Hama, S.; Hamarawf, R.F.; Rahman, K.O. Heavy metal pollution in the aquatic environment: Efficient and low-cost removal approaches to eliminate their toxicity: A review. RSC Adv. 2023, 13, 17595–17610. [Google Scholar] [CrossRef]
- Donnachie, R.L.; Johnson, A.C.; Moeckel, C.; Pereira, M.G.; Sumpter, J.P. Using risk-ranking of metals to identify which poses the greatest threat to freshwater organisms in the UK. Environ. Pollut. 2014, 194, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Lü, Q.; Xiao, Q.; Wang, Y.; Wen, H.; Han, B.; Zheng, X.; Lin, R. Risk assessment and hotspots identification of heavy metals in rice: A case study in Longyan of Fujian province, China. Chemosphere 2020, 270, 128626. [Google Scholar] [CrossRef] [PubMed]
- Chirinos-Peinado, D.; Castro-Bedriñana, J.; Ríos-Ríos, E.; Mamani-Gamarra, G.; Quijada-Caro, E.; Huacho-Jurado, A.; Nuñez-Rojas, W. Lead and Cadmium Bioaccumulation in Fresh Cow’s Milk in an Intermediate Area of the Central Andes of Peru and Risk to Human Health. Toxics 2022, 10, 317. [Google Scholar] [CrossRef]
- Castro-Bedriñana, J.; Chirinos-Peinado, D.; Ríos-Ríos, E.; Castro-Chirinos, G.; Chagua-Rodríguez, P.; De La Cruz-Calderón, G. Lead, Cadmium, and Arsenic in Raw Cow’s Milk in a Central Andean Area and Risks for the Peruvian Populations. Toxics 2023, 11, 809. [Google Scholar] [CrossRef]
- NTP. Norma Técnica Peruana N° 202.112, 1998 (Revisada el 2013). Leche y Productos Lácteos. Leche Cruda. Muestreo de Productos Lácteos, Instrucción General. 1ra Edición. 2013. Available online: https://www.inacal.gob.pe/repositorioaps/data/1/1/6/jer/pntp-en-dp/files/02-05%20de%20febrero.pdf (accessed on 19 November 2023).
- García-Gallegos, E.; Hernández-Acosta, E.; García-Nieto, E.; Acevedo-Sandoval, O. Contenido y traslocación de plomo en avena (Avena sativa, L.) y habaA (Vicia faba, L.) de un suelo contaminado. Rev. Chapingo Ser. Cienc. For. Ambient 2011, 17, 19–29. [Google Scholar] [CrossRef]
- MINAM. Guía Para Muestreo de Suelo. Ministerio del Ambiente-Perú. 2014. Available online: https://www.minam.gob.pe/wp-content/uploads/2014/04/GUIA-MUESTREO-SUELO_MINAM1.pdf (accessed on 23 September 2020).
- Martín, A.P.; Turnbull, R.E.; Rissmann, C.W.; Rieger, P. Heavy metal and metalloid concentrations in soils under pasture of Southern New Zealand. Geoderma Reg. 2017, 11, 18–27. [Google Scholar] [CrossRef]
- Bidar, G.; Pruvot, C.; Garçon, G.; Verdin, A.; Shirali, P.; Douay, F. Seasonal and annual variations of metal uptake, bioaccumulation, and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal-contaminated field. Environ. Sci. Pollut. Res. 2009, 16, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Chirinos-Peinado, D.; Castro-Bedriñana, J.; Ríos-Ríos, E.; Castro-Chirinos, G.; Quispe-Poma, Y. Lead, Cadmium, and Arsenic in Raw Milk Produced in the Vicinity of a Mini Mineral Concentrator in the Central Andes and Health Risk. Biol. Trace Elem. Res. 2023, 202, 2376–2390. [Google Scholar] [CrossRef]
- Latimer, G.W. AOAC Official Method 973.35 Lead in Evaporated Milk Atomic Absorption Spectrophotometric Method, 20th ed.; AOAC: Rockville, MD, USA, 2016; Volume I. [Google Scholar]
- Anjos, D.C.; Hernandez, F.F.; Bañuelos, G.S.; Dangi, S.R.; Tirado-Corbalá, R.; da Silva, F.N.; Filho, P.F. Microbial community and heavy metals content in soils along the Curu River in Ceará, Brazil. Geoderma Reg. 2018, 14, e00173. [Google Scholar] [CrossRef]
- MINAM. Resolución Ministerial No. 182-2017-MINAM. Estándares Nacionales de Calidad Ambiental (ECA), Para Suelo. 2017. Available online: https://goo.su/5jv9Vrk (accessed on 23 September 2020).
