Associations between Urinary Phthalate Metabolites with BDNF and Behavioral Function among European Children from Five HBM4EU Aligned Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Exposure Biomarker Assessment
2.3. Effect Biomarker Assessment: Urinary and Serum BDNF Levels
2.4. Behavioral Assessment in the NACII-IT Cohort
2.5. Covariates
2.6. Statistical Analysis
2.6.1. Phthalate Exposure Biomarkers
2.6.2. Urinary and Serum BDNF Protein Levels
2.6.3. Covariates and Confounding Factors
2.6.4. Cross-Sectional Associations between Phthalates, BDNF Concentrations and Children’s Behavior
2.6.5. Phthalate’s Mixture Models
2.6.6. Sensitivity Analysis
2.6.7. Interpretation and Software
3. Results
3.1. Study Population Characteristics
3.2. Phthalate–BDNF–Behavior Associations in the NACII-IT Cohort
3.3. Phthalate–Urinary BDNF Associations in NACII-IT, PCB-SK, InAirQ-HU and NEBII-NO Cohorts (N = 1148)
3.4. Phthalate–Serum BDNF Associations in the CRP-SLO Cohort (N = 124)
3.5. Phthalate’s Mixture Associations
3.6. Sensitivity Analysis
4. Discussion
4.1. Phthalate–CBCL Associations
4.2. Urinary Phthalates and Serum BDNF Levels
4.3. Urinary Phthalate–Urinary BDNF Associations—Possible “Urine Concentration Bias”?
4.4. BDNF Biomarkers in Relation to CBCL
4.5. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koch, H.M.; Calafat, A.M. Human Body Burdens of Chemicals Used in Plastic Manufacture. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2063–2078. [Google Scholar] [CrossRef] [PubMed]
- Coltro, L.; Pitta, J.B.; da Costa, P.A.; Fávaro Perez, M.Â.; de Araújo, V.A.; Rodrigues, R. Migration of Conventional and New Plasticizers from PVC Films into Food Simulants: A Comparative Study. Food Control 2014, 44, 118–129. [Google Scholar] [CrossRef]
- Wittassek, M.; Koch, H.M.; Angerer, J.; Brüning, T. Assessing Exposure to Phthalates—The Human Biomonitoring Approach. Mol. Nutr. Food Res. 2011, 55, 7–31. [Google Scholar] [CrossRef] [PubMed]
- Qadeer, A.; Kirsten, K.L.; Ajmal, Z.; Xingru, Z. Rebuttal to Comment on “Alternative Plasticizers as Emerging Global Environmental and Health Threat: Another Regrettable Substitution?” Focus on DINCH as an Example. Environ. Sci. Technol. 2022, 56, 5294–5297. [Google Scholar] [CrossRef]
- Mustieles, V.; Arrebola, J.P.; Porta, M. From Old Pollutants to the Regulation of Bisphenol A: Lessons Learned for Health Promotion and Disease Prevention. Prev. Med. 2023, 169, 107460. [Google Scholar] [CrossRef] [PubMed]
- Lemke, N.; Murawski, A.; Lange, R.; Weber, T.; Apel, P.; Dębiak, M.; Koch, H.M.; Kolossa-Gehring, M. Substitutes Mimic the Exposure Behaviour of REACH Regulated Phthalates—A Review of the German HBM System on the Example of Plasticizers. Int. J. Hyg. Environ. Health 2021, 236, 113780. [Google Scholar] [CrossRef]
- Schütze, A.; Kolossa-Gehring, M.; Apel, P.; Brüning, T.; Koch, H.M. Entering Markets and Bodies: Increasing Levels of the Novel Plasticizer Hexamoll® DINCH® in 24 h Urine Samples from the German Environmental Specimen Bank. Int. J. Hyg. Environ. Health 2014, 217, 421–426. [Google Scholar] [CrossRef]
- Schettler, T.; Skakkebæk, N.E.; De Kretser, D.; Leffers, H. Human Exposure to Phthalates via Consumer Products. Int. J. Androl. 2006, 29, 134–139. [Google Scholar] [CrossRef]
- Philippat, C.; Rolland, M.; Lyon-Caen, S.; Pin, I.; Sakhi, A.K.; Sabaredzovic, A.; Thomsen, C.; Slama, R. Pre- and Early Post-Natal Exposure to Phthalates and DINCH in a New Type of Mother-Child Cohort Relying on within-Subject Pools of Repeated Urine Samples. Environ. Pollut. 2021, 287, 117650. [Google Scholar] [CrossRef]
- Weise, P.; Apel, P.; Kolossa-Gehring, M. [Human Biomonitoring for Europe (HBM4EU)-First Insights into the Results of the Initiative]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2022, 65, 936–939. [Google Scholar] [CrossRef]
- Shu, H.; Jönsson, B.A.; Gennings, C.; Svensson, Å.; Nånberg, E.; Lindh, C.H.; Knutz, M.; Takaro, T.K.; Bornehag, C.G. Temporal Trends of Phthalate Exposures during 2007-2010 in Swedish Pregnant Women. J. Expo. Sci. Environ. Epidemiol. 2018, 28, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez Martin, L.; Gilles, L.; Helte, E.; Åkesson, A.; Tägt, J.; Covaci, A.; Sakhi, A.K.; Van Nieuwenhuyse, A.; Katsonouri, A.; Andersson, A.M.; et al. Time Patterns in Internal Human Exposure Data to Bisphenols, Phthalates, DINCH, Organophosphate Flame Retardants, Cadmium and Polyaromatic Hydrocarbons in Europe. Toxics 2023, 11, 819. [Google Scholar] [CrossRef] [PubMed]
- Vogel, N.; Frederiksen, H.; Lange, R.; Jørgensen, N.; Koch, H.M.; Weber, T.; Andersson, A.M.; Kolossa-Gehring, M. Urinary Excretion of Phthalates and the Substitutes DINCH and DEHTP in Danish Young Men and German Young Adults between 2000 and 2017—A Time Trend Analysis. Int. J. Hyg. Environ. Health 2023, 248, 114080. [Google Scholar] [CrossRef] [PubMed]
- Legler, J. Are Brominated Flame Retardants Endocrine Disruptors? Environ. Int. 2003, 29, 879–885. [Google Scholar] [CrossRef]
