Effects of Heavy Metal Pollution on the Element Distribution in Hydrobios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collection
2.2. Detection of Physical and Chemical Properties of Water Sample
2.3. Test of Heavy Metal Content in Polluted Water, Fish, and Plants
2.4. Setting Up the Human Health Risk Assessment Model
2.5. Quality and Control
2.6. Statistics and Analysis
3. Results
3.1. Physical and Chemical Properties of Water Samples in Industrial Areas
3.2. The Metal Content of Water Sample in Each Industrial Area
3.3. The Contents of Heavy Metals in Aquatic Plants
3.4. The Content of Heavy Metal Elements in Fish
3.5. Analysis of Elements in Aquatic Plants in Water Sample
3.6. Analysis of Element Content in Fish in Water Sample
3.7. Human Health Risk Assessment Model
3.8. Analysis of the Correlation between Heavy Metal Elements in Wastewater and Fish
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, X.Z.; Wang, B.Q.; He, X.J.; Xia, D.M. Analysis and prediction of water resources development and utilization in Zhejiang Province. Zhejiang Hydrotech. 2021, 49, 1–7. [Google Scholar]
- Wang, T.; Zhang, J.; Li, Y.; Xu, X.; Li, Y.; Zeng, X.; Huang, G.; Lin, P. Optimal design of two-dimensional water trading based on risk aversion for sustainable development of Daguhe watershed, China. J. Environ. Manag. 2022, 309, 114679. [Google Scholar] [CrossRef] [PubMed]
- Emenike, E.C.; Iwuozor, K.O.; Anidiobi, S.U. Heavy Metal Pollution in Aquaculture: Sources, Impacts and Mitigation Techniques. Biol. Trace Elem. Res. 2022, 200, 4476–4492. [Google Scholar] [CrossRef] [PubMed]
- Oyugi, A.M.; Kibet, J.K.; Adongo, J.O. A review of the health implications of heavy metals and pesticide residues on khat users. Bull. Natl. Res. Cent. 2021, 45, 158. [Google Scholar] [CrossRef]
- Pokorska-Niewiada, K.; Rajkowska-Myśliwiec, M.; Protasowicki, M. Acute Lethal Toxicity of Heavy Metals to the Seeds of Plants of High Importance to Humans. Bull. Environ. Contam. Toxicol. 2018, 101, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.L.; Xu, W.J.; Guo, S.C.; Zhou, J.Y.; Lu, T.; Xing, P.H.; Cai, Q.; Sun, R. Harm of heavy metal pollution in water body and its control technology. Mod. Agric. Sci. Technol. 2022, 6, 129–132. [Google Scholar]
- Bo, S.J.; Xu, Z.R. Effects of cadmium on mitochondrial structure and energy metabolism in gill of Pelteobagrus fulvidraco. Acta Appl. Ecol. 2006, 17, 1213–1217. [Google Scholar]
- Adetutu, A.; Adegbola, P.I.; Aborisade, A.B. Heavy metal concentrations in four fish species from the Lagos lagoon and their human health implications. Heliyon 2023, 9, e21689. [Google Scholar] [CrossRef]