- Boularbah, A.; Schwartz, C.; Bitton, G.; Morel, J.L. Heavy metal contamination from mining sites in South Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils. Chemosphere 2006, 63, 802–810. [Google Scholar] [CrossRef]
- Boularbah, A.; Schwart, C.; Bitton, G.; Aboudrar, W.; Ouhammou, A.; Morel, J.L. Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere 2006, 63, 811–817. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2007; p. 550. [Google Scholar]
- OJEU. Commission Regulation (EU) No 1275/2013. Official Journal of the European Union. 2013. Available online: https://acortar.link/OssuRK (accessed on 23 September 2020).
- CXS 193-1995; Codex Alimentarius General Standard for Contaminants and Toxins in Food and Feed. FAO: Rome, Italy, 1995.
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union. 2006, 364, 5–24. [Google Scholar]
- IDF. Standard I. International Dairy Federation Bulletin, Chemical Residues in Milk and Milk Products. In IDF Document; IDF: Tel Aviv, Israel, 1979; p. 133. [Google Scholar]
- Papaioannou, D.; Kalavrouziotis, I.K.; Koukoulakis, P.H.; Papadopoulos, F.; Psoma, P. Interrelationships of metal transfer factor under wastewater reuse and soil pollution. J. Environ. Manag. 2018, 216, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Drozdova, I.; Alekseeva-Popova, N.; Dorofeyev, V.; Bech, J.; Belyaeva, S.; Roca, N. A comparative study of the accumulation of trace elements in Brassicaceae plant species with phytoremediation potential. Appl. Geochem. 2019, 108, 104377. [Google Scholar] [CrossRef]
- USEPA. Integrated Risk Information System; Environmental Protection Agency: Washington, DC, USA, 2015; Volume 2015.
- Muñoz, O.; Zamorano, P.; Garcia, O.; Bastias, J.M. Arsenic, cadmium, mercury, sodium, and potassium concentrations in common foods and estimated daily intake of the population in Valdivia (Chile) using a total diet study. Food Chem. Toxicol. 2017, 109 Pt 2, 1125–1134. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, Q.; Yuan, Y.; Sun, W. Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China. Food Chem. 2020, 316, 126213. [Google Scholar] [CrossRef]
- Dror, D.K.; Allen, L.H. Dairy product intake in children and adolescents in developed countries: Trends, nutritional contribution, and a review of association with health outcomes. Nutr. Rev. 2013, 72, 68–81. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.M.; Micha, R.; Khatibzadeh, S.; Shi, P.; Lim, S.; Andrews, K.G.; Engell, R.E.; Ezzati, M.; Mozaffarian, D. Global, regional, and national consumption of sugar-sweetened beverages, fruit juices, and milk: A systematic assessment of beverage intake in 187 countries. PLoS ONE 2015, 10, 0124845. [Google Scholar] [CrossRef]
- Aparco, J.P.; Bautista-Olórtegui, W.; Astete-Robilliard, L.; Pillaca, J. Evaluación del estado nutricional, patrones de consumo alimentario y de actividad física en escolares del Cercado de Lima. Rev. Peru. Med. Exp. Salud Publica 2016, 33, 633–639. Available online: https://rpmesp.ins.gob.pe/index.php/rpmesp/article/view/2545 (accessed on 23 September 2020). [CrossRef]
- Grenov, B.; Larnkjær, A.; Mølgaard, C.; Michaelsen, K.F. Role of milk and dairy products in growth of the child. Nestle Nutr. Inst. Workshop 2020, 93, 77–90. [Google Scholar] [CrossRef]
- CENAN-INEI. Estado Nutricional en el Perú. Componente Nutricional ENAHO-CENANz-INS. Ministerio de Salud, Lima, Perú. 2011. Available online: https://bvs.minsa.gob.pe/local/MiNSA/1843.pdf (accessed on 12 July 2020).