- Breous, E.; Wenzel, A.; Loos, U. The Promoter of the Human Sodium/Iodide Symporter Responds to Certain Phthalate Plasticisers. Mol. Cell. Endocrinol. 2005, 244, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Cong, Z.; You, M.; Fu, Y.; Wang, Y.; Wang, Y.; Fu, H.; Wei, L.; Chen, J. Effects of Perinatal Di (2-Ethylhexyl) Phthalate Exposure on Thyroid Function in Rat Offspring. Environ. Toxicol. Pharmacol. 2019, 67, 53–60. [Google Scholar] [CrossRef]
- Wenzel, A.; Franz, C.; Breous, E.; Loos, U. Modulation of Iodide Uptake by Dialkyl Phthalate Plasticisers in FRTL-5 Rat Thyroid Follicular Cells. Mol. Cell. Endocrinol. 2005, 244, 63–71. [Google Scholar] [CrossRef]
- La Merrill, M.A.; Vandenberg, L.N.; Smith, M.T.; Goodson, W.; Browne, P.; Patisaul, H.B.; Guyton, K.Z.; Kortenkamp, A.; Cogliano, V.J.; Woodruff, T.J.; et al. Consensus on the Key Characteristics of Endocrine-Disrupting Chemicals as a Basis for Hazard Identification. Nat. Rev. Endocrinol. 2020, 16, 45–57. [Google Scholar] [CrossRef]
- Engel, S.M.; Patisaul, H.B.; Brody, C.; Hauser, R.; Zota, A.R.; Bennet, D.H.; Swanson, M.; Whyatt, R.M. Neurotoxicity of Ortho-Phthalates: Recommendations for Critical Policy Reforms to Protect Brain Development in Children. Am. J. Public Health 2021, 111, 687–695. [Google Scholar] [CrossRef]
- Bakoyiannis, I.; Kitraki, E.; Stamatakis, A. Endocrine-Disrupting Chemicals and Behaviour: A High Risk to Take? Best Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101517. [Google Scholar] [CrossRef]
- Palanza, P.; Paterlini, S.; Brambilla, M.M.; Ramundo, G.; Caviola, G.; Gioiosa, L.; Parmigiani, S.; vom Saal, F.S.; Ponzi, D. Sex-Biased Impact of Endocrine Disrupting Chemicals on Behavioral Development and Vulnerability to Disease: Of Mice and Children. Neurosci. Biobehav. Rev. 2021, 121, 29–46. [Google Scholar] [CrossRef]
- Ejaredar, M.; Nyanza, E.C.; Ten Eycke, K.; Dewey, D. Phthalate Exposure and Childrens Neurodevelopment: A Systematic Review. Environ. Res. 2015, 142, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Radke, E.G.; Braun, J.M.; Nachman, R.M.; Cooper, G.S. Phthalate Exposure and Neurodevelopment: A Systematic Review and Meta-Analysis of Human Epidemiological Evidence. Environ. Int. 2020, 137, 105408. [Google Scholar] [CrossRef] [PubMed]
- Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, S.; Masai, E.; Kamimura, N.; Takahashi, K.; Anderson, R.C.; Faisal, P.A. Phthalates Impact Human Health: Epidemiological Evidences and Plausible Mechanism of Action. J. Hazard. Mater. 2017, 340, 360–383. [Google Scholar] [CrossRef] [PubMed]
- Hlisníková, H.; Petrovičová, I.; Kolena, B.; Šidlovská, M.; Sirotkin, A. Effects and Mechanisms of Phthalates’ Action on Neurological Processes and Neural Health: A Literature Review. Pharmacol. Rep. 2021, 73, 386–404. [Google Scholar] [CrossRef] [PubMed]
- Mustieles, V.; D’Cruz, S.C.; Couderq, S.; Rodríguez-Carrillo, A.; Fini, J.-B.; Hofer, T.; Steffensen, I.-L.; Dirven, H.; Barouki, R.; Olea, N.; et al. Bisphenol A and Its Analogues: A Comprehensive Review to Identify and Prioritize Effect Biomarkers for Human Biomonitoring. Environ. Int. 2020, 144, 105811. [Google Scholar] [CrossRef]
- Mustieles, V.; Rodríguez-Carrillo, A.; Vela-Soria, F.; D’Cruz, S.C.; David, A.; Smagulova, F.; Mundo-López, A.; Olivas-Martínez, A.; Reina-Pérez, I.; Olea, N.; et al. BDNF as a Potential Mediator between Childhood BPA Exposure and Behavioral Function in Adolescent Boys from the INMA-Granada Cohort. Sci. Total Environ. 2022, 803, 150014. [Google Scholar] [CrossRef]
- Klein, A.B.; Williamson, R.; Santini, M.A.; Clemmensen, C.; Ettrup, A.; Rios, M.; Knudsen, G.M.; Aznar, S. Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int. J. Neuropsychopharmacol. 2011, 14, 347–353. [Google Scholar] [CrossRef]
- Rodríguez-Carrillo, A.; DĆruz, S.C.; Mustieles, V.; Suárez, B.; Smagulova, F.; David, A.; Peinado, F.; Artacho-Cordón, F.; López, L.C.; Arrebola, J.P.; et al. Exposure to Non-Persistent Pesticides, BDNF, and Behavioral Function in Adolescent Males: Exploring a Novel Effect Biomarker Approach. Environ. Res. 2022, 211, 113115. [Google Scholar] [CrossRef]
- Rodríguez-Carrillo, A.; Mustieles, V.; D’Cruz, S.C.; Legoff, L.; Gil, F.; Olmedo, P.; Reina-Pérez, I.; Mundo, A.; Molina, M.; Smagulova, F.; et al. Exploring the Relationship between Metal Exposure, BDNF, and Behavior in Adolescent Males. Int. J. Hyg. Environ. Health 2022, 239, 113877. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Jeon, S.; Jeong, H.J.; Kim, B.N.; Kim, Y. Dibutyl Phthalate Exposure during Gestation and Lactation in C57BL/6 Mice: Maternal Behavior and Neurodevelopment in Pups. Environ. Res. 2020, 182, 109025. [Google Scholar] [CrossRef]
- Ponsonby, A.L.; Symeonides, C.; Vuillermin, P.; Mueller, J.; Sly, P.D.; Saffery, R. Epigenetic Regulation of Neurodevelopmental Genes in Response to in Utero Exposure to Phthalate Plastic Chemicals: How Can We Delineate Causal Effects? Neurotoxicology 2016, 55, 92–101. [Google Scholar] [CrossRef] [PubMed]
- HBM4EU—Science and Policy for a Healthy Future. Available online: https://www.hbm4eu.eu/ (accessed on 19 January 2024).
