A Comprehensive Bibliometric Study in the Context of Chemical Hazards in Coffee
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Selection
2.2. Subsection
3. Results and Discussion
3.1. Bibliometric Analysis
3.1.1. Annual Scientific Output
3.1.2. Scientific Production by Country
3.1.3. Contribution of the Journals
3.1.4. Contribution of the Authors
3.1.5. Contribution of the Affiliations
3.1.6. Keyword Analysis
3.2. Chemical Hazards in Coffee: From Field to Cup
3.3. Risk Assessment in Coffee
3.4. Trends and Suggestions for Future Research on Chemical Hazards in Coffee
- Hazards in food are often present in very small concentrations, and in many research studies, the results are below the limit of detection (LOD). It is crucial to enhance analytical techniques for the rapid and accurate detection of these hazards at any point in the food chain. This is particularly important for quantifying emerging hazards, such as microplastic particles from packaging, and for testing the effectiveness of mitigation techniques.
- The vast majority of coffee-producing countries are largely dependent on coffee, so researchers need to work on improving sustainability in economic, social and environmental terms. One of the main issues with coffee processing is water pollution during wet processing. Therefore, it is essential to develop new, more environmentally friendly processing technologies and to clean up this water. Additionally, research on reusing solid waste should continue, not only to improve its absorbent capacity, but also as an important source of fibre, and for its real-world application.
- Chemical contaminants in coffee may have combined or increased effects on adverse health. It is important to conduct further research on dose-response models based on epidemiological studies, particularly for emerging hazards. This should take into account factors such as low-dose exposure, exposure to single or combined contaminants in food, and individual-related factors like race, age, and dietary habits. Additionally, it is important to use probabilistic models to address uncertainties and make informed decisions about risks.
- Hazards can arise naturally, such as metals, or be created during processing, such as acrylamide, mycotoxins, and furans. Therefore, it is essential to keep working on effective techniques to mitigate or prevent these hazards and safeguard consumer health without compromising the quality of the coffee.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Coffee Organization (ICO). Coffee Report and Outlook (CRO). 2023. Available online: https://icocoffee.org/documents/cy2022-23/Coffee_Report_and_Outlook_April_2023_-_ICO.pdf (accessed on 20 May 2024).
- Korekar, G.; Kumar, A.; Ugale, C. Occurrence, Fate, Persistence and Remediation of Caffeine: A Review. Environ. Sci. Pollut. Res. 2020, 27, 34715–34733. [Google Scholar] [CrossRef] [PubMed]
- Setter, C.; Borges, F.A.; Cardoso, C.R.; Mendes, R.F.; Oliveira, T.J.P. Energy Quality of Pellets Produced from Coffee Residue: Characterization of the Products Obtained via Slow Pyrolysis. Ind. Crops Prod. 2020, 154, 112731. [Google Scholar] [CrossRef]
- Rapid Alert System Feed and Food (RASFF). RASFF Window-Search. Available online: https://webgate.ec.europa.eu/rasff-window/screen/search?event=searchResultList&searchQueries= (accessed on 21 May 2024).
- Serra, J.A.; Domenech, E.; Escriche, I.; Martorell, S. Risk Assessment and Critical Control Points from the Production Perspective. Int. J. Food Microbiol. 1999, 46, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. World Health Organization (FAO/WHO) Principles and Methods for the Risk Assessment of Chemicals in Food; World Health Organization: Geneva, Switzerland, 2009; ISBN 9789241572408. [Google Scholar]
- Bashir, M.F.; Ma, B.; Bilal; Komal, B.; Bashir, M.A. Analysis of Environmental Taxes Publications: A Bibliometric and Systematic Literature Review. Environ. Sci. Pollut. Res. 2021, 28, 20700–20716. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Malule, H.; Quiñones-Murillo, D.H.; Manotas-Duque, D. Emerging Contaminants as Global Environmental Hazards. A Bibliometric Analysis. Emerg. Contam. 2020, 6, 179–193. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, S.; Yu, P.; Wang, D.; Hu, B.; Zheng, P.; Zhang, M. A Bibliometric Analysis of Emerging Contaminants (ECs) (2001−2021): Evolution of Hotspots and Research Trends. Sci. Total Environ. 2024, 907, 168116. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Duong, L.N.K.; Al-Fadhli, M.; Jagtap, S.; Bader, F.; Martindale, W.; Swainson, M.; Paoli, A. A Review of Robotics and Autonomous Systems in the Food Industry: From the Supply Chains Perspective. Trends Food Sci. Technol. 2020, 106, 355–364. [Google Scholar] [CrossRef]
- Valenčič, E.; Beckett, E.; Collins, C.E.; Seljak, B.K.; Bucher, T. Digital Nudging in Online Grocery Stores: A Scoping Review on Current Practices and Gaps. Trends Food Sci. Technol. 2023, 131, 151–163. [Google Scholar] [CrossRef]
- Sapio, S.; Vecchio, R. The Effect of Nudges on Healthy Food Choices of Individuals with a Low Socio-Economic Position: A Systematic Literature Review. Trends Food Sci. Technol. 2024, 147, 104475. [Google Scholar] [CrossRef]
- Skevas, T.; Martinez-Palomares, J.C. Technology Heterogeneity and Sustainability Efficiency: Empirical Evidence from Peruvian Coffee Production. Eur. J. Oper. Res. 2023, 310, 1192–1200. [Google Scholar] [CrossRef]
- Soni, S.; Jha, A.B.; Dubey, R.S.; Sharma, P. Mitigating Cadmium Accumulation and Toxicity in Plants: The Promising Role of Nanoparticles. Sci. Total Environ. 2024, 912, 168826. [Google Scholar] [CrossRef] [PubMed]
- Pizzutti, I.R.; de Kok, A.; Cardoso, C.D.; Reichert, B.; de Kroon, M.; Wind, W.; Righi, L.W.; da Silva, R.C. A Multi-Residue Method for Pesticides Analysis in Green Coffee Beans Using Gas Chromatography–Negative Chemical Ionization Mass Spectrometry in Selective Ion Monitoring Mode. J. Chromatogr. A 2012, 1251, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Clemens, S.; Palmgren, M.G.; Krämer, U. A Long Way Ahead: Understanding and Engineering Plant Metal Accumulation. Trends Plant Sci. 2002, 7, 309–315. [Google Scholar] [CrossRef]
- Midhat, L.; Ouazzani, N.; Hejjaj, A.; Ouhammou, A.; Mandi, L. Accumulation of Heavy Metals in Metallophytes from Three Mining Sites (Southern Centre Morocco) and Evaluation of Their Phytoremediation Potential. Ecotoxicol. Environ. Saf. 2019, 169, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Qin, C.; Hong, X.; Kang, G.; Qin, M.; Yang, D.; Pang, B.; Li, Y.; He, J.; Dick, R.P. Risk Assessment and Source Analysis of Soil Heavy Metal Pollution from Lower Reaches of Yellow River Irrigation in China. Sci. Total Environ. 2018, 633, 1136–1147. [Google Scholar] [CrossRef] [PubMed]
- Tezotto, T.; Favarin, J.L.; Azevedo, R.A.; Alleoni, L.R.F.; Mazzafera, P. Coffee Is Highly Tolerant to Cadmium, Nickel and Zinc: Plant and Soil Nutritional Status, Metal Distribution and Bean Yield. Field Crops Res. 2012, 125, 25–34. [Google Scholar] [CrossRef]
- Anissa, Z.; Sofiane, B.; Adda, A.; Marlie-Landy, J. Evaluation of Trace Metallic Element Levels in Coffee by Icp-Ms: A Comparative Study among Different Origins, Forms, and Packaging Types and Consumer Risk Assessment. Biol. Trace Elem. Res. 2023, 201, 5455–5467. [Google Scholar] [CrossRef]
- Guadalupe, G.A.; Chavez, S.G.; Arellanos, E.; Doménech, E. Probabilistic Risk Characterization of Heavy Metals in Peruvian Coffee: Implications of Variety, Region and Processing. Foods 2023, 12, 3254. [Google Scholar] [CrossRef]
- Pipoyan, D.; Stepanyan, S.; Beglaryan, M.; Stepanyan, S.; Mendelsohn, R.; Deziel, N.C. Health Risks of Heavy Metals in Food and Their Economic Burden in Armenia. Environ. Int. 2023, 172, 107794. [Google Scholar] [CrossRef]
- Taghizadeh, S.F.; Azizi, M.; Hassanpourfard, G.; Rezaee, R.; Karimi, G. Assessment of Carcinogenic and Non-Carcinogenic Risk of Exposure to Metals via Consumption of Coffee, Tea, and Herbal Tea in Iranians. Biol. Trace Elem. Res. 2023, 201, 1520–1537. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A.; Jachimowicz, K.; Kislova, S.; Kwiecień, M.; Zasadna, Z.; Yanovych, D. Cadmium and Lead Concentration in Drinking Instant Coffee, Instant Coffee Drinks and Coffee Substitutes: Safety and Health Risk Assessment. Biol. Trace Elem. Res. 2023, 201, 425–434. [Google Scholar] [CrossRef]
- da Silva, S.A.; Fabrícia, Q.M.; Marcelo, R.R.; Flavia, R.P.; Andre, M.X.d.C.; de Oliveira Rocha, K.R.; Frederico, G.P. Determination of Heavy Metals in the Roasted and Ground Coffee Beans and Brew. Afr. J. Agric. Res. 2017, 12, 221–228. [Google Scholar] [CrossRef]
- Adler, G.; Nȩdzarek, A.; Tórz, A. Concentrations of Selected Metals (NA, K, CA, MG, FE, CU, ZN, AL, NI, PB, CD) in Coffee. Slov. J. Public Health 2019, 58, 187–193. [Google Scholar] [CrossRef]
- Khunlert, P.; Imsilp, K.; Poapolathep, A.; Poapolathep, S.; Tanhan, P. Pyrethroid and Heavy Metal Residues in Different Coffee Bean Preparation Processes and Human Health Risk Assessments via Consumption. EnvironmentAsia 2022, 15, 94–108. [Google Scholar] [CrossRef]
- Grembecka, M.; Malinowska, E.; Szefer, P. Differentiation of Market Coffee and Its Infusions in View of Their Mineral Composition. Sci. Total Environ. 2007, 383, 59–69. [Google Scholar] [CrossRef]
- Martínez Bueno, M.J.; Uclés, S.; Hernando, M.D.; Dávoli, E.; Fernández-Alba, A.R. Evaluation of Selected Ubiquitous Contaminants in the Aquatic Environment and Their Transformation Products. A Pilot Study of Their Removal from a Sewage Treatment Plant. Water Res. 2011, 45, 2331–2341. [Google Scholar] [CrossRef] [PubMed]
- Talio, M.C.; Alesso, M.; Acosta, M.G.; Acosta, M.; Fernández, L.P. Sequential Determination of Lead and Cobalt in Tap Water and Foods Samples by Fluorescence. Talanta 2014, 127, 244–249. [Google Scholar] [CrossRef]
- Messaoudi, M.; Begaa, S.; Hamidatou, L.; Salhi, M.; Ouakouak, H.; Mouzai, M.; Hassani, A. Neutron Activation Analysis of Major and Trace Elements in Arabica and Robusta Coffee Beans Samples Consumed in Algeria. Radiochim. Acta 2018, 106, 525–533. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, J.; Zhang, G.; Li, Z.; Hu, Z.; Chu, Y.; Guo, L.; Lau, C. Stable and Ultrasensitive Analysis of Organic Pollutants and Heavy Metals by Dried Droplet Method with Superhydrophobic-Induced Enrichment. Anal. Chim. Acta 2021, 1151, 338253. [Google Scholar] [CrossRef]
- Alkallas, F.H.; Mostafa, A.M.; Rashed, E.A.; Trabelsi, A.B.G.; Essawy, M.A.I.; Rezk, R.A. Authentication of Roasted Coffee Beans via LIBS: Statistical Principal Component Analysis. Coatings 2023, 13, 1790. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). List of Classifications. Agents Classified by the IARC Monographs, Volumes 1–135. Available online: https://monographs.iarc.who.int/list-of-classifications (accessed on 22 May 2024).