- Atique Ullah, A.K.M.; Maksud, M.A.; Khan, S.R.; Lutfa, L.N.; Quraishi, S.B. Dietary intake of heavy metals from eight highly consumed species of cultured fish and possible human health risk implications in Bangladesh. Toxicol. Rep. 2017, 4, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Christophoridis, C.; Kosma, A.; Evgenakis, E.; Bourliva, A.; Fytianos, K. Determination of heavy metals and health risk assessment of cheese products consumed in Greece. J. Food Compos. Anal. 2019, 82, 103238. [Google Scholar] [CrossRef]
- Bandara, S.B.; Towle, K.M.; Monnot, A.D. A human health risk assessment of heavy metal ingestion among consumers of protein powder supplements. Toxicol. Rep. 2020, 7, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Lead dietary exposure in the European population. EFSA J. 2012, 10, 2831. [Google Scholar] [CrossRef]
- EFSA. Cadmium dietary exposure in the European population. EFSA J. 2012, 10, 2551. [Google Scholar] [CrossRef]
- JECFA. Joint FAO/WHO Expert Committee on Food Additives (2011) Evaluation of Certain Food Additives and Contaminants. 73 Report, 2010; Technical Report Series; WHO: Geneva, Switzerland, 2011; p. 237. Available online: http://apps.who.int/iris/bitstream/handle/10665/44515/WHO_TRS_960_eng.pdf (accessed on 24 October 2023).
- JWH; Joint and World Health Organization. Safety Evaluation of Certain Food Additives and Contaminants: Prepared by the Seventy Fourth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); World Health Organization: Geneva, Switzerland, 2012. Available online: https://www.who.int/publications/i/item/9789241660655 (accessed on 14 July 2020).
- EFSA. EFSA Panel on Contaminants in the Food Chain (CONTAM); Scientific opinion on tolerable weekly intake for cadmium. EFSA J. 2011, 9, 1975. [Google Scholar] [CrossRef]
- Rahmani, J.; Fakhri, Y.; Shahsavani, A.; Bahmani, Z.; Urbina, M.A.; Chirumbolo, S.; Keramati, H.; Moradi, B.; Bay, A.; Bjørklund, G. A systematic review and meta-analysis of metal concentrations in canned tuna fish in Iran and human health risk assessment. Food Chem. Toxicol. 2018, 118, 753–765. [Google Scholar] [CrossRef] [PubMed]
- USEPA. USEPA Regional Screening Level (RSL) Summary Table; USEPA: Washington, DC, USA, 2011.
- USEPA. United States Environmental Protection Agency. Reference Dose (RfD): Description and Use in Health Risk Assessments. 2012. Available online: https://www.epa.gov (accessed on 14 July 2020).
- Khan, N.; Jeong, I.S.; Hwang, I.M.; Kim, J.S.; Choi, S.H.; Nho, E.Y.; Choi, J.Y.; Park, K.S.; Kim, K.S. Analysis of minor and trace elements in milk and yogurts by inductively coupled plasma-mass spectrometry (ICP-MS). Food Chem. 2014, 147, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, P.; McBride, M.B.; Xia, H.; Li, N.; Li, Z. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci. Total Environ. 2009, 407, 1551–1561. [Google Scholar] [CrossRef]
- Liu, X.; Song, Q.; Tang, Y.; Li, W.; Xu, J.; Wu, J.; Wang, F.; Brookes, P.C. Human health risk assessment of heavy metals in soil-vegetable system: A multi-medium analysis. Sci. Total Environ. 2013, 463–464, 530–540. [Google Scholar] [CrossRef]
- Singh, D.; Kumar, A. Quantification of metal uptake in Spinacia oleracea irrigated with water containing a mixture of CuO and ZnO nanoparticles. Chemosphere 2020, 243, 125239. [Google Scholar] [CrossRef] [PubMed]
- ATSDR. Public Health Statement for Cadmium. Agency for Toxic Substances and Disease Registry (ATSDR). 2012. Available online: http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=48&tid=15 (accessed on 12 July 2020).