- Gilles, L.; Govarts, E.; Martin, L.R.; Andersson, A.M.; Appenzeller, B.M.R.; Barbone, F.; Castaño, A.; Coertjens, D.; Den Hond, E.; Dzhedzheia, V.; et al. Harmonization of Human Biomonitoring Studies in Europe: Characteristics of the HBM4EU-Aligned Studies Participants. Int. J. Environ. Res. Public Health 2022, 19, 6787. [Google Scholar] [CrossRef]
- Gilles, L.; Govarts, E.; Rambaud, L.; Vogel, N.; Castaño, A.; Esteban López, M.; Rodriguez Martin, L.; Koppen, G.; Remy, S.; Vrijheid, M.; et al. HBM4EU Combines and Harmonises Human Biomonitoring Data across the EU, Building on Existing Capacity—The HBM4EU Survey. Int. J. Hyg. Environ. Health 2021, 237, 113809. [Google Scholar] [CrossRef] [PubMed]
- Govarts, E.; Gilles, L.; Rodriguez Martin, L.; Santonen, T.; Apel, P.; Alvito, P.; Anastasi, E.; Andersen, H.R.; Andersson, A.M.; Andryskova, L.; et al. Harmonized Human Biomonitoring in European Children, Teenagers and Adults: EU-Wide Exposure Data of 11 Chemical Substance Groups from the HBM4EU Aligned Studies (2014–2021). Int. J. Hyg. Environ. Health 2023, 249, 114119. [Google Scholar] [CrossRef]
- Kolossa-Gehring, M.; Pack, L.K.; Hülck, K.; Gehring, T. HBM4EU from the Coordinator’s Perspective: Lessons Learnt from Managing a Large-Scale EU Project. Int. J. Hyg. Environ. Health 2023, 247, 114072. [Google Scholar] [CrossRef]
- Zare Jeddi, M.; Hopf, N.B.; Viegas, S.; Price, A.B.; Paini, A.; van Thriel, C.; Benfenati, E.; Ndaw, S.; Bessems, J.; Behnisch, P.A.; et al. Towards a Systematic Use of Effect Biomarkers in Population and Occupational Biomonitoring. Environ. Int. 2021, 146, 106257. [Google Scholar] [CrossRef]
- Rodríguez-Carrillo, A.; Mustieles, V.; Salamanca-Fernández, E.; Olivas-Martínez, A.; Suárez, B.; Bajard, L.; Baken, K.; Blaha, L.; Bonefeld-Jørgensen, E.C.; Couderq, S.; et al. Implementation of Effect Biomarkers in Human Biomonitoring Studies: A Systematic Approach Synergizing Toxicological and Epidemiological Knowledge. Int. J. Hyg. Environ. Health 2023, 249, 114140. [Google Scholar] [CrossRef]
- PARC Partnership for the Assessment of Risks from Chemicals|Parc. Available online: https://www.eu-parc.eu/ (accessed on 19 January 2024).
- Valent, F.; Horvat, M.; Sofianou-Katsoulis, A.; Spiric, Z.; Mazej, D.; Little, D.; Prasouli, A.; Mariuz, M.; Tamburlini, G.; Nakou, S.; et al. Neurodevelopmental Effects of Low-Level Prenatal Mercury Exposure from Maternal Fish Consumption in a Mediterranean Cohort: Study Rationale and Design. J. Epidemiol. 2013, 23, 146–152. [Google Scholar] [CrossRef]
- Brumatti, L.V.; Rosolen, V.; Mariuz, M.; Piscianz, E.; Valencic, E.; Bin, M.; Athanasakis, E.; D’adamo, P.; Fragkiadoulaki, E.; Calamandrei, G.; et al. Impact of Methylmercury and Other Heavy Metals Exposure on Neurocognitive Function in Children Aged 7 Years: Study Protocol of the Follow-Up. J. Epidemiol. 2021, 31, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Simeone, R.M.; Howards, P.P.; Anderson, E.; Jusko, T.A.; Drobná, B.; Kočan, A.; Čonka, K.; Fabišiková, A.; Murínová, Ľ.P.; Canfield, R.L.; et al. Pre- and Postnatal Polychlorinated Biphenyl Exposure and Cognitive and Behavioral Development at Age 45 Months in a Cohort of Slovak Children. Chemosphere 2022, 287, 132375. [Google Scholar] [CrossRef] [PubMed]
- Szabados, M.; Kakucs, R.; Páldy, A.; Kotlík, B.; Kazmarová, H.; Dongiovanni, A.; Di Maggio, A.; Kozajda, A.; Jutraz, A.; Kukec, A.; et al. Association of Parent-Reported Health Symptoms with Indoor Air Quality in Primary School Buildings—The InAirQ Study. Build. Environ. 2022, 221, 109339. [Google Scholar] [CrossRef]
- Szabados, M.; Csákó, Z.; Kotlík, B.; Kazmarová, H.; Kozajda, A.; Jutraz, A.; Kukec, A.; Otorepec, P.; Dongiovanni, A.; Di Maggio, A.; et al. Indoor Air Quality and the Associated Health Risk in Primary School Buildings in Central Europe—The InAirQ Study. Indoor Air 2021, 31, 989–1003. [Google Scholar] [CrossRef]
- Magnus, P.; Birke, C.; Vejrup, K.; Haugan, A.; Alsaker, E.; Daltveit, A.K.; Handal, M.; Haugen, M.; Høiseth, G.; Knudsen, G.P.; et al. Cohort Profile Update: The Norwegian Mother and Child Cohort Study (MoBa). Int. J. Epidemiol. 2016, 45, 382–388. [Google Scholar] [CrossRef]
- Runkel, A.A.; Stajnko, A.; Snoj Tratnik, J.; Mazej, D.; Horvat, M.; Přibylová, P.; Kosjek, T. Exposure of Children and Adolescents from Northeastern Slovenia to Per- and Polyfluoroalkyl Substances. Chemosphere 2023, 321, 138096. [Google Scholar] [CrossRef]
- Stajnko, A.; Snoj Tratnik, J.; Kosjek, T.; Mazej, D.; Jagodic, M.; Eržen, I.; Horvat, M. Seasonal Glyphosate and AMPA Levels in Urine of Children and Adolescents Living in Rural Regions of Northeastern Slovenia. Environ. Int. 2020, 143, 105985. [Google Scholar] [CrossRef]
