Association of Urinary Glyphosate with All-Cause Mortality and Cardiovascular Mortality among Adults in NHANES 2013–2018: Role of Alkaline Phosphatase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measurements of Glyphosate Exposure
2.3. Ascertainment of CVD Outcomes
2.4. Measurements of Serum ALP
2.5. Covariates
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Selected Individuals
3.2. Urinary Glyphosate Exposure, All-Cause Mortality and CVD Mortality
3.3. Role of ALP in the Associations of Glyphosate with All-Cause Mortality and CVD Mortality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kivimäki, M.; Steptoe, A. Effects of stress on the development and progression of cardiovascular disease. Nat. Rev. Cardiol. 2018, 15, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; et al. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 2022, 145, e153–e639. [Google Scholar] [PubMed]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Okwuosa, I.S.; Lewsey, S.C.; Adesiyun, T.; Blumenthal, R.S.; Yancy, C.W. Worldwide disparities in cardiovascular disease: Challenges and solutions. Int. J. Cardiol. 2016, 202, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Yim, G.; Wang, Y.; Howe, C.G.; Romano, M.E. Exposure to Metal Mixtures in Association with Cardiovascular Risk Factors and Outcomes: A Scoping Review. Toxics 2022, 10, 116. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A. Environmental Determinants of Cardiovascular Disease. Circ. Res. 2017, 121, 162–180. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Butterworth, A.S.; Burgess, S. Mendelian randomization for cardiovascular diseases: Principles and applications. Eur. Heart J. 2023, 44, 4913–4924. [Google Scholar] [CrossRef] [PubMed]
- de Bont, J.; Jaganathan, S.; Dahlquist, M.; Persson, Å.; Stafoggia, M.; Ljungman, P. Ambient air pollution and cardiovascular diseases: An umbrella review of systematic reviews and meta-analyses. J. Intern. Med. 2022, 291, 779–800. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Tao, C.; Li, Z.; Huang, Y.; Yan, W.; Zhao, S.; Gao, B.; Xu, Q.; Qin, Y.; Wang, X.; et al. Association of Endocrine-Disrupting Chemicals with All-Cause and Cause-Specific Mortality in the U.S.: A Prospective Cohort Study. Environ. Sci. Technol. 2023, 57, 2877–2886. [Google Scholar] [CrossRef]
- Boafo, Y.S.; Mostafa, S.; Obeng-Gyasi, E. Association of Combined Metals and PFAS with Cardiovascular Disease Risk. Toxics 2023, 11, 979. [Google Scholar] [CrossRef]
- de Araujo, L.G.; Zordan, D.F.; Celzard, A.; Fierro, V. Glyphosate uses, adverse effects and alternatives: Focus on the current scenario in Brazil. Environ. Geochem. Health 2023, 45, 9559–9582. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, R.; Kurrasch, D.M. Glyphosate Toxicity: In Vivo, In Vitro, and Epidemiological Evidence. Toxicol. Sci. 2023, 192, 131–140. [Google Scholar] [CrossRef]
- Leino, L.; Tall, T.; Helander, M.; Saloniemi, I.; Saikkonen, K.; Ruuskanen, S.; Puigbò, P. Classification of the glyphosate target enzyme (5-enolpyruvylshikimate-3-phosphate synthase) for assessing sensitivity of organisms to the herbicide. J. Hazard. Mater. 2021, 408, 124556. [Google Scholar] [CrossRef]