- Castro, J.; Chirinos-Peinado, D.; Peñaloza, R. Lead bioaccumulation in root and aerial part of natural and cultivated pastures in highly contaminated soils in Central Andes of Peru. Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 126–132. [Google Scholar] [CrossRef]
- Hou, Q.; Yang, Z.; Ji, J.; Yu, T.; Chen, G.; Li, J.; Xia, X.; Zhang, M.; Yuan, X. Annual net input fluxes of heavy metals of the agroecosystem in the Yangtze River delta, China. J. Geochem. Explor. 2014, 139, 68–84. [Google Scholar] [CrossRef]
- Kozhanova, N.; Sarsembayeva, N.; Lozowicka, B.; Kozhanov, Z. Seasonal content of heavy metals in the “soil-feed-milk-manure” system in horse husbandry in Kazakhstan. Vet. World 2021, 14, 2947–2956. [Google Scholar] [CrossRef] [PubMed]
- Boudebbouz, A.; Boudalia, S.; Bousbia, A.; Gueroui, Y.; Boussadia, M.I.; Chelaghmia, M.L.; Zebsa, R.; Affoune, A.M.; Symeon, G.K. Determination of Heavy Metal Levels and Health Risk Assessment of Raw Cow Milk in Guelma Region, Algeria. Biol. Trace Elem. Res. 2022, 201, 1704–1716. [Google Scholar] [CrossRef]
- Norouzirad, R.; González-Montaña, J.R.; Martínez-Pastor, F.; Hosseini, H.; Shahrouzian, A.; Khabazkhoob, M.; Ali Malayeri, F.; Moallem Bandani, H.; Paknejad, M.; Foroughi-nia, B.; et al. Lead and cadmium levels in raw bovine milk and dietary risk assessment in areas near petroleum extraction industries. Sci. Total Environ. 2018, 635, 308–314. [Google Scholar] [CrossRef]
- Khan, S.; Cao, Q.; Zheng, Y.M.; Huang, Y.Z.; Zhu, Y.G. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar] [CrossRef]
- Chirinos-Peinado, D.; Castro-Bedriñana, J.; García-Olarte, E.; Quispe-Ramos, R.; Gordillo-Espinal, E. Transfer of lead from soil to pasture grass and milk near a metallurgical complex in the Peruvian Andes. Transl. Anim. Sci. 2021, 5, txab003. [Google Scholar] [CrossRef]
- Tepanosyan, G.; Sahakyan, L.; Belyaeva, O.; Maghakyan, N.; Saghatelyan, A. Human health risk assessment and riskiest heavy metal origin identification in urban soils of Yerevan, Armenia. Chemosphere 2017, 184, 1230–1240. [Google Scholar] [CrossRef]
- Ha, T.T.; Tu, V.; Tam, K.B.; Ha, T.H. Accumulation of arsenic and heavy metals in native and cultivated plant species in a lead recycling area in Vietnam. Minerals 2019, 9, 132. [Google Scholar] [CrossRef]
- European-Union. Commission Regulation (EU) 2015/1005 of 25 June 2015 Amending Regulation (EC) N° 1881/2006 as Regards Maximum Levels of Lead in Certain Foodstufs. Off. J. Eur. Union 2015, 161, 9–12. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R1005&from=EN (accessed on 16 July 2020).
- Codex Alimentarius. Guidelines for risk analysis of foodborne antimicrobial resistance. CAC/GL 2011, 77, 1–29. [Google Scholar]
- Schipper, L.A.; Sparling, G.P.; Fisk, L.M.; Dodd, M.B.; Power, I.L.; Littler, R.A. Rates of accumulation of cadmium and uranium in a New Zealand hill farm soil as a result of long-term use of phosphate fertilizer. Agric. Ecosyst. Environ. 2011, 144, 95–101. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Y.; Yang, M.; Li, E. Content of heavy metals in animal feeds and manures from farms of different scales in Northeast China. Int. J. Environ. Res. Public Health 2012, 9, 2658–2668. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Liu, H.; Qu, X.; Zhou, X.; Gao, Y.; Yang, H.; Zheng, N.; Wang, J. Heavy metals in raw milk and dietary exposure assessment in the vicinity of leather-processing plants. Biol. Trace Elem. Res. 2020, 199, 3303–3311. [Google Scholar] [CrossRef]
- Eleboudi, A.A.; El-Makarem, H.A.; Hadour, H.H.A. Heavy metals residues in some dairy products. Alex. J. Vet. Sci. 2017, 52, 334–346. [Google Scholar] [CrossRef]
- Shahbazi, Y.; Ahmadi, F.; Fakhari, F. Voltammetric determination of Pb, Cd, Zn, Cu, and Se in milk and dairy products collected from Iran: An emphasis on permissible limits and risk assessment of exposure to heavy metals. Food Chem. 2016, 192, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Muhib, I.; Alamgir, M.; Chowdhury, Z.; Easha, N.J.; Rahman, M. Investigation of heavy metal contents in Cow milk samples from area of Dhaka, Bangladesh. Int. J. Food. Contam. 2016, 3, 16. [Google Scholar] [CrossRef]
- Bilandžić, N.; Sedak, M.; Čalopek, B.; Luburić, D.D.B.; Solomun Kolanović, B.; Varenina, I.; Dokić, M.; Kmetič, I.; Murati, T. Lead. Concentrations in Raw Cow and Goat Milk. Collected in Rural. Areas of Croatia from 2010 to 2014. Bull. Environ. Contam. Toxicol. 2016, 96, 645–649. [Google Scholar] [CrossRef]
- Agrawal, S.B.; Singh, A.; Sharma, R.K.; Agrawal, M. Bioaccumulation of heavy metals in vegetables: A threat to human health Terr. Aquat. Environ. Toxicol. 2007, 1, 13–23. [Google Scholar]
- Chang, J.H.; Dong, C.D.; Shen, S.Y. The lead contaminated land treated by the circulation-enhanced electrokinetics and phytoremediation in field scale. J. Hazard. Mater. 2019, 368, 894–898. [Google Scholar] [CrossRef]
- Sun, K.; Wen, D.; Yang, N.; Wang, K.; Li, X.; Yu, L. Heavy metal and soil nutrient accumulation and ecological risk assessment of vegetable fields in representative facilities in Shandong Province, China. Environ. Monit. Assess. 2019, 191, 240. [Google Scholar] [CrossRef] [PubMed]
- Sihlahla, M.; Mouri, H.; Nomngongo, P.N. Uptake of trace elements by vegetable plants grown on agricultural soils. J. Afr. Earth Sci. 2019, 160, 103635. [Google Scholar] [CrossRef]
- USEPA. EPA Region III Risk-Based Concentration (RBC) Table 2008 Region III, 1650 Arch Street, Philadelphia, Pennsylvania 19103; USEPA: Washington, DC, USA, 2012.