- Esteban López, M.; Göen, T.; Mol, H.; Nübler, S.; Haji-Abbas-Zarrabi, K.; Koch, H.M.; Kasper-Sonnenberg, M.; Dvorakova, D.; Hajslova, J.; Antignac, J.P.; et al. The European Human Biomonitoring Platform—Design and Implementation of a Laboratory Quality Assurance/Quality Control (QA/QC) Programme for Selected Priority Chemicals. Int. J. Hyg. Environ. Health 2021, 234, 113740. [Google Scholar] [CrossRef]
- Mol, H.G.J.; Elbers, I.; Pälmke, C.; Bury, D.; Göen, T.; López, M.E.; Nübler, S.; Vaccher, V.; Antignac, J.P.; Dvořáková, D.; et al. Proficiency and Interlaboratory Variability in the Determination of Phthalate and DINCH Biomarkers in Human Urine: Results from the HBM4EU Project. Toxics 2022, 10, 57. [Google Scholar] [CrossRef]
- Vogel, N.; Schmidt, P.; Lange, R.; Gerofke, A.; Sakhi, A.K.; Haug, L.S.; Jensen, T.K.; Frederiksen, H.; Szigeti, T.; Csákó, Z.; et al. Current Exposure to Phthalates and DINCH in European Children and Adolescents—Results from the HBM4EU Aligned Studies 2014 to 2021. Int. J. Hyg. Environ. Health 2023, 249, 114101. [Google Scholar] [CrossRef] [PubMed]
- Olivas-Martinez, A.; Suarez, B.; Salamanca-Fernandez, E.; Reina-Perez, I.; Rodriguez-Carrillo, A.; Mustieles, V.; Olea, N.; Freire, C.; Fernández, M.F. Development and Validation of Brain-Derived Neurotrophic Factor Measurement in Human Urine Samples as a Non-Invasive Effect Biomarker. Front. Mol. Neurosci. 2023, 15, 1075613. [Google Scholar] [CrossRef]
- Achenbach, T.; Rescorla, L. Manual for the ASEBA School-Age Forms and Profiles: An Integrated System of Multi-Informant Assessment; University of Vermont, Research Center for Children, Youth and Families: Burlington, VT, USA, 2001. [Google Scholar]
- Rosolen, V.; Giordani, E.; Mariuz, M.; Parpinel, M.; Ronfani, L.; Vecchi Brumatti, L.; Bin, M.; Calamandrei, G.; Mustieles, V.; Gilles, L.; et al. Concurrent Assessment of Phthalates/HEXAMOLL® DINCH Exposure and Wechsler Intelligence Scale for Children Performance in Three European Cohorts of the HBM4EU Aligned Studies. Toxics 2022, 10, 538. [Google Scholar] [CrossRef] [PubMed]
- ISCED 2011; International Standard Classification of Education. UNESCO Institute for Statistics: Montreal, QC, Canada, 2011.
- de Onis, M. Development of a WHO Growth Reference for School-Aged Children and Adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- Lubin, J.H.; Colt, J.S.; Camann, D.; Davis, S.; Cerhan, J.R.; Severson, R.K.; Bernstein, L.; Hartge, P. Epidemiologic Evaluation of Measurement Data in the Presence of Detection Limits. Environ. Health Perspect. 2004, 112, 1691–1696. [Google Scholar] [CrossRef]
- Textor, J.; van der Zander, B.; Gilthorpe, M.S.; Liskiewicz, M.; Ellison, G.T. Robust Causal Inference Using Directed Acyclic Graphs: The R Package “Dagitty”. Int. J. Epidemiol. 2016, 45, 1887–1894. [Google Scholar] [CrossRef]
- Lozano, M.; Murcia, M.; Soler-Blasco, R.; González, L.; Iriarte, G.; Rebagliato, M.; Lopez-Espinosa, M.J.; Esplugues, A.; Ballester, F.; Llop, S. Exposure to Mercury among 9-Year-Old Children and Neurobehavioural Function. Environ. Int. 2021, 146, 106173. [Google Scholar] [CrossRef] [PubMed]
- Maitre, L.; Julvez, J.; López-Vicente, M.; Warembourg, C.; Tamayo-Uria, I.; Philippat, C.; Gützkow, K.B.; Guxens, M.; Andrusaityte, S.; Basagaña, X.; et al. Early-Life Environmental Exposure Determinants of Child Behavior in Europe: A Longitudinal, Population-Based Study. Environ. Int. 2021, 153, 106523. [Google Scholar] [CrossRef] [PubMed]
- Dalsager, L.; Jensen, T.K.; Nielsen, F.; Grandjean, P.; Bilenberg, N.; Andersen, H.R. No Association between Maternal and Child PFAS Concentrations and Repeated Measures of ADHD Symptoms at Age 2½ and 5 Years in Children from the Odense Child Cohort. Neurotoxicol. Teratol. 2021, 88, 107031. [Google Scholar] [CrossRef]
- Carrico, C.; Gennings, C.; Wheeler, D.C.; Factor-Litvak, P. Characterization of Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting. J. Agric. Biol. Environ. Stat. 2015, 20, 100–120. [Google Scholar] [CrossRef]
- Guilbert, A.; Rolland, M.; Pin, I.; Thomsen, C.; Sakhi, A.K.; Sabaredzovic, A.; Slama, R.; Guichardet, K.; Philippat, C. Associations between a Mixture of Phenols and Phthalates and Child Behaviour in a French Mother–Child Cohort with Repeated Assessment of Exposure. Environ. Int. 2021, 156, 106697. [Google Scholar] [CrossRef]
- Tanner, E.M.; Bornehag, C.G.; Gennings, C. Repeated Holdout Validation for Weighted Quantile Sum Regression. MethodsX 2019, 6, 2855–2860. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.M.; Upson, K.; Cook, N.R.; Weinberg, C.R. Environmental chemicals in urine and blood: Improving methods for creatinine and lipid adjustment. Environ. Health Perspect. 2016, 124, 220–227. [Google Scholar] [CrossRef]