- Fu, Z.; Xi, S. The effects of heavy metals on human metabolism. Toxicol. Mech. Methods 2020, 30, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, Y.; Mohseni-Bandpei, A.; Conti, G.O.; Ferrante, M.; Cristaldi, A.; Jeihooni, A.K.; Dehkordi, M.K.; Alinejad, A.; Rasoulzadeh, H.; Mohseni, S.M.; et al. Systematic review and health risk assessment of arsenic and lead in the fished shrimps from the Persian gulf. Food Chem. Toxicol. 2018, 113, 278–286. [Google Scholar] [CrossRef]
- Nagel, A.; Cuss, C.W.; Goss, G.G.; Shotyk, W.; Glover, C.N. Accumulation of Thallium in Rainbow Trout (Oncorhynchus mykiss) Following Acute and Subchronic Waterborne Exposure. Environ. Toxicol. Chem. 2023, 42, 1553–1563. [Google Scholar] [CrossRef] [PubMed]
- Pandiyan, J.; Mahboob, S.; Govindarajan, M.; Al-Ghanim, K.A.; Ahmed, Z.; Al-Mulhm, N.; Jagadheesan, R.; Krishnappa, K. An assessment of level of heavy metals pollution in the water, sediment and aquatic organisms: A perspective of tackling environmental threats for food security. Saudi J. Biol. Sci. 2021, 28, 1218–1225. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Li, Y.; Zheng, X.; Wang, Z.; Wang, Z.; Cheng, X. Nutritional value and bioaccumulation of heavy metals in nine commercial fish species from Dachen Fishing Ground, East China Sea. Sci. Rep. 2022, 12, 6927. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, S.Y. Study on the present situation and causes of river health in Zhejiang Province. Econ. Res. Guide 2012, 1, 137–139. [Google Scholar]
- Shorna, S.; Shawkat, S.; Hossain, A.; Quraishi, S.B.; Ullah, A.K.M.A.; Hosen, M.M.; Hossain, K.; Saha, B.; Paul, B.; Mamun, H.A. Accumulation of Trace Metals in Indigenous Fish Species from the Old Brahmaputra River in Bangladesh and Human Health Risk Implications. Biol. Trace Elem. Res. 2021, 199, 3478–3488. [Google Scholar] [CrossRef] [PubMed]
- GB 2762-2012; National Standard for Food Safety Limits of Contaminants in Food. Ministry of Health of the People’s Republic of China: Beijing, China, 2012.
- Ai, L.; Ma, B.; Shao, S.; Zhang, L.; Zhang, L. Heavy metals in Chinese freshwater fish: Levels, regional distribution, sources and health risk assessment. Sci. Total Environ. 2022, 853, 158455. [Google Scholar] [CrossRef] [PubMed]
- Kalantzi, I.; Black, K.D.; Pergantis, S.A.; Shimmield, T.M.; Papageorgiou, N.; Sevastou, K.; Karakassis, I. Metals and other elements in tissues of wild fish from fish farms and comparison with farmed species in sites with oxic and anoxic sediments. Food Chem. 2013, 141, 680–694. [Google Scholar] [CrossRef]
- Sheikhzadeh, H.; Hamidian, A.H. Bioaccumulation of heavy metals in fish species of Iran: A review. Environ. Geochem. Health 2021, 43, 3749–3869. [Google Scholar] [CrossRef] [PubMed]