- Khan, M.U.; Malik, R.N.; Muhammad, S.; Ullah, F.; Qadir, A. Health Risk Assessment of Consumption of Heavy Metals in Market Food Crops from Sialkot and Gujranwala Districts, Pakistan. Hum. Ecol. Risk Assess. Int. J. 2014, 21, 327–337. [Google Scholar] [CrossRef]
- Amer, A.A.; El-Makarem, H.S.; El-Maghraby, M.A.; Abou-Alella, S.A. Lead, cadmium, and aluminum in raw bovine milk: Residue level, estimated intake, and fate during artisanal dairy manufacture. J. Adv. Vet. Anim. Res. 2011, 8, 454–464. [Google Scholar] [CrossRef]
- Sharif, S.; Sohrabvandi, S.; Mofd, V.; Javanmardi, F.; Khanniri, E.; Mortazavian, A.M. The assessment of lead concentration in raw milk collected from some major dairy farms in Iran and evaluation of associated health risk. J. Environ. Health Sci. Eng. 2022, 20, 181–186. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Bonomelli, C.; Bonilla, C.; Valenzuela, A. Efecto de la fertilización fosforada sobre el contenido de cadmio en cuatro suelos de Chile. Pesqui. Agropecu. Bras. 2003, 38, 1179–1186. [Google Scholar] [CrossRef]
- Ahmed, A.S.; Rahman, M.; Sultana, S.; Babu, S.M.; Sarker, M.S. Bioaccumulation and heavy metal concentration in tissues of some commercial fishes from the Meghna River Estuary in Bangladesh and human health implications. Mar. Pollut. Bull. 2019, 145, 436–447. [Google Scholar] [CrossRef]
- Edokpayi, J.N.; Odiyo, J.O.; Popoola, E.O.; Msagati, T.A. Evaluation of temporary seasonal variation of heavy metals and their potential ecological risk in Nzhelele River, South Africa. Open Chem. 2017, 15, 272–282. [Google Scholar] [CrossRef]
- Edokpayi, J.N.; Odiyo, J.O.; Popoola, O.E.; Msagati, T.A. Assessment of Trace Metals Contamination of Surface Water and Sediment: A Case Study of Mvudi River, South Africa. Sustainability 2016, 8, 135. [Google Scholar] [CrossRef]
- Song, S.; Liu, N.; Wang, G.; Wang, Y.; Zhang, X.; Zhao, X.; Chang, H.; Yu, Z.; Liu, X. Sex Specificity in the Mixed Effects of Blood Heavy Metals and Cognitive Function on Elderly: Evidence from NHANES. Nutrients 2023, 5, 2874. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, O.D.; González, E.D.F.; Blanco, A.T.; Pineda, B.; Gómez, M.S.; Marcial, Q.J.; Carrillo, M.P.; Pérez de la Cruz, V. Cognitive Impairment Induced by Lead Exposure during Lifespan: Mechanisms of Lead Neurotoxicity. Toxics 2021, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Zaw, Y.H.; Taneepanichskul, N. Blood heavy metals and brain-derived neurotrophic factor in the first trimester of pregnancy among migrant workers. PLoS ONE 2019, 14, e0218409. [Google Scholar] [CrossRef] [PubMed]
- Skogheim, T.S.; Weyde, K.V.; Engel, S.M.; Aase, H.; Surén, P.; Øie, G.M.; Biele, G.; Reichborn-Kjennerud, T.; Caspersen, I.H.; Hornig, M.; et al. Metal and essential element concentrations during pregnancy and associations with autism spectrum disorder and attention-deficit/hyperactivity disorder in children. Environ. Int. 2021, 152, 106468. [Google Scholar] [CrossRef] [PubMed]