- Amrhein, V.; Greenland, S.; McShane, B. Scientists Rise up against Statistical Significance. Nature 2019, 567, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Eliraz, L.; Ornoy, A.; Ein-Mor, E.; Bar-Nitsan, M.; Pilowsky Peleg, T.; Calderon-Margalit, R. Prenatal exposure to phthalates and emotional/behavioral development in young children. Neurotoxicology 2023, 98, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.B.; Kuo, P.H.; Su, P.H.; Sun, C.W.; Chen, W.J.; Wang, S.L. Prenatal and childhood exposure to phthalate diesters and neurobehavioral development in a 15-year follow-up birth cohort study. Environ. Res. 2019, 172, 569–577. [Google Scholar] [CrossRef]
- Dewey, D.; Martin, J.W.; MacDonald, A.M.; Kinniburgh, D.W.; Letourneau, N.; Giesbrecht, G.F.; Field, C.J.; Bell, R.C.; England-Mason, G.; APrON Study Team. Sex-specific associations between maternal phthalate exposure and neurodevelopmental outcomes in children at 2 years of age in the APrON cohort. Neurotoxicology 2023, 98, 48–60. [Google Scholar] [CrossRef]
- Munk Andreasen, S.; Frederiksen, H.; Bilenberg, N.; Andersson, A.M.; Juul, A.; Kyhl, H.B.; Kold Jensen, T. Maternal Concentrations of Phthalates and Attention-Deficit Hyperactivity Disorder (ADHD-) Related Symptoms in Children Aged 2 to 4 Years from Odense Child Cohort. Environ. Int. 2023, 180, 108244. [Google Scholar] [CrossRef]
- Kim, J.H.; Moon, N.; Ji, E.; Moon, H.B. Effects of Postnatal Exposure to Phthalate, Bisphenol a, Triclosan, Parabens, and per- and Poly-Fluoroalkyl Substances on Maternal Postpartum Depression and Infant Neurodevelopment: A Korean Mother-Infant Pair Cohort Study. Environ. Sci. Pollut. Res. Int. 2023, 30, 96384–96399. [Google Scholar] [CrossRef]
- Jedynak, P.; Maitre, L.; Guxens, M.; Gützkow, K.B.; Julvez, J.; López-Vicente, M.; Sunyer, J.; Casas, M.; Chatzi, L.; Gražulevičienė, R.; et al. Prenatal Exposure to a Wide Range of Environmental Chemicals and Child Behaviour between 3 and 7 Years of Age—An Exposome-Based Approach in 5 European Cohorts. Sci. Total Environ. 2021, 763, 144115. [Google Scholar] [CrossRef]
- Philippat, C.; Nakiwala, D.; Calafat, A.M.; Botton, J.; De Agostini, M.; Heude, B.; Slama, R. EDEN Mother–Child Study Group Prenatal Exposure to Nonpersistent Endocrine Disruptors and Behavior in Boys at 3 and 5 Years. Environ. Health Perspect. 2017, 125, 097014. [Google Scholar] [CrossRef]
- England-Mason, G.; Martin, J.W.; MacDonald, A.; Kinniburgh, D.; Giesbrecht, G.F.; Letourneau, N.; Dewey, D. Similar Names, Different Results: Consistency of the Associations between Prenatal Exposure to Phthalates and Parent-Ratings of Behavior Problems in Preschool Children. Environ. Int. 2020, 142, 105892. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, A.; Polańska, K.; Koch, H.M.; Pälmke, C.; Waszkowska, M.; Stańczak, A.; Wesołowska, E.; Hanke, W.; Bose-O’Reilly, S.; Calamandrei, G.; et al. Phthalate Exposure and Neurodevelopmental Outcomes in Early School Age Children from Poland. Environ. Res. 2019, 179, 108829. [Google Scholar] [CrossRef]
- Won, E.K.; Kim, Y.; Ha, M.; Burm, E.; Kim, Y.S.; Lim, H.; Jung, D.E.; Lim, S.; Kim, S.Y.; Kim, Y.M.; et al. Association of Current Phthalate Exposure with Neurobehavioral Development in a National Sample. Int. J. Hyg. Environ. Health 2016, 219, 364–371. [Google Scholar] [CrossRef]
- Engel, S.M.; Villanger, G.D.; Nethery, R.C.; Thomsen, C.; Sakhi, A.K.; Drover, S.S.M.; Hoppin, J.A.; Zeiner, P.; Knudsen, G.P.; Reichborn-Kjennerud, T.; et al. Prenatal Phthalates, Maternal Thyroid Function, and Risk of Attention-Deficit Hyperactivity Disorder in the Norwegian Mother and Child Cohort. Environ. Health Perspect. 2018, 126, 057004. [Google Scholar] [CrossRef]
- Barrett, E.S.; Day, D.B.; Szpiro, A.; Peng, J.; Loftus, C.T.; Ziausyte, U.; Kannan, K.; Trasande, L.; Zhao, Q.; Nguyen, R.H.N.; et al. Prenatal Exposures to Phthalates and Life Events Stressors in Relation to Child Behavior at Age 4–6: A Combined Cohort Analysis. Environ. Int. 2024, 183, 108425. [Google Scholar] [CrossRef] [PubMed]
- Arbuckle, T.E.; Davis, K.; Boylan, K.; Fisher, M.; Fu, J. Bisphenol A, Phthalates and Lead and Learning and Behavioral Problems in Canadian Children 6-11 Years of Age: CHMS 2007–2009. Neurotoxicology 2016, 54, 89–98. [Google Scholar] [CrossRef]
- Quinnies, K.M.; Harris, E.P.; Snyder, R.W.; Sumner, S.S.; Rissman, E.F. Direct and Transgenerational Effects of Low Doses of Perinatal Di-(2-Ethylhexyl) Phthalate (DEHP) on Social Behaviors in Mice. PLoS ONE 2017, 12, e0171977. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.I.; Chiang, C.W.; Lin, H.C.; Zhao, J.F.; Li, C.T.; Shyue, S.K.; Lee, T.S. Maternal Exposure to Di-(2-Ethylhexyl) Phthalate Exposure Deregulates Blood Pressure, Adiposity, Cholesterol Metabolism and Social Interaction in Mouse Offspring. Arch. Toxicol. 2016, 90, 1211–1224. [Google Scholar] [CrossRef]