- Castaldo, G.; Pillet, M.; Slootmaekers, B.; Bervoets, L.; Town, R.M.; Blust, R.; De Boeck, G.J.A.T. Investigating the effects of a sub-lethal metal mixture of Cu, Zn and Cd on bioaccumulation and ionoregulation in common carp, Cyprinus carpio. Aquat. Toxicol. 2020, 218, 105363. [Google Scholar] [CrossRef] [PubMed]
- Gestin, O.; Lopes, C.; Delorme, N.; Garnero, L.; Geffard, O.; Lacoue-Labarthe, T. Organ-specific accumulation of cadmium and zinc in Gammarus fossarum exposed to environmentally relevant metal concentrations. Environ. Pollut. 2022, 308, 119625. [Google Scholar] [CrossRef]
- Habib, S.S.; Batool, A.I.; Rehman, M.; Naz, S. Assessment and Bioaccumulation of Heavy Metals in Fish Feeds, Water, and Some Tissues of Cyprinus carpio Cultured in Different Environments (Biofloc Technology and Earthen Pond System). Biol. Trace Elem. Res. 2023, 201, 3474–3486. [Google Scholar] [CrossRef] [PubMed]
- Can, E.; Yabanli, M.; Kehayias, G.; Aksu, Ö.; Kocabaş, M.; Demir, V.; Kayim, M.; Kutluyer, F.; Şeker, S. Determination of Bioaccumulation of Heavy Metals and Selenium in Tissues of Brown Trout Salmo trutta macrostigma (Duméril, 1858) from Munzur Stream, Tunceli, Turkey. Bull. Environ. Contam. Toxicol. 2012, 89, 1186–1189. [Google Scholar] [CrossRef] [PubMed]
- Coulibaly, S.; Atse, B.C.; Koffi, K.M.; Sylla, S.; Konan, K.J.; Kouassi, N.J. Seasonal accumulations of some heavy metal in water, sediment and tissues of black-chinned tilapia Sarotherodon melanotheron from Biétri Bay in Ebrié Lagoon, Ivory Coast. Bull. Environ. Contam. Toxicol. 2012, 88, 571–576. [Google Scholar] [CrossRef]
- Yousafzai, A.M.; Ullah, F.; Bari, F.; Raziq, S.; Riaz, M.; Khan, K.; Nishan, U.; Sthanadar, I.A.; Shaheen, B.; Shaheen, M.; et al. Bioaccumulation of Some Heavy Metals: Analysis and Comparison of Cyprinus carpio and Labeo rohita from Sardaryab, Khyber Pakhtunkhwa. Biomed. Res. Int. 2017, 2017, 5801432–5801435. [Google Scholar] [CrossRef] [PubMed]
- Salami, I.R.; Rahmawati, S.; Sutarto, R.I.; Jaya, P.M. Accumulation of heavy metals in freshwater fish in cage aquaculture at Cirata Reservoir, West Java, Indonesia. Ann. N. Y. Acad. Sci. 2008, 1140, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xiao, J.; Zhang, J.; Chen, H.; Li, D.; Li, L.; Cao, J.; Xie, L.; Luo, Y. Effects of dietary Cu and Zn on the accumulation, oxidative stress and the expressions of immune-related genes in the livers of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2020, 100, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Saidon, N.B.; Szabó, R.; Budai, P.; Lehel, J. Trophic transfer and biomagnification potential of environmental contaminants (heavy metals) in aquatic ecosystems. Environ. Pollut. 2024, 340, 122815. [Google Scholar] [CrossRef] [PubMed]