- Chen, Z.; Song, S.; Mao, L.; Wei, J.; Li, Y.; Tan, H.; Li, X. Determinations of Dinotefuran and Metabolite Levels before and after Household Coffee Processing in Coffee Beans Using Solid-Phase Extraction Coupled with Liquid Chromatography-Tandem Mass Spectrometry. J. Sci. Food Agric. 2019, 99, 1267–1274. [Google Scholar] [CrossRef]
- Trevisan, M.T.S.; Owen, R.W.; Calatayud-Vernich, P.; Breuer, A.; Picó, Y. Pesticide Analysis in Coffee Leaves Using a Quick, Easy, Cheap, Effective, Rugged and Safe Approach and Liquid Chromatography Tandem Mass Spectrometry: Optimization of the Clean-up Step. J. Chromatogr. A 2017, 1512, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Asadi, M.; Sereshti, H. Magnetic Amino-Functionalized Hollow Silica-Titania Microsphere as an Efficient Sorbent for Extraction of Pesticides in Green and Roasted Coffee Beans. J. Sep. Sci. 2020, 43, 2115–2124. [Google Scholar] [CrossRef]
- Reichert, B.; de Kok, A.; Pizzutti, I.R.; Scholten, J.; Cardoso, C.D.; Spanjer, M. Simultaneous Determination of 117 Pesticides and 30 Mycotoxins in Raw Coffee, without Clean-up, by LC-ESI-MS/MS Analysis. Anal. Chim. Acta 2018, 1004, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Souza, N.R.; Navickiene, S. Multiresidue Determination of Carbamate, Organophosphate, Neonicotinoid, and Triazole Pesticides in Roasted Coffee Using Ultrasonic Solvent Extraction and Liquid Chromatography-Tandem Mass Spectrometry. J. AOAC Int. 2019, 102, 33–37. [Google Scholar] [CrossRef]
- Galani, J.H.Y.; Houbraken, M.; Van Hulle, M.; Spanoghe, P. Comparison of Electrospray and UniSpray, a Novel Atmospheric Pressure Ionization Interface, for LC-MS/MS Analysis of 81 Pesticide Residues in Food and Water Matrices. Anal. Bioanal. Chem. 2019, 411, 5099–5113. [Google Scholar] [CrossRef]
- Jordan-Sinisterra, M.; Lanças, F.M. Microextraction by Packed Sorbent of Selected Pesticides in Coffee Samples Employing Ionic Liquids Supported on Graphene Nanosheets as Extraction Phase. Anal. Bioanal. Chem. 2022, 414, 413–423. [Google Scholar] [CrossRef]
- Taghizadeh, S.F.; Rezaee, R.; Azizi, M.; Giesy, J.P.; Karimi, G. Polycyclic Aromatic Hydrocarbons, Mycotoxins, and Pesticides Residues in Coffee: A Probabilistic Assessment of Risk to Health. Int. J. Environ. Anal. Chem. 2022, 104, 1307–1329. [Google Scholar] [CrossRef]
- Chung, S.W.C.; Chen, B.L.S. Development of a Multiresidue Method for the Analysis of 33 Organochlorine Pesticide Residues in Fatty and High Water Content Foods. Chromatographia 2015, 78, 565–577. [Google Scholar] [CrossRef]
- De Oliveira, L.A.B.; Pacheco, H.P.; Scherer, R. Flutriafol and Pyraclostrobin Residues in Brazilian Green Coffees. Food Chem. 2016, 190, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Plese, L.P.M.; Silva, C.L.; Foloni, L.L. Distribution of Environmental Compartments of Herbicides Used in the Cotton, Coffee and Citrus Cultures|Distribuição Nos Compartimentos Ambientais Dos Herbicidas Utiilizados Nas Culturas de Algodão, Café e Citros. Planta Daninha 2009, 27, 123–132. [Google Scholar] [CrossRef]
- Mekonen, S.; Ambelu, A.; Spanoghe, P. Pesticide Residue Evaluation in Major Staple Food Items of Ethiopia Using the QuEChERS Method: A Case Study from the Jimma Zone. Environ. Toxicol. Chem. 2014, 33, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
- Gómez Benítez, M.A.; Arrubla Vélez, J.P.; Paredes Cuervo, D.; Guerrero Álvarez, G.E. Agricultural Practices in Onion Crops and Their Impact on Water Quality in Risaralda, Colombia. Int. J. Agric. Sustain. 2022, 20, 615–634. [Google Scholar] [CrossRef]
- Gamal, A.; Soliman, M.; Al-Anany, M.S.; Eissa, F. Optimization and Validation of High Throughput Methods for the Determination of 132 Organic Contaminants in Green and Roasted Coffee Using GC-QqQ-MS/MS and LC-QqQ-MS/MS. Food Chem. 2024, 449, 139223. [Google Scholar] [CrossRef] [PubMed]
- Bolognesi, C.; Holland, N. The Use of the Lymphocyte Cytokinesis-Block Micronucleus Assay for Monitoring Pesticide-Exposed Populations. Mutat. Res. Rev. Mutat. Res. 2016, 770, 183–203. [Google Scholar] [CrossRef]
- de Souza, A.; Medeiros, A.R.; de Souza, A.C.; Wink, M.; Siqueira, I.R.; Ferreira, M.B.C.; Fernandes, L.; Hidalgo, M.P.L.; Torres, I.L.S. Evaluation of the Impact of Exposure to Pesticides on the Health of the Rural Population. Vale Do Taquari, State of Rio Grande Do Sul (Brazil)|Avaliação Do Impacto Da Exposição a Agrotóxicos Sobre a Saúde de População Rural. Vale Do Taquari (RS, Brasil). Cienc. Saude Coletiva 2011, 16, 3519–3528. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, M.; Huss, A.; van der Mark, M.; Nijssen, P.C.G.; Mulleners, W.M.; Sas, A.M.G.; van Laar, T.; de Snoo, G.R.; Kromhout, H.; Vermeulen, R.C.H. Environmental Exposure to Pesticides and the Risk of Parkinson’s Disease in the Netherlands. Environ. Int. 2017, 107, 100–110. [Google Scholar] [CrossRef]
- Freire, C.; Koifman, S. Pesticide Exposure and Parkinson’s Disease: Epidemiological Evidence of Association. Neurotoxicology 2012, 33, 947–971. [Google Scholar] [CrossRef]
- Sabarwal, A.; Kumar, K.; Singh, R.P. Hazardous Effects of Chemical Pesticides on Human Health–Cancer and Other Associated Disorders. Environ. Toxicol. Pharmacol. 2018, 63, 103–114. [Google Scholar] [CrossRef]
- Kapeleka, J.A.; Sauli, E.; Ndakidemi, P.A. Pesticide Exposure and Genotoxic Effects as Measured by DNA Damage and Human Monitoring Biomarkers. Int. J. Environ. Health Res. 2021, 31, 805–822. [Google Scholar] [CrossRef] [PubMed]
- Mostafalou, S.; Abdollahi, M. Pesticides and Human Chronic Diseases: Evidence, Mechanisms, and Perspectives. Toxicol. Appl. Pharmacol. 2013, 268, 157–177. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-F.; Li, S.; Chou, A.P.; Bronstein, J.M. Inhibitory Effects of Pesticides on Proteasome Activity: Implication in Parkinson’s Disease. Neurobiol. Dis. 2006, 23, 198–205. [Google Scholar] [CrossRef]
- Richardson, J.R.; Shalat, S.L.; Buckley, B.; Winnik, B.; O’Suilleabhain, P.; Diaz-Arrastia, R.; Reisch, J.; German, D.C. Elevated Serum Pesticide Levels and Risk of Parkinson Disease. Arch. Neurol. 2009, 66, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Cory-Slechta, D.A.; Thiruchelvam, M.; Barlow, B.K.; Richfield, E.K. Developmental Pesticide Models of the Parkinson Disease Phenotype. Environ. Health Perspect. 2005, 113, 1263–1270. [Google Scholar] [CrossRef]
- de Queiroz, V.T.; Azevedo, M.M.; da Silva Quadros, I.P.; Costa, A.V.; do Amaral, A.A.; dos Santos, G.M.A.D.A.; Juvanhol, R.S.; de Almeida Telles, L.A.; dos Santos, A.R. Environmental Risk Assessment for Sustainable Pesticide Use in Coffee Production. J. Contam. Hydrol. 2018, 219, 18–27. [Google Scholar] [CrossRef]
- Dos Santos, G.M.A.D.A.; Neves, A.A.; de Queiroz, M.E.L.R.; de Queiroz, V.T.; Ribeiro, C.A.A.S.; Reis, E.L.; Paiva, A.C.P.; de Carvalho, J.R.; da Silva, S.F.; Juvanhol, R.S.; et al. Potential Risk of Agrochemical Leaching in Areas of Edaphoclimatic Suitability for Coffee Cultivation. Water 2022, 14, 1515. [Google Scholar] [CrossRef]
- García Ríos, A.; Martínez, A.S.; Londoño, Á.L.; Restrepo, B.; Landázuri, P. Determination of Organochlorine and Organophosphorus Residues in Surface Waters from the Coffee Zone in Quindío, Colombia. J. Environ. Sci. Health Part B 2020, 55, 968–973. [Google Scholar] [CrossRef]
- Moretti, A.; Pascale, M.; Logrieco, A.F. Mycotoxin Risks under a Climate Change Scenario in Europe. Trends Food Sci. Technol. 2019, 84, 38–40. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, D.; Cai, P.; Lin, H.; Ying, H.; Hu, Q.-N.; Wu, A. Elimination of Fusarium Mycotoxin Deoxynivalenol (DON) via Microbial and Enzymatic Strategies: Current Status and Future Perspectives. Trends Food Sci. Technol. 2022, 124, 96–107. [Google Scholar] [CrossRef]
- Chhaya, R.S.; O’Brien, J.; Cummins, E. Feed to Fork Risk Assessment of Mycotoxins under Climate Change Influences—Recent Developments. Trends Food Sci. Technol. 2022, 126, 126–141. [Google Scholar] [CrossRef]
- Zhao, N.; Liu, Z.; Yu, T.; Yan, F. Spent Coffee Grounds: Present and Future of Environmentally Friendly Applications on Industries-A Review. Trends Food Sci. Technol. 2024, 143, 104312. [Google Scholar] [CrossRef]
- Chandravarnan, P.; Agyei, D.; Ali, A. The Prevalence and Concentration of Mycotoxins in Rice Sourced from Markets: A Global Description. Trends Food Sci. Technol. 2024, 146, 104394. [Google Scholar] [CrossRef]
- Aggarwal, M.; Sahoo, P.; Saha, S.; Das, P. Machine Learning-Mediated Ultrasensitive Detection of Citrinin and Associated Mycotoxins in Real Food Samples Discerned from a Photoluminescent Carbon Dot Barcode Array. J. Agric. Food Chem. 2023, 71, 12849–12858. [Google Scholar] [CrossRef] [PubMed]
- Argoubi, W.; Algethami, F.K.; Raouafi, N. Enhanced Sensitivity in Electrochemical Detection of Ochratoxin A within Food Samples Using Ferrocene- and Aptamer-Tethered Gold Nanoparticles on Disposable Electrodes. RSC Adv. 2024, 14, 8007–8015. [Google Scholar] [CrossRef] [PubMed]