- Shen, R.; Zhao, L.-L.; Yu, Z.; Zhang, C.; Chen, Y.-H.; Wang, H.; Zhang, Z.-H.; Xu, D.-X. Maternal Di-(2-Ethylhexyl) Phthalate Exposure during Pregnancy Causes Fetal Growth Restriction in a Stage-Specific but Gender-Independent Manner. Reprod. Toxicol. 2017, 67, 117–124. [Google Scholar] [CrossRef]
- Carbone, S.; Ponzo, O.J.; Gobetto, N.; Samaniego, Y.A.; Reynoso, R.; Scacchi, P.; Moguilevsky, J.A.; Cutrera, R. Antiandrogenic Effect of Perinatal Exposure to the Endocrine Disruptor Di-(2-Ethylhexyl) Phthalate Increases Anxiety-like Behavior in Male Rats during Sexual Maturation. Horm. Behav. 2013, 63, 692–699. [Google Scholar] [CrossRef]
- Martinez-Arguelles, D.B.; McIntosh, M.; Rohlicek, C.V.; Culty, M.; Zirkin, B.R.; Papadopoulos, V. Maternal in Utero Exposure to the Endocrine Disruptor Di-(2-Ethylhexyl) Phthalate Affects the Blood Pressure of Adult Male Offspring. Toxicol. Appl. Pharmacol. 2013, 266, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Barakat, R.; Lin, P.C.; Park, C.J.; Best-Popescu, C.; Bakry, H.H.; Abosalem, M.E.; Abdelaleem, N.M.; Flaws, J.A.; Ko, C.M. Prenatal Exposure to DEHP Induces Neuronal Degeneration and Neurobehavioral Abnormalities in Adult Male Mice. Toxicol. Sci. 2018, 164, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yang, Y.; Wang, R.; Wang, Y.; Ruan, Q.; Lu, Y. Perinatal Exposure to Di-(2-Ethylhexyl) Phthalate Affects Anxiety- and Depression-like Behaviors in Mice. Chemosphere 2015, 124, 22–31. [Google Scholar] [CrossRef]
- Mao, G.; Zhou, Z.; Chen, Y.; Wang, W.; Wu, X.; Feng, W.; Cobbina, S.J.; Huang, J.; Zhang, Z.; Xu, H.; et al. Neurological Toxicity of Individual and Mixtures of Low Dose Arsenic, Mono and Di (n-Butyl) Phthalates on Sub-Chronic Exposure to Mice. Biol. Trace Elem. Res. 2016, 170, 183–193. [Google Scholar] [CrossRef]
- Rider, C.V.; Wilson, V.S.; Howdeshell, K.L.; Hotchkiss, A.K.; Furr, J.R.; Lambright, C.R.; Gray, L.E. Cumulative Effects of in Utero Administration of Mixtures of “Antiandrogens” on Male Rat Reproductive Development. Toxicol. Pathol. 2009, 37, 100–113. [Google Scholar] [CrossRef] [PubMed]
- Rider, C.V.; Furr, J.R.; Wilson, V.S.; Gray, L.E. Cumulative Effects of in Utero Administration of Mixtures of Reproductive Toxicants That Disrupt Common Target Tissues via Diverse Mechanisms of Toxicity. Int. J. Androl. 2010, 33, 443–462. [Google Scholar] [CrossRef] [PubMed]
- Varshavsky, J.R.; Zota, A.R.; Woodruff, T.J. A Novel Method for Calculating Potency-Weighted Cumulative Phthalates Exposure with Implications for Identifying Racial/Ethnic Disparities among U.S. Reproductive-Aged Women in NHANES 2001–2012. Environ. Sci. Technol. 2016, 50, 10616–10624. [Google Scholar] [CrossRef] [PubMed]
- Swan, S.H.; Liu, F.; Hines, M.; Kruse, R.L.; Wang, C.; Redmon, J.B.; Sparks, A.; Weiss, B. Prenatal Phthalate Exposure and Reduced Masculine Play in Boys. Int. J. Androl. 2010, 33, 259–269. [Google Scholar] [CrossRef]
- Swan, S.H.; Sathyanarayana, S.; Barrett, E.S.; Janssen, S.; Liu, F.; Nguyen, R.H.N.; Redmon, J.B. First Trimester Phthalate Exposure and Anogenital Distance in Newborns. Hum. Reprod. 2015, 30, 963–972. [Google Scholar] [CrossRef]
- Baken, K.A.; Lambrechts, N.; Remy, S.; Mustieles, V.; Rodríguez-Carrillo, A.; Neophytou, C.M.; Olea, N.; Schoeters, G. A Strategy to Validate a Selection of Human Effect Biomarkers Using Adverse Outcome Pathways: Proof of Concept for Phthalates and Reproductive Effects. Environ. Res. 2019, 175, 235–256. [Google Scholar] [CrossRef]
- Gerofke, A.; Lange, R.; Vogel, N.; Schmidt, P.; Weber, T.; David, M.; Frederiksen, H.; Baken, K.; Govarts, E.; Gilles, L.; et al. Phthalates and Substitute Plasticizers: Main Achievements from the European Human Biomonitoring Initiative HBM4EU. Int. J. Hyg. Environ. Health 2024, 259, 114378. [Google Scholar] [CrossRef]
- Suliman, S.; Hemmings, S.M.; Seedat, S. Brain-Derived Neurotrophic Factor (BDNF) Protein Levels in Anxiety Disorders: Systematic Review and Meta-Regression Analysis. Front. Integr. Neurosci. 2013, 7, 55. [Google Scholar] [CrossRef]
- Shi, Y.; Luan, D.; Song, R.; Zhang, Z. Value of Peripheral Neurotrophin Levels for the Diagnosis of Depression and Response to Treatment: A Systematic Review and Meta-Analysis. Eur. Neuropsychopharmacol. 2020, 41, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.Y.; Feng, J.C.; Cao, C.; Wu, H.T.; Loh, Y.P.; Cheng, Y. Association of Peripheral Blood Levels of Brain-Derived Neurotrophic Factor with Autism Spectrum Disorder in Children: A Systematic Review and Meta-Analysis. JAMA Pediatr. 2016, 170, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Luo, W.; Li, Q.; Xu, R.; Wang, Q.; Huang, Q. Peripheral Brain-Derived Neurotrophic Factor in Attention-Deficit/Hyperactivity Disorder: A Comprehensive Systematic Review and Meta-Analysis. J. Affect. Disord. 2018, 227, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Steffensen, I.L.; Dirven, H.; Couderq, S.; David, A.; D’cruz, S.C.; Fernández, M.F.; Mustieles, V.; Rodríguez-Carillo, A.; Hofer, T. Bisphenols and Oxidative Stress Biomarkers—Associations Found in Human Studies, Evaluation of Methods Used, and Strengths and Weaknesses of the Biomarkers. Int. J. Environ. Res. Public Health 2020, 17, 3609. [Google Scholar] [CrossRef]