- Suedel, B.C.; Boraczek, J.A.; Peddicord, R.K.; Clifford, P.A.; Dillon, T.M. Trophic Transfer and Biomagnification Potential of Contaminants in Aquatic Ecosystems. In Reviews of Environmental Contamination and Toxicology; Ware, G.W., Ed.; Springer: New York, NY, USA, 1994; pp. 21–89. [Google Scholar]
- Qian, Y.; Cheng, C.; Feng, H.; Hong, Z.; Zhu, Q.; Kolenčík, M.; Chang, X. Assessment of metal mobility in sediment, commercial fish accumulation and impact on human health risk in a large shallow plateau lake in southwest of China. Ecotoxicol. Environ. Saf. 2020, 194, 110346. [Google Scholar] [CrossRef] [PubMed]
- Leung, H.M.; Duzgoren-Aydin, N.S.; Au, C.K.; Krupanidhi, S.; Fung, K.Y.; Cheung, K.C.; Wong, Y.K.; Peng, X.L.; Ye, Z.H.; Yung, K.K.L.; et al. Monitoring and assessment of heavy metal contamination in a constructed wetland in Shaoguan (Guangdong Province, China): Bioaccumulation of Pb, Zn, Cu and Cd in aquatic and terrestrial components. Environ. Sci. Pollut. Res. Int. 2017, 24, 9079–9088. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.J.; Zhang, S.H. Heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in seven fish species in relation to fish size and location along the Yangtze River. Environ. Sci. Pollut. Res. Int. 2012, 19, 3989–3996. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Gao, Y.; Yuan, X.; Yuan, M.; Huang, L.; Wang, S.; Liu, C.; Duan, C. Effects of Heavy Metals on Stomata in Plants: A Review. Int. J. Mol. Sci. 2023, 24, 9302. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-G.; He, X.-L.; Huang, J.-H.; Luo, R.; Ge, H.-Z.; Wołowicz, A.; Wawrzkiewicz, M.; Gładysz-Płaska, A.; Li, B.; Yu, Q.-X.; et al. Impacts of heavy metals and medicinal crops on ecological systems, environmental pollution, cultivation, and production processes in China. Ecotoxicol. Environ. Saf. 2021, 219, 112336. [Google Scholar] [CrossRef] [PubMed]
- Senze, M.; Kowalska-Goralska, M.; Czyz, K. Emergent (branched bur-reed-Sparganium erectum L.) and submergent (river water-crowfoot-Ranunculus fluitans Wimm., 1841) aquatic plants as metal biosorbents under varying water pH conditions in laboratory conditions. Environ. Sci. Pollut. Res. Int. 2023, 30, 92053–92067. [Google Scholar] [CrossRef] [PubMed]
- Sricoth, T.; Meeinkuirt, W.; Saengwilai, P.; Pichtel, J.; Taeprayoon, P. Aquatic plants for phytostabilization of cadmium and zinc in hydroponic experiments. Environ. Sci. Pollut. Res. Int. 2018, 25, 14964–14976. [Google Scholar] [CrossRef]
- Beals, C.; King, H.; Bailey, G. The peroxidase response of Alternanthera philoxeroides (Alligator Weed) and Nasturtium officinale (Watercress) to heavy metal exposure. Environ. Sci. Pollut. Res. Int. 2023, 30, 59443–59448. [Google Scholar] [CrossRef] [PubMed]