- Geier, D.A.; Geier, M.R. Urine glyphosate exposure and serum sex hormone disruption within the 2013–2014 National Health and Nutrition Examination survey (NHANES). Chemosphere 2023, 316, 137796. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Yu, Y.; Wang, Y.; Dong, Y.; Shen, X. Association Between Urinary Glyphosate Exposure and Cognitive Impairment in Older Adults from NHANES 2013–2014. J. Alzheimer’s Dis. 2024, 97, 609–620. [Google Scholar] [CrossRef]
- Liang, Z.; Sun, X.; Guo, R.; Wang, H.; Tian, Y.; Wang, Y.; Liu, Y.; Liu, S. Association between glyphosate exposure and osteoarthritis in US adults: Especially in people who are obese and inactive in leisure time physical activity. Sci. Total. Environ. 2024, 927, 172008. [Google Scholar] [CrossRef]
- Gress, S.; Lemoine, S.; Séralini, G.E.; Puddu, P.E. Glyphosate-based herbicides potently affect cardiovascular system in mammals: Review of the literature. Cardiovasc. Toxicol. 2015, 15, 117–126. [Google Scholar] [CrossRef]
- Lu, J.; Wang, W.; Zhang, C.; Xu, W.; Chen, W.; Tao, L.; Li, Z.; Cheng, J.; Zhang, Y. Characterization of glyphosate-induced cardiovascular toxicity and apoptosis in zebrafish. Sci. Total. Environ. 2022, 851, 158308. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, C.; Wang, W.; Xu, W.; Chen, W.; Tao, L.; Li, Z.; Zhang, Y.; Cheng, J. Exposure to environmental concentrations of glyphosate induces cardiotoxicity through cellular senescence and reduced cell proliferation capacity. Ecotoxicol. Environ. Saf. 2023, 261, 115112. [Google Scholar] [CrossRef]
- de Marins, M.L.R.; Nunes, J.A.; Da Silva Moraes, V.G.; de Lima, R.S.; de Oliveira Cardoso, M.V.; Araújo Ribeiro, L.A.; de Queiroz, D.B.; Silva, F.S. Maternal exposure to glyphosate-based herbicide causes changes in the vascular function of offspring adult rats. Reprod. Toxicol. 2023, 115, 94–101. [Google Scholar] [CrossRef]
- Rader, B.A. Alkaline Phosphatase, an Unconventional Immune Protein. Front. Immunol. 2017, 8, 897. [Google Scholar] [CrossRef] [PubMed]
- Kunutsor, S.K.; Apekey, T.A.; Khan, H. Liver enzymes and risk of cardiovascular disease in the general population: A meta-analysis of prospective cohort studies. Atherosclerosis 2014, 236, 7–17. [Google Scholar] [CrossRef]
- Tonelli, M.; Curhan, G.; Pfeffer, M.; Sacks, F.; Thadhani, R.; Melamed, M.L.; Wiebe, N.; Muntner, P. Relation between alkaline phosphatase, serum phosphate, and all-cause or cardiovascular mortality. Circulation 2009, 120, 1784–1792. [Google Scholar] [CrossRef]
- Panh, L.; Ruidavets, J.B.; Rousseau, H.; Petermann, A.; Bongard, V.; Bérard, E.; Taraszkiewicz, D.; Lairez, O.; Galinier, M.; Carrié, D.; et al. Association between serum alkaline phosphatase and coronary artery calcification in a sample of primary cardiovascular prevention patients. Atherosclerosis 2017, 260, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Haarhaus, M.; Arnqvist, H.J.; Magnusson, P. Calcifying human aortic smooth muscle cells express different bone alkaline phosphatase isoforms, including the novel B1x isoform. J. Vasc. Res. 2013, 50, 167–174. [Google Scholar] [CrossRef]
- Torino, C.; Mattace-Raso, F.; van Saase, J.L.; Postorino, M.; Tripepi, G.L.; Mallamaci, F.; Zoccali, C. Progredire Study G: Oxidative Stress as Estimated by Gamma-Glutamyl Transferase Levels Amplifies the Alkaline Phosphatase-Dependent Risk for Mortality in ESKD Patients on Dialysis. Oxid. Med. Cell. Longev. 2016, 2016, 8490643. [Google Scholar] [CrossRef] [PubMed]