- Choi, S.H.; Choi, K.H.; Won, J.U.; Kim, H. Impact of Multi-Heavy Metal Exposure on Renal Damage Indicators in Korea: An Analysis Using Bayesian Kernel Machine Regression. Medicine 2023, 102, E35001. [Google Scholar] [CrossRef]
- Cavalheiro Paulelli, A.C.; Cruz, J.C.; Rocha, B.A.; Souza, M.C.O.; de Oliveira, R.S.; Cesila, C.A.; Devoz, P.P.; dos Reis Pedreira Filho, W.; Soares de Campos, M.; Domingo, J.L.; et al. Association between Urinary Concentrations of Toxic Metals/Metalloids and Oxidative Stress in Brazilians Living in Areas Affected by the Fundão Dam Failure. Environ. Res. 2023, 238, 117307. [Google Scholar] [CrossRef]
- Kim, S.S.; Meeker, J.D.; Keil, A.P.; Aung, M.T.; Bommarito, P.A.; Cantonwine, D.E.; McElrath, T.F.; Ferguson, K.K. Exposure to 17 Trace Metals in Pregnancy and Associations with Urinary Oxidative Stress Biomarkers. Environ. Res. 2019, 179, 108854. [Google Scholar] [CrossRef]
- Davalos, A.D.; Mínguez-Alarcón, L.; van t’ Erve, T.J.; Keil, A.P.; Williams, P.L.; Meeker, J.D.; Milne, G.L.; Zhao, S.; Hauser, R.; Ferguson, K.K. Associations between Mixtures of Urinary Phthalate Metabolite Concentrations and Oxidative Stress Biomarkers among Couples Undergoing Fertility Treatment. Environ. Res. 2022, 212, 113342. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Wu, L.H.; Wang, F.; Liu, L.Y.; Zeng, E.Y.; Guo, Y. DNA Oxidative Damage in Pregnant Women upon Exposure to Conventional and Alternative Phthalates. Environ. Int. 2021, 156, 106743. [Google Scholar] [CrossRef]
- Liao, Q.; Huang, H.; Zhang, X.; Ma, X.; Peng, J.; Zhang, Z.; Chen, C.; Lv, Y.; Zhu, X.; Zheng, J.; et al. Assessment of Health Risk and Dose-Effect of DNA Oxidative Damage for the Thirty Chemicals Mixture of Parabens, Triclosan, Benzophenones, and Phthalate Esters. Chemosphere 2022, 308, 136394. [Google Scholar] [CrossRef]
- Ferguson, K.K.; Chen, Y.-H.; VanderWeele, T.J.; McElrath, T.F.; Meeker, J.D.; Mukherjee, B. Mediation of the Relationship between Maternal Phthalate Exposure and Preterm Birth by Oxidative Stress with Repeated Measurements across Pregnancy. Environ. Health Perspect. 2017, 125, 488–494. [Google Scholar] [CrossRef]
- Li, L.; Huang, L.; Lei, R.; Zhang, P.; Yang, Y.; Liu, H.; Zhang, Y. DEHP and DBP, Common Phthalates, Induce Glucose Metabolism Disorders in Rats via Oxidative Damage of PI3K/Akt/GLUT4 Signaling. Environ. Pollut. 2024, 341, 122948. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Qi, M.; Zhang, L.; Yu, F.; Tao, D.; Xu, C.; Xu, S. Di(2-Ethylhexyl) Phthalate and Microplastics Cause Necroptosis and Apoptosis in Hepatocytes of Mice by Inducing Oxidative Stress. Environ. Toxicol. 2023, 38, 1226–1238. [Google Scholar] [CrossRef] [PubMed]
- Rothman, K.J. Six persistent research misconceptions. J. Gen. Intern. Med. 2014, 29, 1060–1064. [Google Scholar] [CrossRef]
- Perrier, F.; Giorgis-Allemand, L.; Slama, R.; Philippat, C. Within-Subject Pooling of Biological Samples to Reduce Exposure Misclassification in Biomarker-Based Studies. Epidemiology 2016, 27, 378–388. [Google Scholar] [CrossRef]
- Vernet, C.; Philippat, C.; Agier, L.; Calafat, A.M.; Ye, X.; Lyon-Caen, S.; Hainaut, P.; Siroux, V.; Schisterman, E.F.; Slama, R. An Empirical Validation of the Within-Subject Biospecimens Pooling Approach to Minimize Exposure Misclassification in Biomarker-Based Studies. Epidemiology 2019, 30, 756–767. [Google Scholar] [CrossRef]
- Mustieles, V.; Lascouts, A.; Pozo, O.J.; Haro, N.; Lyon-Caen, S.; Jedynak, P.; Bayat, S.; Thomsen, C.; Sakhi, A.K.; Sabaredzovic, A.; et al. Longitudinal Associations between Prenatal Exposure to Phthalates and Steroid Hormones in Maternal Hair Samples from the SEPAGES Cohort. Environ. Sci. Technol. 2023, 57, 19202–19213. [Google Scholar] [CrossRef] [PubMed]
- Mustieles, V.; Rolland, M.; Pin, I.; Thomsen, C.; Sakhi, A.; Sabaredzovic, A.; Muckle, G.; Guichardet, K.; Slama, R.; Philippat, C. Early-Life Exposure to a Mixture of Phenols and Phthalates in Relation to Child Social Behavior: Applying an Evidence-Based Prioritization to a Cohort with Improved Exposure Assessment. Environ. Health Perspect. 2023, 131, 087006. [Google Scholar] [CrossRef] [PubMed]
Variables | NACII-IT | PCB-SK | InAirQ-HU | NEBII-NO | CRP-SLO | Combined b |
---|---|---|---|---|---|---|
Cohort characteristics [Mean (SD) or frequency (percentage)] | ||||||
Country | Italy | Slovakia | Hungary | Norway | Slovenia | - |
Initial sample size | 300 | 294 | 257 | 297 | 124 | 1148 |