- Sudarshan, P.; Mahesh, M.K.; Ramachandra, T.V. Dynamics of Metal Pollution in Sediment and Macrophytes of Varthur Lake, Bangalore. Bull. Environ. Contam. Toxicol. 2020, 104, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Serafini, R.; Arreghini, S.; Troiani, H.E.; de Iorio, A. Copper, zinc, and chromium accumulation in aquatic macrophytes from a highly polluted river of Argentina. Environ. Sci. Pollut. Res. Int. 2023, 30, 31242–31255. [Google Scholar] [CrossRef] [PubMed]
- Ntakiyiruta, P.; Briton, B.G.H.; Nsavyimana, G.; Adouby, K.; Nahimana, D.; Ntakimazi, G.; Reinert, L. Optimization of the phytoremediation conditions of wastewater in post-treatment by Eichhornia crassipes and Pistia stratiotes: Kinetic model for pollutants removal. Environ. Technol. 2022, 43, 1805–1818. [Google Scholar] [CrossRef] [PubMed]
- de Vasconcelos, V.M.; de Morais, E.R.C.; Faustino, S.J.B.; Hernandez, M.C.R.; Gaudêncio, H.R.d.S.C.; de Melo, R.R.; Junior, A.P.B. Floating aquatic macrophytes for the treatment of aquaculture effluents. Environ. Sci. Pollut. Res. Int. 2021, 28, 2600–2607. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, H.; Luan, Y. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water. Int. J. Environ. Res. Public Health 2015, 12, 14958–14973. [Google Scholar] [CrossRef] [PubMed]
- Gongtai, T.; Dengxuan, D.; Xinghua, D.; Guojing, X.; Jinlu, Z.; Minglei, Z.; Chunsheng, W.; Ming, L.; Min, L.; Yamei, M. Study on Enrichment and Removal Effects of Eichhornia crassipes and Polygonum cuspidatum on Combined Pollution of Heavy Metals in Water Body. J. Yangtze Univ. 2014, 11, 54–59. [Google Scholar]
- Wenbing, Z.; Liangfeng, T.; Dahui, L.; Hua, Y.; Min, Z.; Duanwei, Z. Research progress of Eichhornia crassipes and its resource utilization. J. Huazhong Agric. Univ. 2005, 24, 423–428. [Google Scholar]
- Nawirska, A. Binding of heavy metals to pomace fibers. Food Chem. 2005, 90, 395–400. [Google Scholar] [CrossRef]
- Piekut, A.; Gut, K.; ćwieląg-Drabek, M.; Domagalska, J.; Marchwińska-Wyrwał, E. The relationship between children’s non-nutrient exposure to cadmium, lead and zinc and the location of recreational areas—Based on the Upper Silesia region case (Poland). Chemosphere 2019, 223, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Banfalvi, G. Removal of insoluble heavy metal sulfides from water. Chemosphere 2006, 63, 1231–1234. [Google Scholar] [CrossRef]
- Arshad, K.; Aqeel, M.; Noman, A.; Nazir, A.; Mahmood, A.; Rizvi, Z.F.; Sarfraz, W.; Hyder, S.; Zaka, S.; Khalid, N. Ecological health risk assessment of microplastics and heavy metals in sediments, water, hydrophytes (Alternanthera philoxeroides, Typha latifolia, and Ipomoea carnea), and fish (Labeo rohita) in Marala wetlands in Sialkot, Pakistan. Environ. Sci. Pollut. Res. Int. 2023, 30, 41272–41285. [Google Scholar] [CrossRef] [PubMed]