- Grusie, T.; Cowan, V.; Singh, J.; McKinnon, J.; Blakley, B. Correlation and Variability between Weighing, Counting and Analytical Methods to Determine Ergot (Claviceps Purpurea) Contamination of Grain. World Mycotoxin J. 2017, 10, 209–218. [Google Scholar] [CrossRef]
- Hou, L.; Liu, S.; Zhao, C.; Fan, L.; Hu, H.; Yin, S. The Combination of T-2 Toxin and Acrylamide Synergistically Induces Hepatotoxicity and Nephrotoxicity via the Activation of Oxidative Stress and the Mitochondrial Pathway. Toxicon 2021, 189, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Iriondo-DeHond, A.; Aparicio García, N.; Fernandez-Gomez, B.; Guisantes-Batan, E.; Velázquez Escobar, F.; Blanch, G.P.; San Andres, M.I.; Sanchez-Fortun, S.; del Castillo, M.D. Validation of Coffee By-Products as Novel Food Ingredients. Innov. Food Sci. Emerg. Technol. 2019, 51, 194–204. [Google Scholar] [CrossRef]
- Napolitano, A.; Fogliano, V.; Tafuri, A.; Ritieni, A. Natural Occurrence of Ochratoxin A and Antioxidant Activities of Green and Roasted Coffees and Corresponding Byproducts. J. Agric. Food Chem. 2007, 55, 10499–10504. [Google Scholar] [CrossRef]
- Pakshir, K.; Dehghani, A.; Nouraei, H.; Zareshahrabadi, Z.; Zomorodian, K. Evaluation of Fungal Contamination and Ochratoxin A Detection in Different Types of Coffee by HPLC-Based Method. J. Clin. Lab. Anal. 2021, 35, e24001. [Google Scholar] [CrossRef]
- Ponsone, M.L.; Chiotta, M.L.; Palazzini, J.M.; Combina, M.; Chulze, S. Control of Ochratoxin a Production in Grapes. Toxins 2012, 4, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Prakasham, K.; Gurrani, S.; Shiea, J.; Wu, M.-T.; Singhania, R.R.; Patel, A.K.; Dong, C.-D.; Lin, Y.-C.; Tsai, B.; Huang, P.-C.; et al. Facile Analysis of Mycotoxin in Coffee and Tea Samples Using a Novel Semi-Automated in-Syringe Based Fast Mycotoxin Extraction (FaMEx) Technique Coupled with Direct-Injection ESI-MS/MS Analysis. J. Food Sci. Technol. 2023, 60, 1992–2000. [Google Scholar] [CrossRef] [PubMed]
- Schax, E.; Lönne, M.; Scheper, T.; Belkin, S.; Walter, J.-G. Aptamer-Based Depletion of Small Molecular Contaminants: A Case Study Using Ochratoxin A. Biotechnol. Bioprocess Eng. 2015, 20, 1016–1025. [Google Scholar] [CrossRef]
- Shephard, G.S. Committee on Natural Toxins and Food Allergens. J. AOAC Int. 2008, 91, 1B–16B. [Google Scholar] [CrossRef]
- Shin, H.S.; Lee, H.J.; Pyo, M.C.; Ryu, D.; Lee, K.-W. Ochratoxin A-Induced Hepatotoxicity through Phase I and Phase II Reactions Regulated by Ahr in Liver Cells. Toxins 2019, 11, 377. [Google Scholar] [CrossRef]
- Spanier, M.; Stroka, J.; Patel, S.; Buechler, S.; Pittet, A.; Barel, S. Non-Destructive Automated Sampling of Mycotoxins in Bulk Food and Feed—A New Tool for Required Harmonization. Mycotoxin Res. 2001, 17, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Quiroz, M.L.; Alonso Campos, A.; Valerio Alfaro, G.; González-Ríos, O.; Villeneuve, P.; Figueroa-Espinoza, M.C. Anti-Aspergillus Activity of Green Coffee 5-O-Caffeoyl Quinic Acid and Its Alkyl Esters. Microb. Pathog. 2013, 61–62, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Vaclavik, L.; Vaclavikova, M.; Begley, T.H.; Krynitsky, A.J.; Rader, J.I. Determination of Multiple Mycotoxins in Dietary Supplements Containing Green Coffee Bean Extracts Using Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS/MS). J. Agric. Food Chem. 2013, 61, 4822–4830. [Google Scholar] [CrossRef] [PubMed]
- Yassein, A.S.; Elamary, R.B. Efficacy of Soil Paraburkholderia Fungorum and Bacillus Subtilis on the Inhibition of Aspergillus Niger Growth and Its Ochratoxins Production. Egypt. J. Bot. 2021, 61, 319–334. [Google Scholar] [CrossRef]
- Zapaśnik, A.; Bryła, M.; Waśkiewicz, A.; Ksieniewicz-Woźniak, E.; Podolska, G. Ochratoxin A and 2′ R-Ochratoxin a in Selected Foodstuffs and Dietary Risk Assessment. Molecules 2022, 27, 188. [Google Scholar] [CrossRef]
- Huang, C.-H.; Wang, F.-T.; Chan, W.-H. Prevention of Ochratoxin A-Induced Oxidative Stress-Mediated Apoptotic Processes and Impairment of Embryonic Development in Mouse Blastocysts by Liquiritigenin. Environ. Toxicol. 2019, 34, 573–584. [Google Scholar] [CrossRef]
- Freitas, V.V.; Borges, L.L.R.; Vidigal, M.C.T.R.; dos Santos, M.H.; Stringheta, P.C. Coffee: A Comprehensive Overview of Origin, Market, and the Quality Process. Trends Food Sci. Technol. 2024, 146, 104411. [Google Scholar] [CrossRef]
- Zhai, H.; Dong, W.; Tang, Y.; Hu, R.; Yu, X.; Chen, X. Characterization of the Volatile Flavour Compounds in Yunnan Arabica Coffee Prepared by Different Primary Processing Methods Using HS-SPME/GC-MS and HS-GC-IMS. LWT 2024, 192, 115717. [Google Scholar] [CrossRef]
- A, A.J.; Vasanthy, M.; Thamarai selvi, C.; Ravindran, B.; Chung, W.J.; Chang, S.W. Treatment of Coffee Cherry Pulping Wastewater by Using Lectin Protein Isolated from Ricinus communis L. Seed. J. Water Process Eng. 2021, 39, 101742. [Google Scholar] [CrossRef]
- Abu Hasan, H.; Sai Annanda Shanmugam, D.; Sheikh Abdullah, S.R.; Muhamad, M.H.; Budi Kurniawan, S. Potential of Using Dual-Media Biofilm Reactors as a Real Coffee Industrial Effluent Pre-Treatment. Water 2022, 14, 2025. [Google Scholar] [CrossRef]
- Aguiar, L.L.; Andrade-Vieira, L.F.; de Oliveira David, J.A. Evaluation of the Toxic Potential of Coffee Wastewater on Seeds, Roots and Meristematic Cells of Lactuca sativa L. Ecotoxicol. Environ. Saf. 2016, 133, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.M.; Abdullah, S.R.S.; Hasan, H.A.; Othman, A.R.; Ismail, N.I.; Kurniawan, S.B. Phytotoxicity of Coffee Wastewater to Water Hyacinth as Prior Step to Phytotreatment Assessment: Influence of Concentration and Amount of Plant Biomass. Environ. Eng. Manag. J. 2021, 20, 1543–1554. [Google Scholar] [CrossRef]
- Asefaw, K.T.; Asaithambi, P.; Tegegn, M. Treatment of Wet Coffee Processing Wastewater Using a Pulsed-Electrocoagulation Process: Optimization Using Response Surface Technique. Appl. Water Sci. 2024, 14, 54. [Google Scholar] [CrossRef]
- Asefaw, K.T.; Bidira, F.; Desta, W.M.; Asaithambi, P. Investigation on Pulsed-Electrocoagulation Process for the Treatment of Wet Coffee Processing Wastewater Using an Aluminum Electrode. Sustain. Chem. Environ. 2024, 6, 100085. [Google Scholar] [CrossRef]
- Genanaw, W.; Kanno, G.G.; Derese, D.; Aregu, M.B. Effect of Wastewater Discharge From Coffee Processing Plant on River Water Quality, Sidama Region, South Ethiopia. Environ. Health Insights 2021, 15, 11786302211061047. [Google Scholar] [CrossRef]
- Bidira, F.; Asmelash, Z.; Kebede, S.; Bekele, A. Phosphate and Nitrate Removal from Coffee Processing Wastewater Using a Photoelectrochemical Oxidation Process. J. Environ. Public Health 2022, 2022, 4382491. [Google Scholar] [CrossRef] [PubMed]
- Berego, Y.S.; Sota, S.S.; Ulsido, M.D.; Beyene, E.M. Treatment Performance Assessment of Natural and Constructed Wetlands on Wastewater From Kege Wet Coffee Processing Plant in Dale Woreda, Sidama Regional State, Ethiopia. Environ. Health Insights 2022, 16, 11786302221142749. [Google Scholar] [CrossRef] [PubMed]
- Barrios-Rodríguez, Y.F.; Gutiérrez-Guzmán, N.; Pedreschi, F.; Mariotti-Celis, M.S. Rational Design of Technologies for the Mitigation of Neo-Formed Contaminants in Roasted Coffee. Trends Food Sci. Technol. 2022, 120, 223–235. [Google Scholar] [CrossRef]
- Feng, J.; Berton-Carabin, C.C.; Fogliano, V.; Schroën, K. Maillard Reaction Products as Functional Components in Oil-in-Water Emulsions: A Review Highlighting Interfacial and Antioxidant Properties. Trends Food Sci. Technol. 2022, 121, 129–141. [Google Scholar] [CrossRef]
- Feng, Y.; Cao, H.; Song, H.; Huang, K.; Zhang, Y.; Zhang, Y.; Li, S.; Li, Y.; Lu, J.; Guan, X. The Formation Mechanism, Analysis Strategies and Regulation Measures of Cereal Aroma: A Review. Trends Food Sci. Technol. 2024, 147, 104452. [Google Scholar] [CrossRef]
- Medeiros Vinci, R.; Mestdagh, F.; De Meulenaer, B. Acrylamide Formation in Fried Potato Products—Present and Future, a Critical Review on Mitigation Strategies. Food Chem. 2012, 133, 1138–1154. [Google Scholar] [CrossRef]
- Beland, F.A.; Olson, G.R.; Mendoza, M.C.B.; Marques, M.M.; Doerge, D.R. Carcinogenicity of Glycidamide in B6C3F1 Mice and F344/N Rats from a Two-Year Drinking Water Exposure. Food Chem. Toxicol. 2015, 86, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Hagmar, L.; Törnqvist, M.; Nordander, C.; Rosén, I.; Bruze, M.; Kautiainen, A.; Magnusson, A.-L.; Malmberg, B.; Aprea, P.; Granath, F.; et al. Health Effects of Occupational Exposure to Acrylamide Using Hemoglobin Adducts as Biomarkers of Internal Dose. Scand. J. Work Environ. Health 2001, 27, 219–226. [Google Scholar] [CrossRef]
- Kopanska, M.; Czech, J.; Zagata, P.; Dobrek, L.; Thor, P.; Formicki, G. Effect of the Different Doses of Acrylamide on Acetylocholinoesterase Activity, Thiol Groups, Malondialdehyde Concentrations in Hypothalamus and Selected Muscles of Mice. J. Physiol. Pharmacol. 2017, 68, 565–571. [Google Scholar]
- Parzefall, W. Minireview on the Toxicity of Dietary Acrylamide. Food Chem. Toxicol. 2008, 46, 1360–1364. [Google Scholar] [CrossRef]