- Jaga, K.; Dharmani, C. The Interrelation between Organophosphate Toxicity and the Epidemiology of Depression and Suicide. Rev. Environ. Health 2007, 22, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Ayuso-Álvarez, A.; Simón, L.; Nuñez, O.; Rodríguez-Blázquez, C.; Martín-Méndez, I.; Bel-Lán, A.; López-Abente, G.; Merlo, J.; Fernandez-Navarro, P.; Galán, I. Association between Heavy Metals and Metalloids in Topsoil and Mental Health in the Adult Population of Spain. Environ. Res. 2019, 179, 108784. [Google Scholar] [CrossRef] [PubMed]
- Berk, M.; Williams, L.J.; Andreazza, A.C.; Pasco, J.A.; Dodd, S.; Jacka, F.N.; Moylan, S.; Reiner, E.J.; Magalhaes, P.V. Pop, heavy metal and the blues: Secondary analysis of persistent organic pollutants (POP), heavy metals and depressive symptoms in the NHANES National Epidemiological Survey. BMJ Open 2014, 4, e005142. [Google Scholar] [CrossRef] [PubMed]
- Theorell, T.; Hammarström, A.; Aronsson, G.; Träskman Bendz, L.; Grape, T.; Hogstedt, C.; Marteinsdottir, I.; Skoog, I.; Hall, C. A Systematic Review Including Meta-Analysis of Work Environment and Depressive Symptoms. BMC Public Health 2015, 15, 738. [Google Scholar] [CrossRef] [PubMed]
- Jurczak, A.; Brodowska, A.; Szkup, M.; Prokopowicz, A.; Karakiewicz, B.; Łój, B.; Kotwas, A.; Brodowska, A.; Grochans, E. Influence of Pb and Cd Levels in Whole Blood of Postmenopausal Women on the Incidence of Anxiety and Depressive Symptoms. Ann. Agric. Environ. Med. 2018, 25, 219–223. [Google Scholar] [CrossRef]
- USP. Official from 1 December 2017. The United States Pharmacopeia Convention. 2017. Available online: https://www.usp.org/sites/default/files/usp/document/our-work/chemical-medicines/key-issues/232-40-35-1s.pdf (accessed on 18 July 2020).
- He, B.; Wang, Y.; Li, S.; Zhao, Y.; Ma, X.; Wang, W.; Li, X.; Zhang, Y. A cross–sectional survey of preschool children: Exploring heavy metal exposure, neurotransmitters, and neurobehavioural relationships and mediation effects. Ecotoxicol. Environ. Saf. 2021, 220, 112391. [Google Scholar] [CrossRef]
- Mann, D. Study Links Cadmium Exposure to Learning Disabilities in Kids. WebMD, LLC. 2012. Available online: https://www.webmd.com/children/news/20120127/study-links-cadmium-exposure-learning-disabilities-kids (accessed on 14 July 2020).
- Vega, J.; De Coll, J.; Lermo, J.; Escobar, J.; Díaz, M.; Castro, J. Niveles Intelectuales y Ansiedad en Niños con Intoxicación Plúmbica Crónica. Colegio “María Reiche” Callao-Perú, 2002. An. Fac. Med. 2005, 66, 142–147. Available online: http://www.scielo.org.pe/pdf/afm/v66n2/a08v66n2.pdf (accessed on 17 September 2023). [CrossRef]