- Scofield, B.D.; Torso, K.; Fields, S.F.; Chess, D.W. Contaminant metal concentrations in three species of aquatic macrophytes from the Coeur d’Alene Lake basin, USA. Environ. Monit. Assess. 2021, 193, 683. [Google Scholar] [CrossRef] [PubMed]
pH | Hardness ppm | Turbidity g/L | Ammonia Nitrogen mg/L | Phosphorus mg/L | Conductivity μS/cm | Color | |
---|---|---|---|---|---|---|---|
Wenzhou Industrial Zone | 7.5 ± 0.2 | 126.9 ± 19.9 * | 0.3 ± 0.1 * | 9.5 ± 1.1 ** | 0.3 ± 0.1 ** | 274.5 ± 47.6 * | red |
Jinhua Industrial Zone | 6.7 ± 0.3 ** | 196.4 ± 34.3 ** | 0.6 ± 0.2 ** | 0.7 ± 0.2 | 0.2 ± 0.1 * | 355.7 ± 48.2 ** | yellow |
Jiaxing Industrial Zone | 7.2 ± 0.5 ** | 170.2 ± 20.8 ** | 0.3 ± 0.1 * | 0.1 ± 0.0 | 0.1 ± 0.0 | 357.6 ± 26.5 ** | yellow |
Taizhou Industrial Zone | 7.2 ± 0.5 ** | 90.6 ± 23.7 | 0.6 ± 0.1 ** | 1.1 ± 0.2 | 0.2 ± 0.1 * | 264.8 ± 32.9* | yellow |
Comparison of Nanxi River Water | 7.8 ± 0.2 | 10.5 ± 0.5 | 0.1 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 44 ± 5.2 | - |
As | Cd | Cr | Cu | Fe | Al | Pb | Zn | Mn | |
---|---|---|---|---|---|---|---|---|---|
Wenzhou Industrial Zone | 5.1 ± 0.7 ** | 0.1 ± 0.1 | 0.3 ± 0.1 | 7.6 ± 0.3 ** | 14.6 ± 7.3 | 13.1 ± 2.7 | 2.9 ± 0.6 ** | 23.8 ± 7.2 ** | 241.3 ± 29.5 ** |
Jinhua Industrial Zone | 7.8 ± 1.8 ** | 0.1 ± 0.1 | 0.5 ± 0.2 | 8.9 ± 0.4 ** | 11.5 ± 5.7 | 1.1 ± 0.6 | 2.4 ± 0.7 ** | 3.5 ± 0.5 | 0.3 ± 0.1 |
Jiaxing Industrial Zone | 4.3 ± 1.2 ** | 0.1 ± 0.1 | 0.5 ± 0.2 | 3.7 ± 0.4 | 7.3 ± 2.2 | 1.3 ± 0.4 | 1.1 ± 0.4 ** | 2.5 ± 0.6 | 0.2 ± 0.1 |
Taizhou Industrial Zone | 6.3 ± 1.5 ** | 0.4 ± 0.1 ** | 19.3 ± 4.1 ** | 7.7 ± 0.7 ** | 11.7 ± 4.8 | 24.1 ± 18.0 | 1.6 ± 0.2 ** | 18.7 ± 5.1 ** | 0.6 ± 0.2 |
Class V water standard | 0.05 | 0.005 | 0.05 | 0.02 | 0.3 | - | 0.01 | 0.05 | 0.1 |
As | Cd | Cr | Cu | Mn | Pb | Zn | Fe | Al | |
---|---|---|---|---|---|---|---|---|---|
Wenzhou Industrial Zone E. phyllopogon | 1.4 ± 0.1 ** | 0.3 ± 0.1 | 5.7 ± 0.2 | 16.2 ± 0.6 ** | 705 ± 8.0 ** | 2.5 ± 0.4 ** | 119.9 ± 9.2 ** | 1360 ± 123.0 ** | 1742 ± 41.1 ** |
Jinhua Industrial Zone P. stratiotes | 10.5 ± 0.4 ** | 2.0 ± 0.2 ** | 28.9 ± 0.6 ** | 36.8 ± 1.4 ** | 1212 ± 18.1 ** | 18.7 ± 0.8 * | 222.6 ± 1.5 ** | 4362 ± 104.7 ** | 8206 ± 406.3 ** |
Jiaxing Industrial Zone A. philoxeroides | 0.9 ± 0.1 ** | 0.5 ± 0.3 | 11.7 ± 0.2 | 14.0 ± 0.5 ** | 174.6 ± 2.4 ** | 2.5 ± 0.9 ** | 86.5 ± 1.1 ** | 741.6 ± 41.0 ** | 1001.9 ± 17.9 ** |
Taizhou Industrial Zone E. crassipes | 4.0 ± 0.1 ** | 0.8 ± 0.1 ** | 36.4 ± 4.2 ** | 274 ± 3 ** | 1282 ± 3.1 ** | 13.1 ± 0.3 ** | 202.4 ± 0.1 ** | 4730 ± 76.3 ** | 6871 ± 29.0 ** |
National standard | 5.0 | 0.3 | 10.0 | 50.0 | 500.0 | 20.0 | 100.0 | 500.0 | 3000.0 |
As | Cd | Cr | Pb | Cu | Zn | ||