Age | 7.0 (0.2) | 11.1 (0.4) | 9.3 (0.7) | 9.83 (1.17) | 8.85 (0.97) | 9.32 (1.68) |
BMI (Kg/m2) | 16.9 (2.26) | 20.2 (4.3) | 17.4 (3.3) | 17.4 (2.46) | 17.2 (3.09) | 18.0 (3.50) |
BMI z-score | 0.49 (1.15) | 0.92 (1.22) | 0.27 (1.35) | 0.32 (0.81) | 0.34 (1.44) | 0.51 (1.17) |
Child sex = boys | 150 (50%) | 130 (44%) | 130 (51%) | 160 (54%) | 55 (44%) | 570 (50%) |
Maternal education | ||||||
Low | 42 (14%) | 33 (11%) | 9 (4%) | 0 (0%) | 11 (9%) | 84 (8%) |
Medium | 139 (46%) | 235 (80%) | 122 (52%) | 39 (13%) | 30 (24%) | 535 (47%) |
High | 119 (40%) | 25 (9%) | 103 (44%) | 258 (87%) | 83 (67%) | 505 (45%) |
Maternal IQ | 120 (10.7) [68–128] | 108 (15.1) [63–132] | - | - | - | 114.1 (14.5) [63–132] |
Behavior CBCL assessment (Mean (SD)/[range] and BDNF levels (Median, P25, P75; μg/g creatinine) | ||||||
Total CBCL score | 23.2 (15.0) [0–87] | - | - | - | - | - |
Externalizing score | 5.4 (4.6) [0–27] | - | - | - | - | - |
Internalizing score | 6.3 (5.4) [0–34] | - | - | - | - | - |
Urinary BDNF a | 2.87 (1.98, 4.21) | 2.65 (1.85, 3.83) | 2.52 (1.70, 3.54) | 1.52 (1.08, 1.98) | - | 2.31 (1.52, 3.46) |
Serum BDNF | - | - | - | - | 45.1 (38.9, 52.6) | - |
Phthalate concentrations (Median, P25, P75; μg/g creatinine) | ||||||
MEP | 63.5 (33.3, 131.9) | 23.9 (12.9, 54.9) | 9.64 (5.82, 18.1) | 14.3 (9.70, 25.6) | 25.3 (15.7, 51.2) | 21.8 (10.4, 54.4) |
MnBP | 21.9 (14.5, 33.0) | 58.8 (35.9, 102.8) | 18.6 (11.5, 30.0) | 23.9 (15.1, 35.2) | 19.9 (14.0, 26.9) | 26.3 (15.5, 47.2) |
MiBP | 34.2 (24.6, 50.2) | 48.3 (25.9, 81.0) | 34.0 (19.9, 51.7) | 26.7 (16.1, 41.3) | 27.0 (17.5, 43.5) | 33.9 (21.5, 57.7) |
MBzP | 6.69 (3.89, 11.1) | 3.94 (0.77, 7.58) | 1.59 (0.93, 2.84) | 4.88 (2.95, 8.61) | 3.47 (2.12, 5.52) | 4.14 (1.80, 7.99) |
∑DEHP | 69.4 (51.8, 108.1) | 88.2 (57.8, 136.6) | 36.9 (23.8, 56.3) | 40.8 (29.3, 62.3) | 55.4 (38.4, 87.4) | 56.4 (35.6, 93.4) |
MEHHP | 19.2 (14.3, 28.8) | 20.3 (14.0, 31.8) | 10.8 (6.85, 16.6) | 9.29 (6.35, 14.5) | 14.6 (9.11, 21.9) | 14.8 (8.56, 23.5) |
MEOHP | 9.82 (6.89, 15.0) | 18.1 (12.2, 25.6) | 5.23 (3.43, 8.42) | 5.74 (3.89, 8.66) | 11.1 (7.27, 17.4) | 8.62 (4.91, 15.4) |
MECPP | 24.2 (16.8, 37.3) | 28.2 (18.0, 46.8) | 11.4 (7.32, 18.3) | 17.2 (12.3, 24.8) | 17.7 (11.7, 25.8) | 19.6 (12.5, 31.6) |
∑DINCH c | 6.17 (3.40, 10.5) | 2.52 (1.43, 4.97) | 1.97 (1.25, 4.11) | - | 4.27 (2.43, 7.05) | 3.30 (1.68, 6.68) |
MHINCH | 3.65 (2.03, 6.68) | 1.65 (0.90, 3.35) | 1.20 (0.74, 2.42) | 2.94 (1.91, 5.52) | 2.61 (1.41, 4.52) | 2.28 (1.23, 4.54) |
MCOCH c | 2.24 (1.26, 4.13) | 0.86 (0.46, 1.62) | 0.90 (0.49, 1.68) | - | 1.55 (0.89, 2.70) | 1.21 (0.58, 2.49) |
Outcome | All | Boys | Girls |
---|---|---|---|
IRR or PC (95% CI) | IRR or PC (95% CI) | IRR or PC (95% CI) | |
Total CBCL score | 1.09 (0.96, 1.23) | 1.07 (0.91, 1.25) | 1.11 (0.90, 1.35) |
Externalizing score | 1.15 (0.97, 1.36) | 1.20 (0.96, 1.49) | 1.11 (0.88, 1.39) |
Internalizing score | 1.03 (0.90, 1.17) | 1.04 (0.85, 1.29) | 1.00 (0.76, 1.30) |
Urinary BDNF levels | 25.9 (17.6, 34.7) | 36.0 (24.3, 48.9) | 18.6 (7.92, 30.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salamanca-Fernández, E.; Espín-Moreno, L.; Olivas-Martínez, A.; Pérez-Cantero, A.; Martín-Rodríguez, J.L.; Poyatos, R.M.; Barbone, F.; Rosolen, V.; Mariuz, M.; Ronfani, L.; et al. Associations between Urinary Phthalate Metabolites with BDNF and Behavioral Function among European Children from Five HBM4EU Aligned Studies. Toxics 2024, 12, 642. https://doi.org/10.3390/toxics12090642
Salamanca-Fernández E, Espín-Moreno L, Olivas-Martínez A, Pérez-Cantero A, Martín-Rodríguez JL, Poyatos RM, Barbone F, Rosolen V, Mariuz M, Ronfani L, et al. Associations between Urinary Phthalate Metabolites with BDNF and Behavioral Function among European Children from Five HBM4EU Aligned Studies. Toxics. 2024; 12(9):642. https://doi.org/10.3390/toxics12090642
Chicago/Turabian StyleSalamanca-Fernández, Elena, Lydia Espín-Moreno, Alicia Olivas-Martínez, Ainhoa Pérez-Cantero, José L. Martín-Rodríguez, Rafael M. Poyatos, Fabio Barbone, Valentina Rosolen, Marika Mariuz, Luca Ronfani, and et al. 2024. "Associations between Urinary Phthalate Metabolites with BDNF and Behavioral Function among European Children from Five HBM4EU Aligned Studies" Toxics 12, no. 9: 642. https://doi.org/10.3390/toxics12090642
APA StyleSalamanca-Fernández, E., Espín-Moreno, L., Olivas-Martínez, A., Pérez-Cantero, A., Martín-Rodríguez, J. L., Poyatos, R. M., Barbone, F., Rosolen, V., Mariuz, M., Ronfani, L., Palkovičová Murínová, Ľ., Fábelová, L., Szigeti, T., Kakucs, R., Sakhi, A. K., Haug, L. S., Lindeman, B., Snoj Tratnik, J., Kosjek, T., ... Mustieles, V. (2024). Associations between Urinary Phthalate Metabolites with BDNF and Behavioral Function among European Children from Five HBM4EU Aligned Studies. Toxics, 12(9), 642. https://doi.org/10.3390/toxics12090642