- Teodor, V.; Cuciureanu, M.; Filip, C.; Zamosteanu, N.; Cuciureanu, R. Protective Effects of Selenium on Acrylamide Toxicity in the Liver of the Rat. Effects on the Oxidative Stress. Rev. Med. Chir. Soc. Med. Nat. Iasi 2011, 115, 612–618. [Google Scholar] [PubMed]
- Alyousef, H.A.; Wang, H.; Al-Hajj, N.Q.M.; Koko, M.Y.F. Determination of Acrylamide Levels in Selected Commercial and Traditional Foods in Syria. Trop. J. Pharm. Res. 2016, 15, 1275–1281. [Google Scholar] [CrossRef]
- Mesías, M.; Morales, F.J. Acrylamide in Coffee: Estimation of Exposure from Vending Machines. J. Food Compos. Anal. 2016, 48, 8–12. [Google Scholar] [CrossRef]
- Oroian, M.; Amariei, S.; Gutt, G. Acrylamide in Romanian Food Using HPLC-UV and a Health Risk Assessment. Food Addit. Contam. Part B. 2015, 8, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Cagliero, C.; Pierson, S.A.; Anderson, J.L. Rapid and Sensitive Analysis of Polychlorinated Biphenyls and Acrylamide in Food Samples Using Ionic Liquid-Based in Situ Dispersive Liquid-Liquid Microextraction Coupled to Headspace Gas Chromatography. J. Chromatogr. A 2017, 1481, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Long, Y.; Ma, Y.; Huang, Y.; Wan, Y.; Yu, Q.; Xie, J.; Chen, Y. Investigation of Thermal Contaminants in Coffee Beans Induced by Roasting: A Kinetic Modeling Approach. Food Chem. 2022, 378, 132063. [Google Scholar] [CrossRef] [PubMed]
- Han, J.-W.; Boo, H.; Chung, M.-S. Effects of Extraction Conditions on Acrylamide/Furan Content, Antioxidant Activity, and Sensory Properties of Cold Brew Coffee. Food Sci. Biotechnol. 2020, 29, 1071–1080. [Google Scholar] [CrossRef]
- Kang, D.-E.; Lee, H.-U.; Davaatseren, M.; Chung, M.-S. Comparison of Acrylamide and Furan Concentrations, Antioxidant Activities, and Volatile Profiles in Cold or Hot Brew Coffees. Food Sci. Biotechnol. 2020, 29, 141–148. [Google Scholar] [CrossRef]
- Porto, A.C.V.; Freitas-Silva, O.; de Souza, E.F.; Gottschalk, L.M.F. Effect of Asparaginase Enzyme in the Reduction of Asparagine in Green Coffee. Beverages 2019, 5, 32. [Google Scholar] [CrossRef]
- Rattanarat, P.; Chindapan, N.; Devahastin, S. Comparative Evaluation of Acrylamide and Polycyclic Aromatic Hydrocarbons Contents in Robusta Coffee Beans Roasted by Hot Air and Superheated Steam. Food Chem. 2021, 341, 128266. [Google Scholar] [CrossRef]
- Dong, R.; Zhu, M.; Long, Y.; Yu, Q.; Li, C.; Xie, J.; Huang, Y.; Chen, Y. Exploring Correlations between Green Coffee Bean Components and Thermal Contaminants in Roasted Coffee Beans. Food Res. Int. 2023, 167, 112700. [Google Scholar] [CrossRef] [PubMed]
- Akgün, B.; Arıcı, M. Evaluation of Acrylamide and Selected Parameters in Some Turkish Coffee Brands from the Turkish Market. Food Addit. Contam. Part A 2019, 36, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Loaëc, G.; Niquet-Léridon, C.; Henry, N.; Jacolot, P.; Volpoet, G.; Goudemand, E.; Janssens, M.; Hance, P.; Cadalen, T.; Hilbert, J.-L.; et al. Effects of Variety, Agronomic Factors, and Drying on the Amount of Free Asparagine and Crude Protein in Chicory. Correlation with the Acrylamide Formation during Roasting. Food Res. Int. 2014, 63, 299–305. [Google Scholar] [CrossRef]
- Cascos, G.; Montero-Fernández, I.; Marcía-Fuentes, J.A.; Aleman, R.S.; Ruiz-Canales, A.; Martín-Vertedor, D. Electronic Prediction of Chemical Contaminants in Aroma of Brewed Roasted Coffee and Quantification of Acrylamide Levels. Foods 2024, 13, 768. [Google Scholar] [CrossRef] [PubMed]
- Basaran, B.; Aydin, F. Estimating the Acrylamide Exposure of Adult Individuals from Coffee: Turkey. Food Addit. Contam. Part A 2020, 37, 2051–2060. [Google Scholar] [CrossRef] [PubMed]
- Costa, S.A.; Correia, D.; Carvalho, C.; Vilela, S.; Severo, M.; Lopes, C.; Torres, D. Risk Characterization of Dietary Acrylamide Exposure and Associated Factors in the Portuguese Population. Food Addit. Contam. Part A 2022, 39, 888–900. [Google Scholar] [CrossRef] [PubMed]
- Hirvonen, T.; Jestoi, M.; Tapanainen, H.; Valsta, L.; Virtanen, S.M.; Sinkko, H.; Kronberg-Kippilä, C.; Kontto, J.; Virtamo, J.; Simell, O.; et al. Dietary Acrylamide Exposure among Finnish Adults and Children: The Potential Effect of Reduction Measures. Food Addit. Contam. Part A 2011, 28, 1483–1491. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Hwang, S.; Kwon, H. Survey for Acrylamide in Processed Foods from Korean Market and Individual Exposure Estimation Using a Non-Parametric Probabilistic Model. Food Addit. Contam. Part A 2020, 37, 916–930. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, J.; Imaizumi, Y.; Kuroda, K.; Aoki, Y.; Suzuki, N. Estimation of Long-Term Dietary Exposure to Acrylamide of the Japanese People. Food Addit. Contam. Part A 2018, 35, 1689–1702. [Google Scholar] [CrossRef]
- Karami, M.; Akbari-Adergani, B.; Jahed Khaniki, G.; Shariatifar, N.; Sadighara, P. Determination and Health Risk Assessment of Acrylamide Levels in Instant Coffee Products Available in Tehran Markets by GC-MS. Int. J. Environ. Anal. Chem. 2022, 1–10. [Google Scholar] [CrossRef]
- Claeys, W.; De Meulenaer, B.; Huyghebaert, A.; Scippo, M.-L.; Hoet, P.; Matthys, C. Reassessment of the Acrylamide Risk: Belgium as a Case-Study. Food Control 2016, 59, 628–635. [Google Scholar] [CrossRef]
- Guadalupe, G.A.; Grandez-Yoplac, D.E.; Arellanos, E.; Doménech, E. Probabilistic Risk Assessment of Metals, Acrylamide and Ochratoxin A in Instant Coffee from Brazil, Colombia, Mexico and Peru. Foods 2024, 13, 726. [Google Scholar] [CrossRef] [PubMed]
- Märk, J.; Pollien, P.; Lindinger, C.; Blank, I.; Märk, T. Quantitation of Furan and Methylfuran Formed in Different Precursor Systems by Proton Transfer Reaction Mass Spectrometry. J. Agric. Food Chem. 2006, 54, 2786–2793. [Google Scholar] [CrossRef] [PubMed]
- Becalski, A.; Seaman, S. Furan Precursors in Food: A Model Study and Development of a Simple Headspace Method for Determination of Furan. J. AOAC Int. 2005, 88, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Owczarek-Fendor, A.; De Meulenaer, B.; Scholl, G.; Adams, A.; Van Lancker, F.; Yogendrarajah, P.; Eppe, G.; De Pauw, E.; Scippo, M.-L.; De Kimpe, N. Furan Formation from Vitamin C in a Starch-Based Model System: Influence of the Reaction Conditions. Food Chem. 2010, 121, 1163–1170. [Google Scholar] [CrossRef]
- Limacher, A.; Kerler, J.; Conde-Petit, B.; Blank, I. Formation of Furan and Methylfuran from Ascorbic Acid in Model Systems and Food. Food Addit. Contam. 2007, 24, 122–135. [Google Scholar] [CrossRef] [PubMed]
- Fan, X. Formation of Furan from Carbohydrates and Ascorbic Acid Following Exposure to Ionizing Radiation and Thermal Processing. J. Agric. Food Chem. 2005, 53, 7826–7831. [Google Scholar] [CrossRef] [PubMed]
- Karacaoĝlu, E.; Selmanoĝlu, G. Effects of Heat-Induced Food Contaminant Furan on Reproductive System of Male Rats from Weaning through Postpuberty. Food Chem. Toxicol. 2010, 48, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Miao, Y.; Cao, L.; Liu, Y.; Zhu, X.; Zhang, J.; Wang, D.; Li, X.; Zhang, L.; Huo, J.; et al. Adverse Outcome Pathway Exploration of Furan-Induced Liver Fibrosis in Rats: Genotoxicity Pathway or Oxidative Stress Pathway through CYP2E1 Activation? Chemosphere 2023, 341, 139998. [Google Scholar] [CrossRef]
- Teodoro, J.S.; Silva, R.; Aguiar, A.; Sobral, A.J.F.N.; Rolo, A.P.; Palmeira, C.M. Exploration of the Cellular Effects of the High-Dose, Long-Term Exposure to Coffee Roasting Product Furan and Its by-Product Cis-2-Butene-1,4-Dial on Human and Rat Hepatocytes. Toxicol. Mech. Methods 2020, 30, 536–545. [Google Scholar] [CrossRef]
- Moser, G.J.; Foley, J.; Burnett, M.; Goldsworthy, T.L.; Maronpot, R. Furan-Induced Dose—Response Relationships for Liver Cytotoxicity, Cell Proliferation, and Tumorigenicity (Furan-Induced Liver Tumorigenicity). Exp. Toxicol. Pathol. 2009, 61, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Albouchi, A.; Murkovic, M. LC Method for the Direct and Simultaneous Determination of Four Major Furan Derivatives in Coffee Grounds and Brews. J. Sep. Sci. 2019, 42, 1695–1701. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.; Zhang, L.; Yang, Y.; Wang, X.-D.; Liu, Z.-P.; Li, J.-W.; Wang, L.-Y.; Chung, S.; Zhou, M.; Deng, K.; et al. Analysis of Furan and Its Major Furan Derivatives in Coffee Products on the Chinese Market Using HS-GC–MS and the Estimated Exposure of the Chinese Population. Food Chem. 2022, 387, 132823. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Kim, M.K.; Lee, K.-G. Furan Levels and Sensory Profiles of Commercial Coffee Products Under Various Handling Conditions. J. Food Sci. 2017, 82, 2759–2766. [Google Scholar] [CrossRef] [PubMed]
- Kettlitz, B.; Scholz, G.; Theurillat, V.; Cselovszky, J.; Buck, N.R.; O’ Hagan, S.; Mavromichali, E.; Ahrens, K.; Kraehenbuehl, K.; Scozzi, G.; et al. Furan and Methylfurans in Foods: An Update on Occurrence, Mitigation, and Risk Assessment. Compr. Rev. Food Sci. Food Saf. 2019, 18, 738–752. [Google Scholar] [CrossRef] [PubMed]