- Astete, J.; Gastañaga, M.C.; Fiestas, V.; Oblitas, T.; Sabastizagal, I.; Lucero, M.; Abadíe, J.M.; Muñoz, M.E.; Valverde, A.; Suarez, M. Comunicable Diseases, Mental Health and Exposure to Environmental Pollutants in Population Living Near Las Bambas Mining Project before Exploitation Phase, Peru 2006. Rev. Peru. Med. Exp. Salud Publica 2010, 27, 512–519. Available online: http://www.scielo.org.pe/pdf/rins/v27n4/a04v27n4.pdf (accessed on 14 July 2020). [CrossRef] [PubMed]
Pb | Cd | ||||||
---|---|---|---|---|---|---|---|
Soil | Pasture | Milk | Soil | Pasture | Milk | ||
Paccha | Rain | 217.81 ± 39.48 | 20.10 ± 3.92 | 0.581 ± 0.018 | 4.848 ± 0.791 | 0.601 ± 0.084 | 0.020 ± 0.007 |
Dry | 217.71 ± 37.71 | 20.10 ± 3.04 | 0.573 ± 0.021 | 4.605 ± 0.783 | 0.564 ± 0.074 | 0.017 ± 0.007 | |
Average | 217.76 a | 20.10 b | 0.577 c | 4.726 a | 0.582 b | 0.018 c | |
Mantaro | Rain | 56.11 ± 14.31 | 4.80 ± 1.91 | 0.015 ± 0.003 | 10.05 ± 4.05 | 2.846 ± 0.93 | 0.603 ± 0.050 |
Dry | 55.00 ± 3.96 | 3.78 ± 1.20 | 0.014 ± 0.003 | 5.74 ± 1.17 | 2.853 ± 1.37 | 0.407 ± 0.092 | |
Average | 55.55 a | 4.29 b | 0.015 c | 7.896 a | 2.849 b | 0.505 c | |
Yauris | Rain | 652.35 ± 143 | 23.17 ± 7.49 | 0.064 ± 0.008 | 7.089 ± 2.16 | 0.248 ± 0.35 | 0.015 ± 0.005 |
Dry | 354.71 ± 137 | 10.33 ± 6.02 | 0.055 ± 0.028 | 0.008 ± 0.006 | 0.002 ± 0.0007 | 0.006 ± 0.004 | |
Average | 503.53 a | 16.75 b | 0.060 c | 3.549 a | 0.125 b | 0.011 c | |
Mean | Rain | 308.76 ± 267 | 16.02 ± 9.48 | 0.220 ± 0.25 | 7.329 ± 3.41 | 1.231 ± 1.29 | 0.213 ± 0.28 |
Dry | 209.14 ± 147 | 11.40 ± 7.80 | 0.214 ± 0.257 | 3.451 ± 2.62 | 1.139 ± 1.46 | 0.143 ± 0.20 | |
Average | 258.95 a | 13.71 b | 0.217 c | 5.390 a | 1.185 b | 0.178 c | |
MPL, mg/kg | 70 | 30 | 0.02 | 1.4 | 1.0 | 0.0026 | |
Transfer percentage | 100.00 | 5.30 | 1.58 | 100.00 | 21.99 | 15.00 | |
Bioaccumulation percentage | 100.00 | 0.08 | 100.00 | 3.30 |
EDI Lead | EDI Cadmium | WI Lead | WI Cadmium | TWI | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Age | Man | Woman | Man | Woman | Man | Woman | Man | Woman | Lead | Cadmium |
2 | 7.000 | 7.356 | 5.742 | 6.034 | 607.60 | 607.60 | 498.40 | 498.40 | 310.00 | 71.92 |
5 | 4.849 | 4.989 | 3.978 | 4.092 | 607.60 | 607.60 | 498.40 | 498.40 | 447.50 | 103.82 |
10 | 3.519 | 3.495 | 2.886 | 2.867 | 729.12 | 729.12 | 598.08 | 598.08 | 740.00 | 171.68 |
15 | 2.099 | 2.201 | 1.721 | 1.805 | 759.50 | 759.50 | 623.00 | 623.00 | 1292.50 | 299.86 |
20 | 0.345 | 0.430 | 0.283 | 0.353 | 145.82 | 161.01 | 119.62 | 132.08 | 1507.50 | 349.74 |
25 | 0.318 | 0.408 | 0.260 | 0.335 | 145.82 | 161.01 | 119.62 | 132.08 | 1640.00 | 380.48 |
30 | 0.314 | 0.386 | 0.258 | 0.317 | 145.82 | 161.01 | 119.62 | 132.08 | 1657.50 | 384.54 |
35 | 0.313 | 0.388 | 0.257 | 0.318 | 145.82 | 161.01 | 119.62 | 132.08 | 1662.50 | 385.70 |
40 | 0.294 | 0.363 | 0.241 | 0.298 | 142.79 | 156.46 | 117.12 | 128.34 | 1732.50 | 401.94 |
45 | 0.306 | 0.365 | 0.251 | 0.300 | 142.79 | 156.46 | 117.12 | 128.34 | 1665.00 | 386.28 |
50 | 0.302 | 0.368 | 0.248 | 0.302 | 142.79 | 156.46 | 117.12 | 128.34 | 1690.00 | 392.08 |
55 | 0.301 | 0.369 | 0.247 | 0.303 | 142.79 | 156.46 | 117.12 | 128.34 | 1695.00 | 393.24 |