- Filipowicz, R.; Greene, T.; Wei, G.; Cheung, A.K.; Raphael, K.L.; Baird, B.C.; Beddhu, S. Associations of serum skeletal alkaline phosphatase with elevated C-reactive protein and mortality. Clin. J. Am. Soc. Nephrol. 2013, 8, 26–32. [Google Scholar] [CrossRef]
- Xiao, T.; Chen, Y.; Xu, Y.; Song, Y.; Ren, X.; Wang, W.; Zhuang, K.; Chen, X.; Cai, G. Higher urinary glyphosate exposure is associated with increased risk of liver dysfunction in adults: An analysis of NHANES, 2013–2016. Environ. Sci. Pollut. Res. Int. 2023. online ahead of print. [Google Scholar] [CrossRef]
- Chan, P.; Mahler, J. NTP technical report on the toxicity studies of Glyphosate (CAS No. 1071-83-6) Administered In Dosed Feed To F344/N Rats And B6C3F1 Mice. Toxic. Rep. Ser. 1992, 16, 1-D3. [Google Scholar] [PubMed]
- Tizhe, E.V.; Ibrahim, N.D.; Fatihu, M.Y.; Ambali, S.F.; Igbokwe, I.O.; Tizhe, U.D. Effect of zinc supplementation on chronic hepatorenal toxicity following oral exposure to glyphosate-based herbicide (Bushfire®) in rats. J. Int. Med. Res. 2020, 48, 300060520925343. [Google Scholar] [CrossRef]
- Jiraungkoorskul, W.; Upatham, E.S.; Kruatrachue, M.; Sahaphong, S.; Vichasri-Grams, S.; Pokethitiyook, P. Biochemical and histopathological effects of glyphosate herbicide on Nile tilapia (Oreochromis niloticus). Environ. Toxicol. 2003, 18, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Zeng, G.; Zhang, Q.; Wang, X.; Wu, K.H. Low-level plasticizer exposure and all-cause and cardiovascular disease mortality in the general population. Environ. Health 2022, 21, 32. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, Y.; Zhang, X.; Zhang, H.; Zhang, Y.; Wang, S.; Yin, L. Combined association of urinary volatile organic compounds with chronic bronchitis and emphysema among adults in NHANES 2011–2014: The mediating role of inflammation. Chemosphere 2024, 361, 141485. [Google Scholar] [CrossRef]
- Ye, Z.; Wu, F.; Hennessy, D.A. Environmental and economic concerns surrounding restrictions on glyphosate use in corn. Proc. Natl. Acad. Sci. USA 2021, 118, e2017470118. [Google Scholar] [CrossRef]
- Ruiz, P.; Dualde, P.; Coscollà, C.; Fernández, S.F.; Carbonell, E.; Yusà, V. Biomonitoring of glyphosate and AMPA in the urine of Spanish lactating mothers. Sci. Total. Environ. 2021, 801, 149688. [Google Scholar] [CrossRef]
- Eskenazi, B.; Gunier, R.B.; Rauch, S.; Kogut, K.; Perito, E.R.; Mendez, X.; Limbach, C.; Holland, N.; Bradman, A.; Harley, K.G.; et al. Association of Lifetime Exposure to Glyphosate and Aminomethylphosphonic Acid (AMPA) with Liver Inflammation and Metabolic Syndrome at Young Adulthood: Findings from the CHAMACOS Study. Environ. Health Perspect. 2023, 131, 37001. [Google Scholar] [CrossRef] [PubMed]
- Chang, V.C.; Andreotti, G.; Ospina, M.; Parks, C.G.; Liu, D.; Shearer, J.J.; Rothman, N.; Silverman, D.T.; Sandler, D.P.; Calafat, A.M.; et al. Glyphosate exposure and urinary oxidative stress biomarkers in the Agricultural Health Study. J. Natl. Cancer Inst. 2023, 115, 394–404. [Google Scholar] [CrossRef]
- Li, W.; Lei, D.; Huang, G.; Tang, N.; Lu, P.; Jiang, L.; Lv, J.; Lin, Y.; Xu, F.; Qin, Y.J. Association of glyphosate exposure with multiple adverse outcomes and potential mediators. Chemosphere 2023, 345, 140477. [Google Scholar] [CrossRef]