- Schoenauer, S.; Schieberle, P. Structure-Odor Correlations in Homologous Series of Mercapto Furans and Mercapto Thiophenes Synthesized by Changing the Structural Motifs of the Key Coffee Odorant Furan-2-Ylmethanethiol. J. Agric. Food Chem. 2018, 66, 4189–4199. [Google Scholar] [CrossRef] [PubMed]
- Frank, N.; Dubois, M.; Huertas Pérez, J.F. Detection of Furan and Five Alkylfurans, Including 2-Pentylfuran, in Various Food Matrices. J. Chromatogr. A 2020, 1622, 461119. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-H.; Kao, T.-H.; Inbaraj, B.S.; Chen, B.-H. Improved Analytical Method for Determination of Furan and Its Derivatives in Commercial Foods by HS-SPME Arrow Combined with Gas Chromatography-Tandem Mass Spectrometry. J. Agric. Food Chem. 2022, 70, 7762–7772. [Google Scholar] [CrossRef] [PubMed]
- Macheiner, L.; Schmidt, A.; Karpf, F.; Mayer, H.K. A Novel UHPLC Method for Determining the Degree of Coffee Roasting by Analysis of Furans. Food Chem. 2021, 341, 128165. [Google Scholar] [CrossRef]
- Petisca, C.; Pérez-Palacios, T.; Pinho, O.; Ferreira, I.M.P.L.V.O. Optimization and Application of a HS-SPME-GC-MS Methodology for Quantification of Furanic Compounds in Espresso Coffee. Food Anal. Methods 2014, 7, 81–88. [Google Scholar] [CrossRef]
- De Vivo, A.; Balivo, A.; Sarghini, F. Volatile Compound Analysis to Authenticate the Geographical Origin of Arabica and Robusta Espresso Coffee. Appl. Sci. 2023, 13, 5615. [Google Scholar] [CrossRef]
- Guenther, H.; Hoenicke, K.; Biesterveld, S.; Gerhard-Rieben, E.; Lantz, I. Furan in Coffee: Pilot Studies on Formation during Roasting and Losses during Production Steps and Consumer Handling. Food Addit. Contam. Part A 2010, 27, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Pavesi Arisseto, A.; Vicente, E.; Soares Ueno, M.; Verdiani Tfouni, S.A.; De Figueiredo Toledo, M.C. Furan Levels in Coffee as Influenced by Species, Roast Degree, and Brewing Procedures. J. Agric. Food Chem. 2011, 59, 3118–3124. [Google Scholar] [CrossRef] [PubMed]
- Petisca, C.; Pérez-Palacios, T.; Farah, A.; Pinho, O.; Ferreira, I.M.P.L.V.O. Furans and Other Volatile Compounds in Ground Roasted and Espresso Coffee Using Headspace Solid-Phase Microextraction: Effect of Roasting Speed. Food Bioprod. Process. 2013, 91, 233–241. [Google Scholar] [CrossRef]
- Waizenegger, J.; Winkler, G.; Kuballa, T.; Ruge, W.; Kersting, M.; Alexy, U.; Lachenmeier, D.W. Analysis and Risk Assessment of Furan in Coffee Products Targeted to Adolescents. Food Addit. Contam. Part A 2012, 29, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Albouchi, A.; Murkovic, M. Investigation on the Mitigation Effects of Furfuryl Alcohol and 5-Hydroxymethylfurfural and Their Carboxylic Acid Derivatives in Coffee and Coffee-Related Model Systems. Food Res. Int. 2020, 137, 109444. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.W.; Chung, H.; Kim, Y.-S. Effects of Dicarbonyl Trapping Agents, Antioxidants, and Reducing Agents on the Formation of Furan and Other Volatile Components in Canned-Coffee Model Systems. Food Res. Int. 2015, 75, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Al Zabadi, H.; Ferrari, L.; Laurent, A.-M.; Tiberguent, A.; Paris, C.; Zmirou-Navier, D. Biomonitoring of Complex Occupational Exposures to Carcinogens: The Case of Sewage Workers in Paris. BMC Cancer 2008, 8, 67. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, R.R.; Vidotti Leal, L.D.; de Lourdes Cardeal, Z.; Menezes, H.C. Determination of Polycyclic Aromatic Hydrocarbons and Their Nitrated and Oxygenated Derivatives in Coffee Brews Using an Efficient Cold Fiber-Solid Phase Microextraction and Gas Chromatography Mass Spectrometry Method. J. Chromatogr. A 2019, 1584, 64–71. [Google Scholar] [CrossRef]
- Fernández, S.F.; Pardo, O.; Pastor, A.; Yusà, V.; Vento, M.; Cernada, M.; Gormaz, M.; Kuligowski, J.; Sánchez, A.; Torres, E.; et al. Biomonitoring of Polycyclic Aromatic Hydrocarbons in the Urine of Lactating Mothers: Urinary Levels, Association with Lifestyle Factors, and Risk Assessment. Environ. Pollut. 2021, 268, 115646. [Google Scholar] [CrossRef]
- Preedalikit, W.; Chittasupho, C.; Leelapornpisid, P.; Potprommanee, S.; Kiattisin, K. Comparison of Biological Activities and Protective Effects on PAH-Induced Oxidative Damage of Different Coffee Cherry Pulp Extracts. Foods 2023, 12, 4292. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, H.; Soofi, G.; Javanmardi, H.; Karimi, M. A 3D Nanoscale Polyhedral Oligomeric Silsesquioxanes Network for Microextraction of Polycyclic Aromatic Hydrocarbons. Microchim. Acta 2018, 185, 418. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Fernández, I.; Rentero, M.; Ayala, J.H.; Pasán, J.; Pino, V. Green Solid-Phase Microextraction Fiber Coating Based on the Metal-Organic Framework CIM-80(Al): Analytical Performance Evaluation in Direct Immersion and Headspace Using Gas Chromatography and Mass Spectrometry for the Analysis of Water, Urine and Brewed Coffee. Anal. Chim. Acta 2020, 1133, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Rascón, A.J.; Azzouz, A.; Ballesteros, E. Use of Semi-Automated Continuous Solid-Phase Extraction and Gas Chromatography–Mass Spectrometry for the Determination of Polycyclic Aromatic Hydrocarbons in Alcoholic and Non-Alcoholic Drinks from Andalucía (Spain). J. Sci. Food Agric. 2019, 99, 1117–1125. [Google Scholar] [CrossRef] [PubMed]
- Grover, I.S.; Sharma, R.; Singh, S.; Pal, B. Polycyclic Aromatic Hydrocarbons in Some Grounded Coffee Brands. Environ. Monit. Assess. 2013, 185, 6459–6463. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-S.; Kim, J.; Choi, J.; Paik, Y.; Moon, B.; Joo, Y.-S.; Lee, K.-W. Polycyclic Aromatic Hydrocarbons in Beverage and Dairy Products in South Korea: A Risk Characterization Using the Total Diet Study. Food Sci. Biotechnol. 2021, 30, 989–1002. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, A.; Adisa, A.; Woodham, C.; Saleh, M. Determination of Polycyclic Aromatic Hydrocarbons in Roasted Coffee. J. Environ. Sci. Health B 2014, 49, 828–835. [Google Scholar] [CrossRef] [PubMed]
- Singh, L.; Agarwal, T. PAHs in Indian Diet: Assessing the Cancer Risk. Chemosphere 2018, 202, 366–376. [Google Scholar] [CrossRef]
- Yoshioka, T.; Nagatomi, Y.; Harayama, K.; Bamba, T. Development of an Analytical Method for Polycyclic Aromatic Hydrocarbons in Coffee Beverages and Dark Beer Using Novel High-Sensitivity Technique of Supercritical Fluid Chromatography/Mass Spectrometry. J. Biosci. Bioeng. 2018, 126, 126–130. [Google Scholar] [CrossRef]
- Hubbs, A.F.; Kreiss, K.; Cummings, K.J.; Fluharty, K.L.; O’Connell, R.; Cole, A.; Dodd, T.M.; Clingerman, S.M.; Flesher, J.R.; Lee, R.; et al. Flavorings-Related Lung Disease: A Brief Review and New Mechanistic Data. Toxicol. Pathol. 2019, 47, 1012–1026. [Google Scholar] [CrossRef]
- LeBouf, R.F.; Hawley, B.; Cummings, K.J. Potential Hazards Not Communicated in Safety Data Sheets of Flavoring Formulations, Including Diacetyl and 2,3-Pentanedione. Ann. Work Expo. Health 2019, 63, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Pengelly, I.; O’Shea, H.; Smith, G.; Coggins, M.A. Measurement of Diacetyl and 2,3-Pentanedione in the Coffee Industry Using Thermal Desorption Tubes and Gas Chromatography-Mass Spectrometry. Ann. Work Expo. Health 2019, 63, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Rim, K.-T.; Kim, S.-J. A Toxicogenomics Study of Two Chemicals in Coffee Roasting Process. Mol. Cell Toxicol. 2020, 16, 25–38. [Google Scholar] [CrossRef]
- Pengelly, I.; Brown, V.M. A New Method for Workplace Monitoring of Airborne Diacetyl and 2,3-Pentanedione Using Thermal Desorption Tubes and Gas Chromatography-Mass Spectrometry. Ann. Work Expo. Health 2019, 63, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Vilarinho, F.; Sendón, R.; van der Kellen, A.; Vaz, M.F.; Silva, A.S. Bisphenol A in Food as a Result of Its Migration from Food Packaging. Trends Food Sci. Technol. 2019, 91, 33–65. [Google Scholar] [CrossRef]
- Eti, S.A.; Islam, M.S.; Shourove, J.H.; Saha, B.; Ray, S.K.; Sultana, S.; Ali Shaikh, M.A.; Rahman, M.M. Assessment of Heavy Metals Migrated from Food Contact Plastic Packaging: Bangladesh Perspective. Heliyon 2023, 9, E19667. [Google Scholar] [CrossRef]
- Lestido-Cardama, A.; Barbosa-Pereira, L.; Sendón, R.; Paseiro Losada, P.; Rodríguez Bernaldo de Quirós, A. Migration of Dihydroxy Alkylamines and Their Possible Impurities from Packaging into Foods and Food Simulants: Analysis and Safety Evaluation. Polymers 2023, 15, 2656. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.-H.; Kondo, F. Bisphenol A Migration from Cans Containing Coffee and Caffeine. Food Addit. Contam. 2002, 19, 886–890. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.S.; Kwack, S.J.; Kim, K.-B.; Kim, H.S.; Lee, B.M. Risk Assessment of Bisphenol a Migrated from Canned Foods in Korea. J. Toxicol. Environ. Health Part A 2009, 72, 1327–1335. [Google Scholar] [CrossRef]
- Sullivan, M.J.; LaFleur, L.E.; Gillespie, W.J. Risks Associated with Potential Dioxin Exposure through Consumption of Coffee Brewed Using Bleached Pulp-Based Filters. Chemosphere 1989, 19, 873–876. [Google Scholar] [CrossRef]