60 | 0.402 | 0.484 | 0.330 | 0.397 | 182.28 | 200.51 | 149.52 | 164.47 | 1620.00 | 375.84 |
65 | 0.404 | 0.508 | 0.332 | 0.417 | 182.28 | 200.51 | 149.52 | 164.47 | 1610.00 | 373.52 |
70 | 0.439 | 0.526 | 0.360 | 0.431 | 182.28 | 200.51 | 149.52 | 164.47 | 1482.50 | 343.94 |
75 | 0.418 | 0.553 | 0.343 | 0.454 | 182.28 | 200.51 | 149.52 | 164.47 | 1557.50 | 361.34 |
80 | 0.463 | 0.541 | 0.379 | 0.444 | 182.28 | 200.51 | 149.52 | 164.47 | 1407.50 | 326.54 |
85 | 0.468 | 0.579 | 0.384 | 0.475 | 182.28 | 200.51 | 149.52 | 164.47 | 1390.00 | 322.48 |
THQ Lead | THQ Cadmium | HI | ||||
---|---|---|---|---|---|---|
Age | Man | Woman | Man | Woman | Man | Woman |
2 | 2.00 | 2.10 | 5.74 | 6.03 | 7.74 | 8.14 |
5 | 1.39 | 1.43 | 3.98 | 4.09 | 5.36 | 5.52 |
10 | 1.01 | 1.00 | 2.89 | 2.87 | 3.89 | 3.87 |
15 | 0.60 | 0.63 | 1.72 | 1.81 | 2.32 | 2.43 |
20 | 0.10 | 0.12 | 0.28 | 0.35 | 0.38 | 0.48 |
25 | 0.09 | 0.12 | 0.26 | 0.33 | 0.35 | 0.45 |
30 | 0.09 | 0.11 | 0.26 | 0.32 | 0.35 | 0.43 |
35 | 0.09 | 0.11 | 0.26 | 0.32 | 0.35 | 0.43 |
40 | 0.08 | 0.10 | 0.24 | 0.30 | 0.33 | 0.40 |
45 | 0.09 | 0.10 | 0.25 | 0.30 | 0.34 | 0.40 |
50 | 0.09 | 0.11 | 0.25 | 0.30 | 0.33 | 0.41 |
55 | 0.09 | 0.11 | 0.25 | 0.30 | 0.33 | 0.41 |
60 | 0.11 | 0.14 | 0.33 | 0.40 | 0.44 | 0.54 |
65 | 0.12 | 0.15 | 0.33 | 0.42 | 0.45 | 0.56 |
70 | 0.13 | 0.15 | 0.36 | 0.43 | 0.49 | 0.58 |
75 | 0.12 | 0.16 | 0.34 | 0.45 | 0.46 | 0.61 |
80 | 0.13 | 0.15 | 0.38 | 0.44 | 0.51 | 0.60 |
85 | 0.13 | 0.17 | 0.38 | 0.47 | 0.52 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chirinos-Peinado, D.; Castro-Bedriñana, J.; Barnes, E.P.G.; Ríos-Ríos, E.; García-Olarte, E.; Castro-Chirinos, G. Assessing the Health Risk and Trophic Transfer of Lead and Cadmium in Dairy Farming Systems in the Mantaro Catchment, Central Andes of Peru. Toxics 2024, 12, 308. https://doi.org/10.3390/toxics12050308
Chirinos-Peinado D, Castro-Bedriñana J, Barnes EPG, Ríos-Ríos E, García-Olarte E, Castro-Chirinos G. Assessing the Health Risk and Trophic Transfer of Lead and Cadmium in Dairy Farming Systems in the Mantaro Catchment, Central Andes of Peru. Toxics. 2024; 12(5):308. https://doi.org/10.3390/toxics12050308
Chicago/Turabian StyleChirinos-Peinado, Doris, Jorge Castro-Bedriñana, Eustace P. G. Barnes, Elva Ríos-Ríos, Edgar García-Olarte, and Gianfranco Castro-Chirinos. 2024. "Assessing the Health Risk and Trophic Transfer of Lead and Cadmium in Dairy Farming Systems in the Mantaro Catchment, Central Andes of Peru" Toxics 12, no. 5: 308. https://doi.org/10.3390/toxics12050308
APA StyleChirinos-Peinado, D., Castro-Bedriñana, J., Barnes, E. P. G., Ríos-Ríos, E., García-Olarte, E., & Castro-Chirinos, G. (2024). Assessing the Health Risk and Trophic Transfer of Lead and Cadmium in Dairy Farming Systems in the Mantaro Catchment, Central Andes of Peru. Toxics, 12(5), 308. https://doi.org/10.3390/toxics12050308