---|---|---|---|---|---|---|---|
Wenzhou Industrial Zone C. fuscus | liver | 0.6 ± 0.1 | 0.1 ± 0.0 | 3.3 ± 2.3 | 0.9 ± 0.2 | 40.3 ± 7.3 * | 133.9 ± 28.9 |
gill | 1.0 ± 0.6 ** | 0.1 ± 0.0 | 2.0 ± 0.2 | 1.2 ± 0.2 | 4.1 ± 1.5 ** | 86.2 ± 3.1 | |
muscle | 0.4 ± 0.2 | 0.0 ± 0.0 ** | 2.7 ± 0.6 | 0.7 ± 0.2 | 1.6 ± 0.1 ** | 41.6 ± 5.4 * | |
intestines | 7.1 ± 0.8 ** | 3.3 ± 0.2 ** | 200.6 ± 56.8 ** | 41.7 ± 6.4 ** | 142.7 ± 4.5 ** | 573.5 ± 70.7 ** | |
Jinhua Industrial Zone C. auratus | liver | 0.8 ± 0.0 * | 0.2 ± 0.0 | 1.1 ± 0.1 | 0.8 ± 0.1 | 14.7 ± 0.3 ** | 310.1 ± 0.2 ** |
gill | 0.6 ± 0.2 | 0.1 ± 0.0 | 0.4 ± 0.1 | 1.0 ± 0.0 | 4.6 ± 0.8 ** | 364.1 ± 12.9 ** | |
muscle | 0.7 ± 0.1 * | 0.0 ± 0.0 ** | 1.9 ± 0.0 | 0.6 ± 0.0 | 2.3 ± 0.2 ** | 91.5 ± 0.5 | |
intestines | 1.6 ± 0.0 ** | 0.5 ± 0.0 ** | 4.0 ± 0.1 | 3.5 ± 0.6 * | 17.6 ± 0.3 ** | 295.3 ± 14.5 ** | |
Jiaxing Industrial Zone C. auratus | liver | 0.4 ± 0.2 * | 0.1 ± 0.0 | 1.4 ± 0.1 | 0.8 ± 0.1 | 8.8 ± 0.1 ** | 188.9 ± 16.8 ** |
gill | 0.7 ± 0.1 * | 0.0 ± 0.0 ** | 2.9 ± 0.9 * | 0.8 ± 0.0 | 3.1 ± 0.0 ** | 218.9 ± 1.6 ** | |
muscle | 0.5 ± 0.0 | 0.0 ± 0.0 ** | 2.1 ± 0.1 | 0.6 ± 0.0 | 2.5 ± 0.0 ** | 101.8 ± 4.9 | |
intestines | 5.1 ± 0.3 | 0.9 ± 0.0 ** | 41.7 ± 5.7 ** | 22.6 ± 6.8 ** | 33.9 ± 2.2 | 280.0 ± 7.7 ** | |
Taizhou Industrial Zone H. molitrix | liver | 0.8 ± 0.2 * | 0.1 ± 0.0 | 0.9 ± 0.0 | 0.9 ± 0.2 | 60.2 ± 2.1 ** | 120.0 ± 4.6 * |
gill | 0.7 ± 0.1 * | 0.0 ± 0.0 ** | 0.5 ± 0.0 | 1.1 ± 0.3 | 3.1 ± 0.1 ** | 139.4 ± 10.1 ** | |
muscle | 0.7 ± 0.1 * | 0.0 ± 0.0 ** | 1.9 ± 0.1 | 1.0 ± 0.2 | 2.2 ± 0.0 ** | 34.6 ± 1.9 ** | |
intestines | 5.5 ± 0.3 | 1.0 ± 0.0 ** | 19.6 ± 0.6 ** | 10.0 ± 0.3 ** | 32.7 ± 2.0 | 152.3 ± 9.0 ** | |
National standard | 0.5 | 0.05 | 1.0 | 0.5 | 30 | 100 |
Fe | As | Mn | Ba | Cu | Zn | Ni | Cr | Pb | Mo | Sn | Co | Cd | Se | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C. fuscus liver | 601.85 | 79.93 | 84.08 | 2.679 | 33.739 | 111.957 | 0.645 | 1.163 | 0.69 | 3.182 | 1.691 | 0.245 | 0.103 | 9.255 |
C. auratus liver H | 472.48 | 65.36 | 143.88 | 14.896 | 14.675 | 310.092 | 0.426 | 1.062 | 0.832 | 0.455 | 0.467 | 0.213 | 0.176 | 1.753 |
C. auratus liver X | 656.22 | 127.59 | 73.74 | 4.739 | 8.771 | 188.912 | 2.311 | 1.437 | 0.815 | 0.497 | 0.632 | 0.242 | 0.083 | 4.084 |
H. molitrix liver | 577.92 | 145.99 | 167.59 | 2.922 | 60.173 | 119.956 | 0.332 | 0.954 | 0.927 | 1.365 | 0.683 | 0.231 | 0.053 | 4.048 |
C. fuscus gill | 422.44 | 48.83 | 125.95 | 3.493 | 5.447 | 88.126 | 0.994 | 2.067 | 1.057 | 0.222 | 0.655 | 0.352 | 0.075 | 2.362 |
C. auratus gill H | 215.15 | 71.90 | 282.61 | 54.827 | 4.562 | 364.052 | 0.135 | 0.367 | 1.038 | 0.135 | 0.464 | 0.057 | 0.049 | 1.227 |