- Theurillat, X.; Mujahid, C.; Eriksen, B.; Griffin, A.; Savage, A.; Delatour, T.; Mottier, P. An LC-MS/MS Method for the Quantitative Determination of 57 per- and Polyfluoroalkyl Substances at Ng/Kg Levels in Different Food Matrices. Food Addit. Contam. Part A 2023, 40, 862–877. [Google Scholar] [CrossRef] [PubMed]
- Tabakoglu, N.; Sezer, K.; Çelik, S. Microplastics and Endocrine-Disrupting Chemicals Released from Disposable Hot Beverage Cups and from Teabags, and Their Evaluation in Terms of Human Health Safety. J. Elem. 2024, 29, 245–263. [Google Scholar] [CrossRef]
- Bai, C.-L.; Liu, L.-Y.; Guo, J.-L.; Zeng, L.-X.; Guo, Y. Microplastics in Take-out Food: Are We over Taking It? Environ. Res. 2022, 215, 114390. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, V.P.; Joseph, A.; Goel, S. Microplastics and Other Harmful Substances Released from Disposable Paper Cups into Hot Water. J. Hazard. Mater. 2021, 404, 124118. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-P.; Huang, X.-H.; Chen, J.-N.; Dong, M.; Zhang, Y.-Y.; Qin, L. Pouring Hot Water through Drip Bags Releases Thousands of Microplastics into Coffee. Food Chem. 2023, 415, 135717. [Google Scholar] [CrossRef]
- Zhu, Z.; Han, K.; Feng, Y.; Li, Z.; Zhang, A.; Wang, T.; Zhang, M.; Zhang, W. Biomimetic Ag/ZnO@PDMS Hybrid Nanorod Array-Mediated Photo-Induced Enhanced Raman Spectroscopy Sensor for Quantitative and Visualized Analysis of Microplastics. ACS Appl. Mater. Interfaces 2023, 15, 36988–36998. [Google Scholar] [CrossRef]
- Yu, M.C.; Mack, T.M.; Hanisch, R.; Cicioni, C.; Henderson, B.E. Cigarette Smoking, Obesity, Diuretic Use, and Coffee Consumption as Risk Factors for Renal Cell Carcinoma. JNCI J. Natl. Cancer Inst. 1986, 77, 351–356. [Google Scholar] [CrossRef]
- Villanueva, C.M.; Cantor, K.P.; King, W.D.; Jaakkola, J.J.K.; Cordier, S.; Lynch, C.F.; Porru, S.; Kogevinas, M. Total and Specific Fluid Consumption as Determinants of Bladder Cancer Risk. Int. J. Cancer 2006, 118, 2040–2047. [Google Scholar] [CrossRef]
- Nilsson, L.M.; Johansson, I.; Lenner, P.; Lindahl, B.; Van Guelpen, B. Consumption of Filtered and Boiled Coffee and the Risk of Incident Cancer: A Prospective Cohort Study. Cancer Causes Control 2010, 21, 1533–1544. [Google Scholar] [CrossRef]
- Acar, E.; Gürdeniz, G.; Savorani, F.; Hansen, L.; Olsen, A.; Tjønneland, A.; Dragsted, L.O.; Bro, R. Forecasting Chronic Diseases Using Data Fusion. J. Proteome Res. 2017, 16, 2435–2444. [Google Scholar] [CrossRef]
- Fernandes, A.S.; Mello, F.V.C.; Thode Filho, S.; Carpes, R.M.; Honório, J.G.; Marques, M.R.C.; Felzenszwalb, I.; Ferraz, E.R.A. Impacts of Discarded Coffee Waste on Human and Environmental Health. Ecotoxicol. Environ. Saf. 2017, 141, 30–36. [Google Scholar] [CrossRef]
- Yang, H.; Chen, Q.; Zhou, N.; Sun, L.; Bao, H.; Tan, L.; Chen, H.; Zhang, G.; Ling, X.; Huang, L.; et al. Lifestyles Associated with Human Semen Quality: Results from Marhcs Cohort Study in Chongqing, China. Medicine 2015, 94, e1166. [Google Scholar] [CrossRef] [PubMed]
- Mellbye, F.B.; Jeppesen, P.B.; Shokouh, P.; Laustsen, C.; Hermansen, K.; Gregersen, S. Cafestol, a Bioactive Substance in Coffee, Has Antidiabetic Properties in KKAy Mice. J. Nat. Prod. 2017, 80, 2353–2359. [Google Scholar] [CrossRef]
- Bedoya-Ramírez, D.; Cilla, A.; Contreras-Calderón, J.; Alegría-Torán, A. Evaluation of the Antioxidant Capacity, Furan Compounds and Cytoprotective/Cytotoxic Effects upon Caco-2 Cells of Commercial Colombian Coffee. Food Chem. 2017, 219, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Zawirska-Wojtasiak, R.; Piechowska, P.; Wojtowicz, E.; Przygoński, K.; Mildner-Szkudlarz, S. Bioactivity of Selected Materials for Coffee Substitute. PLoS ONE 2018, 13, e0206762. [Google Scholar] [CrossRef]
- Ahalya, N.; Kanamadi, R.D.; Ramachandra, T.V. Removal of Hexavalent Chromium Using Coffee Husk. Int. J. Environ. Pollut. 2010, 43, 106–116. [Google Scholar] [CrossRef]
- Penido, E.S.; de Oliveira, M.A.; Sales, A.L.R.; Ferrazani, J.C.; Magalhães, F.; Bianchi, M.L.; Melo, L.C.A. Biochars Produced from Various Agro-Industrial by-Products Applied in Cr (VI) Adsorption-Reduction Processes. J. Environ. Sci. Health Part A 2021, 56, 1387–1396. [Google Scholar] [CrossRef] [PubMed]
- Aragaw, T.; Leta, S.; Alayu, E.; Mekonnen, A. Chromium Removal from Electroplating Wastewater Using Activated Coffee Husk Carbon. Adsorpt. Sci. Technol. 2022, 2022. [Google Scholar] [CrossRef]
- Chen, D.; Du, X.; Chen, K.; Liu, G.; Jin, X.; Song, C.; He, F.; Huang, Q. Efficient Removal of Aqueous Cr(VI) with Ferrous Sulfide/N-Doped Biochar Composites: Facile, in-Situ Preparation and Cr(VI) Uptake Performance and Mechanism. Sci. Total Environ. 2022, 837, 155791. [Google Scholar] [CrossRef]
- Cruz, G.J.F.; Mondal, D.; Rimaycuna, J.; Soukup, K.; Gómez, M.M.; Solis, J.L.; Lang, J. Agrowaste Derived Biochars Impregnated with ZnO for Removal of Arsenic and Lead in Water. J. Environ. Chem. Eng. 2020, 8, 103800. [Google Scholar] [CrossRef]
- Quyen, V.T.; Pham, T.-H.; Kim, J.; Thanh, D.M.; Thang, P.Q.; Van Le, Q.; Jung, S.H.; Kim, T. Biosorbent Derived from Coffee Husk for Efficient Removal of Toxic Heavy Metals from Wastewater. Chemosphere 2021, 284, 131312. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.-L.; Yen, P.-L.; Liao, V.H.-C. A Combined Approach to Remediate Cadmium Contaminated Sediment Using the Acidophilic Sulfur-Oxidizing Bacterial SV5 and Untreated Coffee Ground. Chemosphere 2021, 273, 129662. [Google Scholar] [CrossRef]
- Cuong Nguyen, X.; Thanh Huyen Nguyen, T.; Hong Chuong Nguyen, T.; Van Le, Q.; Yen Binh Vo, T.; Cuc Phuong Tran, T.; Duong La, D.; Kumar, G.; Khanh Nguyen, V.; Chang, S.W.; et al. Sustainable Carbonaceous Biochar Adsorbents Derived from Agro-Wastes and Invasive Plants for Cation Dye Adsorption from Water. Chemosphere 2021, 282, 131009. [Google Scholar] [CrossRef]
- Oliveira, L.S.; Franca, A.S.; Alves, T.M.; Rocha, S.D.F. Evaluation of Untreated Coffee Husks as Potential Biosorbents for Treatment of Dye Contaminated Waters. J. Hazard. Mater. 2008, 155, 507–512. [Google Scholar] [CrossRef]
- Gonçalves, M.; Guerreiro, M.C.; Ramos, P.H.; de Oliveira, L.C.A.; Sapag, K. Activated Carbon Prepared from Coffee Pulp: Potential Adsorbent of Organic Contaminants in Aqueous Solution. Water Sci. Technol. 2013, 68, 1085–1090. [Google Scholar] [CrossRef]
- Ayalew, A.A.; Aragaw, T.A. Utilization of Treated Coffee Husk as Low-Cost Bio-Sorbent for Adsorption of Methylene Blue. Adsorpt. Sci. Technol. 2020, 38, 205–222. [Google Scholar] [CrossRef]
- Deivasigamani, P.; Senthil Kumar, P.; Sundaraman, S.; Soosai, M.R.; Renita, A.A.; Karthikeyan, M.; Bektenov, N.; Baigenzhenov, O.; Venkatesan, D.; Aravind Kumar, J. Deep Insights into Kinetics, Optimization and Thermodynamic Estimates of Methylene Blue Adsorption from Aqueous Solution onto Coffee Husk (Coffee Arabica) Activated Carbon. Environ. Res. 2023, 236, 116735. [Google Scholar] [CrossRef] [PubMed]
- Bednárek, J.; Matějová, L.; Jankovská, Z.; Vaštyl, M.; Sokolová, B.; Peikertová, P.; Šiler, P.; Verner, A.; Tokarský, J.; Koutník, I.; et al. The Influence of Structural Properties on the Adsorption Capacities of Microwave-Assisted Biochars for Metazachlor Removal from Aqueous Solutions. J. Environ. Chem. Eng. 2022, 10, 108003. [Google Scholar] [CrossRef]
- Cheruiyot, G.K.; Wanyonyi, W.C.; Kiplimo, J.J.; Maina, E.N. Adsorption of Toxic Crystal Violet Dye Using Coffee Husks: Equilibrium, Kinetics and Thermodynamics Study. Sci. Afr. 2019, 5, e00116. [Google Scholar] [CrossRef]
- Ferreira, R.V.d.P.; de Araujo, L.G.; Canevesi, R.L.S.; da Silva, E.A.; Ferreira, E.G.A.; Palmieri, M.C.; Marumo, J.T. The Use of Rice and Coffee Husks for Biosorption of U (Total), 241Am, and 137Cs in Radioactive Liquid Organic Waste. Environ. Sci. Pollut. Res. 2020, 27, 36651–36663. [Google Scholar] [CrossRef]
- Paredes-Laverde, M.; Silva-Agredo, J.; Torres-Palma, R.A. Removal of Norfloxacin in Deionized, Municipal Water and Urine Using Rice (Oryza sativa) and Coffee (Coffea arabica) Husk Wastes as Natural Adsorbents. J. Environ. Manag. 2018, 213, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Soumya, L.; Poovathingal, K.R.; Williams, G.P.; Naveen Chandra, D.; Kunnummal, S.V. Evaluation of the Concentration of Phytotoxic Chemicals and Microbial Load of the Vermicompost Prepared from Coffee Processing Waste. Univers. J. Agric. Res. 2022, 10, 731–748. [Google Scholar] [CrossRef]
- Acosta-Rubí, S.; Campocosio, A.T.; Montes-Horcasitas, M.D.C.; Quintanar-Vera, L.; Esparza-García, F.; Rodríguez-Vázquez, R. Production of a Halotolerant Biofilm from Green Coffee Beans Immobilized on Loofah Fiber (Luffa Cylindrica) and Its Effect on Phenanthrene Degradation in Seawater. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 2017, 52, 632–640. [Google Scholar] [CrossRef]
- Barragán-Huerta, B.E.; Costa-Pérez, C.; Peralta-Cruz, J.; Barrera-Cortés, J.; Esparza-García, F.; Rodríguez-Vázquez, R. Biodegradation of Organochlorine Pesticides by Bacteria Grown in Microniches of the Porous Structure of Green Bean Coffee. Int. Biodeterior. Biodegrad. 2007, 59, 239–244. [Google Scholar] [CrossRef]