- Maia, F.C.C.; Porto, R.A.; Magalhães, L.R.; Chagas, P.H.N.; Nai, G.A. Cardiovascular damage associated with subchronic exposure to the glyphosate herbicide in Wistar rats. Toxicol. Ind. Health 2021, 37, 210–218. [Google Scholar] [CrossRef]
- Suzuki, N.; Irie, M.; Iwata, K.; Nakane, H.; Yoshikane, M.; Koyama, Y.; Uehara, Y.; Takeyama, Y.; Kitamura, Y.; Sohda, T.; et al. Altered expression of alkaline phosphatase (ALP) in the liver of primary biliary cirrhosis (PBC) patients. Hepatol. Res. 2006, 35, 37–44. [Google Scholar] [CrossRef]
- Ralston, S.H.; Corral-Gudino, L.; Cooper, C.; Francis, R.M.; Fraser, W.D.; Gennari, L.; Guañabens, N.; Javaid, M.K.; Layfield, R.; O’Neill, T.W.; et al. Diagnosis and Management of Paget’s Disease of Bone in Adults: A Clinical Guideline. J Bone Miner. Res. 2019, 34, 579–604. [Google Scholar] [CrossRef] [PubMed]
- Haarhaus, M.; Brandenburg, V.; Kalantar-Zadeh, K.; Stenvinkel, P.; Magnusson, P. Alkaline phosphatase: A novel treatment target for cardiovascular disease in CKD. Nat. Rev. Nephrol. 2017, 13, 429–442. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Li, X.; Wu, J.; Zhu, W.; Lu, J.; Qin, P.; Diao, Q.; Xu, N.; Zhang, Q. Serum alkaline phosphatase is associated with arterial stiffness and 10-year cardiovascular disease risk in a Chinese population. Eur. J. Clin. Invest. 2021, 51, e13560. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zeng, M.; Zhang, Y.; Huang, H.; Yang, G.; Xu, F.; Ren, W.; Wang, J.; Huang, Y.; Wang, N.; et al. Serum Alkaline Phosphatase Level Predicts Cardiac Valve Calcification in Maintenance Hemodialysis Patients. Blood Purif. 2020, 49, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Wang, M.; Du, J.; Fu, Y.; Deng, J.; Wu, J.; Zhang, Y.; Li, Y. Predicting life span of type 2 diabetes patients through alkaline phosphatase and vitamin D: Results from NHANES 1999–2018. Atherosclerosis 2023, 5, 117318. [Google Scholar] [CrossRef]
- Connolly, A.; Jones, K.; Basinas, I.; Galea, K.S.; Kenny, L.; McGowan, P.; Coggins, M.A. Exploring the half-life of glyphosate in human urine samples. Int. J. Hyg. Environ. Health 2019, 222, 205–210. [Google Scholar] [CrossRef]
Characteristics | Overall (N = 4031) | Females (N = 2048) | Males (N = 1983) | p |
---|---|---|---|---|
Age (years), Mean (SD) | 49.2 (17.5) | 48.9 (17.3) | 49.4 (17.6) | 0.360 |
PIR | 2.554 (1.634) | 2.516 (1.621) | 2.593 (1.646) | 0.154 |
Glyphosate (ng/mL), Mean (SD) | 0.498 (0.573) | 0.468 (0.542) | 0.529 (0.602) | 0.001 |
Creatinine (mg/dL), Mean (SD) | 123.48 (79.74) | 106.10 (72.00) | 141.43 (83.30) | <0.001 |
Race, frequency (percentage) | 0.238 | |||
Non-Hispanic Black | 806 (20.0%) | 420 (20.5%) | 386 (19.5%) | |
Non-Hispanic White | 1613 (40.0%) | 799 (39.0%) | 814 (41.0%) | |
Other Hispanic | 424 (10.5%) | 232 (11.3%) | 192 (9.7%) | |
Other Race | 1188 (29.5%) | 597 (29.1%) | 591 (29.8%) | |
Education, frequency (percentage) | 0.001 | |||
Less than high school | 800 (19.9%) | 367 (18.0%) | 433 (21.9%) | |
High school or equivalent | 901 (22.4%) | 440 (21.5%) | 461 (23.3%) | |
Some college or more | 2320 (57.8%) | 1236 (60.5%) | 1084 (54.8%) | |
BMI, frequency (percentage) | <0.001 | |||
<25 (kg/m2) | 1118 (27.9%) | 597 (29.3%) | 521 (26.5%) | |
≥25 (kg/m2)–<30 (kg/m2) | 1261 (31.5%) | 552 (27.1%) | 709 (36.0%) | |
≥30 (kg/m2) | 1627 (40.6%) | 890 (43.6%) | 737 (37.5%) | |
Alcohol exposure, frequency (percentage) | <0.001 | |||