C. auratus gill X | 393.88 | 111.01 | 250.82 | 27.726 | 3.053 | 218.89 | 0.465 | 2.895 | 0.819 | 0.145 | 0.457 | 0.103 | 0.029 | 1.885 |
H. molitrix gill | 295.07 | 90.16 | 670.43 | 38.422 | 3.083 | 139.451 | 0.194 | 0.503 | 1.103 | 0.091 | 0.651 | 0.177 | 0.021 | 1.726 |
C. fuscus flesh | 196.85 | 84.58 | 55.09 | 2.453 | 1.732 | 37.72 | 0.596 | 2.661 | 0.604 | 0.074 | 0.951 | 0.103 | 0.021 | 2.662 |
C. auratus flesh H | 162.31 | 119.23 | 60.56 | 8.913 | 2.344 | 91.543 | 0.164 | 1.921 | 0.603 | 0.082 | 0.521 | 0.025 | 0.033 | 0.731 |
C. auratus flesh X | 184.37 | 122.27 | 77.14 | 6.486 | 2.464 | 101.85 | 0.387 | 2.061 | 0.616 | 0.102 | 0.497 | 0.045 | 0.016 | 2.363 |
H. molitrix flesh | 144.48 | 196.89 | 79.79 | 4.006 | 2.151 | 34.617 | 0.219 | 1.865 | 1.027 | 0.049 | 0.713 | 0.028 | 0.012 | 1.389 |
C. fuscus intestine | 10761.21 | 131.11 | 2073.74 | 147.695 | 145.213 | 637.483 | 98.226 | 251.334 | 47.442 | 6.121 | 2.271 | 13.311 | 3.428 | 2.648 |
C. auratus intestine H | 1599.2 | 129.38 | 980.68 | 33.699 | 17.569 | 295.362 | 1.036 | 4.019 | 3.461 | 0.588 | 0.505 | 0.567 | 0.493 | 1.080 |
C. auratus intestine X | 184.37 | 120.91 | 77.14 | 6.486 | 2.464 | 101.85 | 0.387 | 2.061 | 0.616 | 0.102 | 0.497 | 0.045 | 0.016 | 2.363 |
H. molitrix intestine | 9664.39 | 42.02 | 2725.96 | 105.576 | 32.687 | 152.244 | 9.647 | 19.611 | 9.963 | 0.589 | 0.367 | 4.432 | 0.952 | 1.089 |
Carcinogenic Heavy Metals | Figure | Non-Carcinogenic Heavy Metals | Figure | Total Health Risk | Maximum Acceptable Risk | |||||
---|---|---|---|---|---|---|---|---|---|---|
Cr | As | Cd | Cu | Zn | Pb | |||||
adults | 3.55 × 10−4 | 2.79 × 10−4 | 4.89 × 10−4 | 1.12 × 10−3 | 1.69 × 10−12 | 8.86 × 10−14 | 2.32 × 10−12 | 4.11 × 10−12 | 1.12 × 10−3 | 1 × 10−4 |
children | 3.49 × 10−4 | 2.66 × 10−4 | 4.82 × 10−4 | 1.10 × 10−3 | 2.37 × 10−12 | 1.24 × 10−13 | 3.25 × 10−12 | 5.75 × 10−12 | 1.10 × 10−3 | 1 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.; Lai, C.; Yu, R.; Chen, Y.; Shen, Z.; Lu, W.; Yuan, X. Effects of Heavy Metal Pollution on the Element Distribution in Hydrobios. Toxics 2024, 12, 479. https://doi.org/10.3390/toxics12070479
Hu C, Lai C, Yu R, Chen Y, Shen Z, Lu W, Yuan X. Effects of Heavy Metal Pollution on the Element Distribution in Hydrobios. Toxics. 2024; 12(7):479. https://doi.org/10.3390/toxics12070479
Chicago/Turabian StyleHu, Chengxin, Chenghao Lai, Ruiyang Yu, Yangfan Chen, Zhixiao Shen, Wei Lu, and Xiaofeng Yuan. 2024. "Effects of Heavy Metal Pollution on the Element Distribution in Hydrobios" Toxics 12, no. 7: 479. https://doi.org/10.3390/toxics12070479
APA StyleHu, C., Lai, C., Yu, R., Chen, Y., Shen, Z., Lu, W., & Yuan, X. (2024). Effects of Heavy Metal Pollution on the Element Distribution in Hydrobios. Toxics, 12(7), 479. https://doi.org/10.3390/toxics12070479