- Mandal, B.; Roy, P.; Mitra, P. Comparative Study on Organic Effluent Degradation Capabilities and Electrical Transport Properties of Polygonal ZnCo2O4 Spinels Fabricated Using Different Green Fuels. Mater. Sci. Eng. C 2020, 117, 111304. [Google Scholar] [CrossRef] [PubMed]
- Gottstein, V.; Bernhardt, M.; Dilger, E.; Keller, J.; Breitling-Utzmann, C.M.; Schwarz, S.; Kuballa, T.; Lachenmeier, D.W.; Bunzel, M. Coffee Silver Skin: Chemical Characterization with Special Consideration of Dietary Fiber and Heat-Induced Contaminants. Foods 2021, 10, 1705. [Google Scholar] [CrossRef]
- Nolasco, A.; Squillante, J.; Esposito, F.; Velotto, S.; Romano, R.; Aponte, M.; Giarra, A.; Toscanesi, M.; Montella, E.; Cirillo, T. Coffee Silverskin: Chemical and Biological Risk Assessment and Health Profile for Its Potential Use in Functional Foods. Foods 2022, 11, 2834. [Google Scholar] [CrossRef] [PubMed]
- Nolasco, A.; Squillante, J.; Velotto, S.; D’Auria, G.; Ferranti, P.; Mamone, G.; Errico, M.E.; Avolio, R.; Castaldo, R.; Cirillo, T.; et al. Valorization of Coffee Industry Wastes: Comprehensive Physicochemical Characterization of Coffee Silverskin and Multipurpose Recycling Applications. J. Clean. Prod. 2022, 370, 133520. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food Bioproc. Technol. 2014, 7, 3493–3503. [Google Scholar] [CrossRef]
- Barbero-López, A.; Monzó-Beltrán, J.; Virjamo, V.; Akkanen, J.; Haapala, A. Revalorization of Coffee Silverskin as a Potential Feedstock for Antifungal Chemicals in Wood Preservation. Int. Biodeterior. Biodegrad. 2020, 152, 105011. [Google Scholar] [CrossRef]
- Caires, C.S.A.; Farias, L.A.S.; Gomes, L.E.; Pinto, B.P.; Gonçalves, D.A.; Zagonel, L.F.; Nascimento, V.A.; Alves, D.C.B.; Colbeck, I.; Whitby, C.; et al. Effective Killing of Bacteria under Blue-Light Irradiation Promoted by Green Synthesized Silver Nanoparticles Loaded on Reduced Graphene Oxide Sheets. Mater. Sci. Eng. C 2020, 113, 110984. [Google Scholar] [CrossRef] [PubMed]
- Giacobbe, S.; Pezzella, C.; Lettera, V.; Sannia, G.; Piscitelli, A. Laccase Pretreatment for Agrofood Wastes Valorization. Bioresour. Technol. 2018, 265, 59–65. [Google Scholar] [CrossRef] [PubMed]
- del Pozo, C.; Rego, F.; Yang, Y.; Puy, N.; Bartrolí, J.; Fàbregas, E.; Bridgwater, A.V. Converting Coffee Silverskin to Value-Added Products by a Slow Pyrolysis-Based Biorefinery Process. Fuel Process. Technol. 2021, 214, 106708. [Google Scholar] [CrossRef]
- Liang, Y.; Li, H.; Li, X.; Zhang, Q.; Fei, J.; Li, S.; Chen, S. Using Recycled Coffee Grounds for the Synthesis of ZIF-8@BC to Remove Congo Red in Water. Ecotoxicol. Environ. Saf. 2022, 236, 113450. [Google Scholar] [CrossRef] [PubMed]
- Akindolie, M.S.; Choi, H.J. Fe12LaO19 Fabricated Biochar for Removal of Phosphorus in Water and Exploration of Its Adsorption Mechanism. J. Environ. Manag. 2023, 329, 117053. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, S.; Huo, J.; Zhang, X.; Wen, H.; Zhang, D.; Zhao, Y.; Kang, D.; Guo, W.; Ngo, H.H. Adsorption Recovery of Phosphorus in Contaminated Water by Calcium Modified Biochar Derived from Spent Coffee Grounds. Sci. Total Environ. 2024, 909, 168426. [Google Scholar] [CrossRef]
- Son Tran, V.; Hao Ngo, H.; Guo, W.; Ha Nguyen, T.; Mai Ly Luong, T.; Huan Nguyen, X.; Lan Anh Phan, T.; Trong Le, V.; Phuong Nguyen, M.; Khai Nguyen, M. New Chitosan-Biochar Composite Derived from Agricultural Waste for Removing Sulfamethoxazole Antibiotics in Water. Bioresour. Technol. 2023, 385, 129384. [Google Scholar] [CrossRef]
- Shin, J.; Kwak, J.; Lee, Y.-G.; Kim, S.; Son, C.; Cho, K.H.; Lee, S.-H.; Park, Y.; Ren, X.; Chon, K. Changes in Adsorption Mechanisms of Radioactive Barium, Cobalt, and Strontium Ions Using Spent Coffee Waste Biochars via Alkaline Chemical Activation: Enrichment Effects of O-Containing Functional Groups. Environ. Res. 2021, 199, 111346. [Google Scholar] [CrossRef]
- Shin, J.; Kwak, J.; Lee, Y.-G.; Kim, S.; Choi, M.; Bae, S.; Lee, S.-H.; Park, Y.; Chon, K. Competitive Adsorption of Pharmaceuticals in Lake Water and Wastewater Effluent by Pristine and NaOH-Activated Biochars from Spent Coffee Wastes: Contribution of Hydrophobic and π-π Interactions. Environ. Pollut. 2021, 270, 116244. [Google Scholar] [CrossRef]
- Shin, J.; Lee, S.-H.; Kim, S.; Ochir, D.; Park, Y.; Kim, J.; Lee, Y.-G.; Chon, K. Effects of Physicochemical Properties of Biochar Derived from Spent Coffee Grounds and Commercial Activated Carbon on Adsorption Behavior and Mechanisms of Strontium Ions (Sr2+). Environ. Sci. Pollut. Res. 2021, 28, 40623–40632. [Google Scholar] [CrossRef]
- Nguyen, V.-T.; Nguyen, T.-B.; Chen, C.-W.; Hung, C.-M.; Huang, C.P.; Dong, C.-D. Cobalt-Impregnated Biochar (Co-SCG) for Heterogeneous Activation of Peroxymonosulfate for Removal of Tetracycline in Water. Bioresour. Technol. 2019, 292, 121954. [Google Scholar] [CrossRef] [PubMed]
- Abd-ur-Rehman, H.M.; Deletic, A.; Zhang, K.; Prodanovic, V. The Comparative Performance of Lightweight Green Wall Media for the Removal of Xenobiotic Organic Compounds from Domestic Greywater. Water Res. 2022, 221, 118774. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Cho, D.-W.; Ahmad, W.; Jo, J.; Jurng, J.; Kurade, M.B.; Jeon, B.-H.; Choi, J. Efficient Removal of Formaldehyde Using Metal-Biochar Derived from Acid Mine Drainage Sludge and Spent Coffee Waste. J. Environ. Manag. 2021, 298, 113468. [Google Scholar] [CrossRef]
- Kuiper-Goodman, T.; Hilts, C.; Billiard, S.M.; Kiparissis, Y.; Richard, I.D.K.; Hayward, S. Health Risk Assessment of Ochratoxin for All Age-Sex Strata in a Market Economy. Food Addit. Contam. Part A 2010, 27, 212–240. [Google Scholar] [CrossRef] [PubMed]
- Hoteit, M.; Abbass, Z.; Daou, R.; Tzenios, N.; Chmeis, L.; Haddad, J.; Chahine, M.; Al Manasfi, E.; Chahine, A.; Poh, O.B.J.; et al. Dietary Exposure and Risk Assessment of Multi-Mycotoxins (AFB1, AFM1, OTA, OTB, DON, T-2 and HT-2) in the Lebanese Food Basket Consumed by Adults: Findings from the Updated Lebanese National Consumption Survey through a Total Diet Study Approach. Toxins 2024, 16, 158. [Google Scholar] [CrossRef]
- Foerster, C.; Muñoz, K.; Delgado-Rivera, L.; Rivera, A.; Cortés, S.; Müller, A.; Arriagada, G.; Ferreccio, C.; Rios, G. Occurrence of Relevant Mycotoxins in Food Commodities Consumed in Chile. Mycotoxin Res. 2020, 36, 63–72. [Google Scholar] [CrossRef]
- Yazdanfar, N.; Mahmudiono, T.; Fakhri, Y.; Mahvi, A.H.; Sadighara, P.; Mohammadi, A.A.; Yousefi, M. Concentration of Ochratoxin A in Coffee Products and Probabilistic Health Risk Assessment. Arab. J. Chem. 2022, 15, 104376. [Google Scholar] [CrossRef]
- Oeung, S.; Songsermsakul, P.; Porasuphatana, S. Assessment of Ochratoxin A Exposure Risk from the Consumption of Coffee Beans in Phnom Penh, Cambodia. Food Addit. Contam. Part B Surveill. 2022, 15, 71–77. [Google Scholar] [CrossRef]
- Kowalska, G. The Safety Assessment of Toxic Metals in Commonly Used Herbs, Spices, Tea, and Coffee in Poland. Int. J. Environ. Res. Public Health 2021, 18, 5779. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A.; Kwiatkowska, K.; Kwiecień, M.; Zaricka, E. Assessment of the Risk of Exposure to Cadmium and Lead as a Result of the Consumption of Coffee Infusions. Biol. Trace Elem. Res. 2021, 199, 2420–2428. [Google Scholar] [CrossRef]
- Pekmezci, H.; Basaran, B. Dietary Acrylamide Exposure and Health Risk Assessment of Pregnant Women: A Case Study from Türkiye. Food Sci. Nutr. 2024, 12, 1133–1145. [Google Scholar] [CrossRef] [PubMed]
- Okaru, A.O.; Rullmann, A.; Farah, A.; Gonzalez de Mejia, E.; Stern, M.C.; Lachenmeier, D.W. Comparative Oesophageal Cancer Risk Assessment of Hot Beverage Consumption (Coffee, Mate and Tea): The Margin of Exposure of PAH vs Very Hot Temperatures. BMC Cancer 2018, 18, 236. [Google Scholar] [CrossRef]
- Radulović, J.; Lučić, M.; Onjia, A. GC-MS/MS and LC-MS/MS Analysis Followed by Risk Ranking of Mepiquat and Pyrethroids in Coffee. J. Food Compos. Anal. 2024, 129, 106100. [Google Scholar] [CrossRef]
- Doménech, E.; Martorell, S. Review of the Terminology, Approaches, and Formulations Used in the Guidelines on Quantitative Risk Assessment of Chemical Hazards in Food. Foods 2024, 13, 714. [Google Scholar] [CrossRef]
- EFSA European Food Safety Authority. Opinion of the Scientific Committee on a request from EFSA related to a harmonised approach for risk assessment of substances which are both genotoxic and carcinogenic. EFSA J. 2005, 3, 282. [Google Scholar] [CrossRef]
- Joint FAO/WHO Expert Committee on Food Additives. Summary and Conclusions of the Sixty-Forth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). In Proceedings of the Joint FAO/WHO Expert Committee on Food Additives Sixty-Fourth Meeting, Rome, Italy, 8–17 February 2005; pp. 7–17. Available online: https://openknowledge.fao.org/items/7d40394f-c088-4b77-8128-053fe759af31 (accessed on 15 February 2024).