Heavy | 418 (10.9%) | 114 (5.9%) | 304 (16.0%) | |
Moderate | 1607 (42.1%) | 762 (39.6%) | 845 (44.6%) | |
No | 1794 (47.0%) | 1048 (54.5%) | 746 (39.4%) | |
Nicotine exposure, frequency (percentage) | <0.001 | |||
≥LLOD | 2627 (67.0%) | 1254 (62.8%) | 1373 (71.4%) | |
<LLOD | 1292 (33.0%) | 743 (37.2%) | 549 (28.6%) | |
Physical activity, frequency (percentage) | <0.001 | |||
No | 2262 (56.1%) | 1279 (62.5%) | 983 (49.6%) | |
Moderate | 855 (21.2%) | 479 (23.4%) | 376 (19.0%) | |
Vigorous | 914 (22.7%) | 290 (14.2%) | 624 (31.5%) | |
Hypertension, frequency (percentage) | 0.099 | |||
Yes | 1723 (42.7%) | 849 (41.5%) | 874 (44.1%) | |
No | 2308 (57.3%) | 1199 (58.5%) | 1109 (55.9%) | |
Mortality, frequency (percentage) | 0.005 | |||
Assumed alive | 3807 (94.4%) | 1955 (95.5%) | 1852 (93.4%) | |
Assumed death | 224 (5.6%) | 93 (4.5%) | 131 (6.6%) | |
Cerebrovascular cause of death | 62 (1.5%) | 16 (0.8%) | 46 (2.3%) |
Weighted Cox Regression with Missing Values of Covariates Imputed | Unweighted Cox Regression with Missing Values of Covariates Imputed | Weighted Cox Regression with Missing Value Deleted | Unweighted Cox Regression with Missing Value Deleted | |||||
---|---|---|---|---|---|---|---|---|
HR (95%CI) | p | HR (95%CI) | p | HR (95%CI) | p | HR (95%CI) | p | |
All-cause mortality | ||||||||
Model 1 | 1.77 (1.46 to 2.16) | <0.001 | 1.67 (1.41 to 1.98) | <0.001 | 1.86 (1.54 to 2.24) | <0.001 | 1.71 (1.42 to 2.07) | <0.001 |
Model 2 | 1.61 (1.31 to 1.97) | <0.001 | 1.52 (1.28 to 1.80) | 0.012 | 1.67 (1.37 to 2.03) | <0.001 | 1.55 (1.28 to 1.88) | <0.001 |
Model 3 | 1.29 (1.05 to 1.59) | 0.017 | 1.15 (1.02 to 1.32) | 0.036 | 1.35 (1.08 to 1.69) | 0.008 | 1.17 (1.01 to 1.37) | 0.045 |
CVD mortality | ||||||||
Model 1 | 1.84 (1.42 to 2.38) | <0.001 | 1.67 (1.23 to 2.27) | 0.001 | 1.80 (1.38 to 2.35) | <0.001 | 1.70 (1.25 to 2.32) | 0.001 |
Model 2 | 1.67 (1.28 to 2.19) | <0.001 | 1.51 (1.11 to 2.06) | 0.009 | 1.60 (1.19 to 2.15) | 0.002 | 1.53 (1.12 to 2.09) | 0.007 |
Model 3 | 1.32 (1.02 to 1.70) | 0.042 | 1.12 (0.82 to 1.52) | 0.460 | 1.24 (0.87 to 1.78) | 0.234 | 1.11 (0.81 to 1.53) | 0.498 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Shu, S.; Zhang, D.; Wang, P.; Yu, X.; Wang, Y.; Yu, Y. Association of Urinary Glyphosate with All-Cause Mortality and Cardiovascular Mortality among Adults in NHANES 2013–2018: Role of Alkaline Phosphatase. Toxics 2024, 12, 559. https://doi.org/10.3390/toxics12080559
Gao Y, Shu S, Zhang D, Wang P, Yu X, Wang Y, Yu Y. Association of Urinary Glyphosate with All-Cause Mortality and Cardiovascular Mortality among Adults in NHANES 2013–2018: Role of Alkaline Phosphatase. Toxics. 2024; 12(8):559. https://doi.org/10.3390/toxics12080559
Chicago/Turabian StyleGao, Yongyue, Shuge Shu, Di Zhang, Pu Wang, Xiangyu Yu, Yucheng Wang, and Yongquan Yu. 2024. "Association of Urinary Glyphosate with All-Cause Mortality and Cardiovascular Mortality among Adults in NHANES 2013–2018: Role of Alkaline Phosphatase" Toxics 12, no. 8: 559. https://doi.org/10.3390/toxics12080559
APA StyleGao, Y., Shu, S., Zhang, D., Wang, P., Yu, X., Wang, Y., & Yu, Y. (2024). Association of Urinary Glyphosate with All-Cause Mortality and Cardiovascular Mortality among Adults in NHANES 2013–2018: Role of Alkaline Phosphatase. Toxics, 12(8), 559. https://doi.org/10.3390/toxics12080559