- Mustatea, G.; Ungureanu, E.L.; Iorga, S.C.; Ciotea, D.; Popa, M.E. Risk Assessment of Lead and Cadmium in Some Food Supplements Available on the Romanian Market. Foods 2021, 10, 581. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Guidance Document on Evaluating and Expressing Uncertainty in Hazard Characterization. 2017. Available online: https://apps.who.int/iris/bitstream/handle/10665/259858/9789241513548-eng.pdf?sequence=1&isAllowed=y (accessed on 15 February 2024).
- Aria, M.; Cuccurullo, C. bibliometrix: Una herramienta R para el análisis integral de mapas científicos. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
Hazard | Sample | Metrics | App.* | References | ||||
---|---|---|---|---|---|---|---|---|
Coffee | Hazard Quotient | Margin of Exposure (Equation (2)) | Cancer Risk | |||||
(Equation (1)) | Non-Neoplastic | Neoplastic | (Equation (3)) | |||||
Mycotoxins | ||||||||
AFB1 | Instant | - | - | - | 1.5 × 10−9 to 7.7 × 10−9 | P | Taghizadeh et al., 2022 [43] | |
AFB2 | Instant | - | - | - | 9.1 × 10−10 to 4.6 × 10−9 | P | Taghizadeh et al., 2022 [43] | |
AFG1 | Instant | - | - | - | 1.6 × 10−9 to 7.8 × 10−9 | P | Taghizadeh et al., 2022 [43] | |
AFG2 | Instant | - | - | - | 1.5 × 10−9 to 7.6 × 10−9 | P | Taghizadeh et al., 2022 [43] | |
OTA | Instant | 2.9 × 10−2 | 8.9 × 103 | 2.7 × 104 | - | D | Hoteit et al., 2024 [229] | |
Instant | 4.1 × 10−1 | - | - | - | D | Foerster et al., 2021 [230] | ||
Instant | - | 3.0 × 105 to 4.7 ×105 | 9.9 × 104 to 1.1 × 104 | - | P | Guadalupe et al., 2024 [126] | ||
Classic | 1.3 × 10−1 | 5.6 × 104 | 1.7 × 105 | - | P | Yazdanfar et al., 2022 [231] | ||
Roasted | 9.7 × 10−2 | 5.0 × 103 | 1.5 × 104 | - | P | Yazdanfar et al., 2022 [231] | ||
Instant | 1.2 × 10−2 | 2.8 × 103 | 8.6 × 103 | - | P | Yazdanfar et al., 2022 [231] | ||
Roasted | 3.1 × 10−3 to 1 × 10−2 | - | - | - | P | Oeung et al., 2022 [232] | ||
Roasted | - | 1.0 × 104 to 1.4 × 104 | - | - | P | Kuiper-Goodman et al., 2010 [228] | ||
Heavy metals | ||||||||
As | Instant | - | 3.0 × 103 to 3.5 × 103 | - | 4.0 × 10−6 to 4.5 × 10−6 | P | Guadalupe et al., 2024 [126] | |
Green | 1.5 × 10−2 to 5.5 × 10−1 | 1.1 × 10 to 9.1 × 102 | - | 6.8 × 10−6 to 3.7 × 10−4 | P | Guadalupe et al., 2023 [22] | ||
Instant | - | - | - | 2.1 × 10−8 to 1.1 × 10−5 | D/P | Taghizadeh et al., 2023 [24] | ||
Roasted | 0 | - | - | 0 | D | Kowalska, 2021 [233] | ||
Cd | Instant | 1.4 × 10−7 | - | - | - | P | Guadalupe et al., 2024 [126] | |
Green | 9.0 × 10−4 to 1.6 × 10−2 | - | - | - | P | Guadalupe et al., 2023 [22] | ||
Instant | 1 × 10−3 | - | - | - | P | Winiarska-Mieczan et al., 2023 [25] | ||
Roasted | 4 × 10−3 | - | - | - | P | Winiarska-Mieczan et al., 2023 [25] | ||
Instant | 1.4 × 10−5 to 2.9 × 10−2 | - | - | - | D/P | Taghizadeh et al., 2023 [24] | ||
Green | 2.2 × 10−2 to 6.7 × 10−2 | - | - | - | P | Winiarska-Mieczan et al., 2021 [234] | ||
Instant | 2.0 × 10−2 | - | - | - | D/P | Khunlert et al., 2022 [28] | ||
Roasted | 6.5 × 10−2 to 9.8 × 10−2 | - | - | - | D | Kowalska, 2021 [233] | ||
Cr | Instant | 2.5 × 10−7 to 2.9 × 10−7 | - | - | - | P | Guadalupe et al., 2024 [126] | |
Green | 2.6 × 10−7 to 1.7 × 10−5 | - | - | 1.8 × 10−7 to 2.3 × 10−5 | P | Guadalupe et al., 2023 [22] | ||
Instant | 2.9 × 10−6 to 9.9 × 10−6 | - | - | - | D/P | Taghizadeh et al., 2023 [24] | ||
Instant | 3.0 × 10−2 | - | - | - | D/P | Khunlert et al., 2022 [28] | ||
Cu | Instant | 1.8 × 10−5 to 1.3 × 10−4 | - | - | - | D/P | Taghizadeh et al., 2023 [24] | |
Instant | <1.0 × 10−2 | - | - | - | D/P | Khunlert et al., 2022 [28] | ||
Fe | Instant | 6.9 × 10−6 to 8.9 × 10−5 | - | - | - | D/P | Taghizadeh et al., 2023 [24] | |
Instant | <1.0 × 10−2 | - | - | - | D/P | Khunlert et al., 2022 [28] | ||
Hg | Instant | 1.4 × 10−7 | - | - | - | P | Guadalupe et al., 2024 [126] | |
Green | 9.0 × 10−3 to 1.6 × 10−1 | - | - | - | P | Guadalupe et al., 2023 [22] | ||
Instant | 2.9 × 10−5 to 5.4 × 10−2 | - | - | - | D/P | Taghizadeh et al., 2023 [24] | ||
Roasted | 1.1 × 10−3 to 2.6 × 10−3 | - | - | - | D | Kowalska, 2021 [233] | ||
Ni | Instant | - | - | - | 2.7 × 10−7 to 5.3 × 10−5 | D/P | Taghizadeh et al., 2023 [24] | |
Instant | 1.0 × 10−2 | - | - | - | D/P | Khunlert et al., 2022 [28] | ||
Pb | Instant | - | 2.5 × 103 to 6.4 × 103 | 1.0 × 103 to 2.7 × 103 | 6.8 × 10−9 to 1.1 × 10−8 | P | Guadalupe et al., 2024 [126] | |
Green | - | 3.5 to 1.1 × 102 | 8.3 to 2.7 × 102 | 4.7 × 10−8 to 1.5 × 10−6 | P | Guadalupe et al., 2023 [22] | ||
Instant | 1.5 × 10−1 | - | - | - | P | Winiarska-Mieczan et al., 2023 [25] | ||
Roasted | 1.4 × 10−1 | - | - | - | P | Winiarska-Mieczan et al., 2023 [25] | ||
Instant | - | - | - | 1.2 × 10−10 to 2.9 × 10−7 | D/P | Taghizadeh et al., 2023 [24] | ||
Green | 8 × 10−2 to 2.3 × 10−1 | - | - | - | P | Winiarska-Mieczan et al., 2021 [234] | ||
Roasted | 4.3 × 10−3 to 2.5 × 10−2 | - | - | - | D | Kowalska, 2021 [233] | ||
Instant | 4.0 × 10−2 | - | - | - | D/P | Khunlert et al., 2022 [28] | ||
Acrylamide | Roasted | 6 × 10−3 | - | - | 5.8 × 10−6 | D | Pekmezci y Basaran, 2024 [235] | |
Instant | 5.1 × 10−3 to 1.4 × 10−2 | 1.4 × 104 to 3.6 × 104 | - | 5.1 × 10−6 to 1.4 × 10−5 | P | Guadalupe et al., 2024 [126] | ||
Instant | 2 × 10−4 | 5 × 105 | - | 2 × 10−5 | D | Karami et al., 2022 [124] | ||
Roasted | - | 7.1 × 10 to 5.2 × 102 | - | - | P | Claeys et al., 2016 [125] | ||
Furan | Roasted | - | 7.1 × 102 | 1.46 × 104 | - | P | Cao et al., 2022 [137] | |
Roasted | - | 1.5 × 104 to 7.4 × 106 | 2.3 × 103 to 1.3 × 105 | - | P | Waizenegger et al., 2012 [149] | ||
PAH | Beans | - | 9.7 × 105 to 1.7 × 106 | - | - | P | Okaru et al., 2018 [236] | |
Infusion | - | 5 × 106 to 6.7 × 106 | - | - | P | Okaru et al., 2018 [236] | ||
Instant | - | 1.7 × 1011 to 4 × 1011 | - | - | P | Taghizadeh et al., 2022 [43] | ||
Bisphenol A | Canned | 3 × 10−2 | - | - | - | D | Lim et al., 2009 [173] | |
Pesticide | Roasted | <1 × 10−1 | - | - | - | D | Radulović et al., 2024 [237] | |
Instant | 1.4 × 10−9 to 4.1 × 10−3 | - | - | - | P | Taghizadeh et al., 2022 [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guadalupe, G.A.; Grandez-Yoplac, D.E.; García, L.; Doménech, E. A Comprehensive Bibliometric Study in the Context of Chemical Hazards in Coffee. Toxics 2024, 12, 526. https://doi.org/10.3390/toxics12070526
Guadalupe GA, Grandez-Yoplac DE, García L, Doménech E. A Comprehensive Bibliometric Study in the Context of Chemical Hazards in Coffee. Toxics. 2024; 12(7):526. https://doi.org/10.3390/toxics12070526
Chicago/Turabian StyleGuadalupe, Grobert A., Dorila E. Grandez-Yoplac, Ligia García, and Eva Doménech. 2024. "A Comprehensive Bibliometric Study in the Context of Chemical Hazards in Coffee" Toxics 12, no. 7: 526. https://doi.org/10.3390/toxics12070526
APA StyleGuadalupe, G. A., Grandez-Yoplac, D. E., García, L., & Doménech, E. (2024). A Comprehensive Bibliometric Study in the Context of Chemical Hazards in Coffee. Toxics, 12(7), 526. https://doi.org/10.3390/toxics12070526