Salvia connivens Methanolic Extract Against Spodoptera frugiperda and Tenebrio molitor and Its Effect on Poecilia reticulata and Danio rerio
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Extract
2.2. Spodoptera frugiperda Bioassay
2.3. Tenebrio molitor Bioassay
2.4. Fish Acclimation and Conditioning Process
2.5. Fish Ecotoxicity Bioassay
2.6. Identification of the Major Compound in the Extract
2.7. Assessment of the Insecticidal Activity and Ecotoxicological Impact of the Major Compound
2.8. Statistical Analysis
3. Results
3.1. Insecticidal Activity of the Methanolic Extract of S. connivens Against S. frugiperda and T. molitor
3.2. Ecotoxicological Effect of the Methanolic Extract of S. connivens on P. reticulata and Danio rerio
3.3. Identification of Rosmarinic Acid
3.4. Insecticidal Activity of Rosmarinic Acid Against S. frugiperda and T. molitor
3.5. Ecotoxicological Effect of Rosmarinic Acid on P. reticulata and D. rerio
4. Discussion
4.1. Insecticidal Activity of the Methanolic Extract of Salvia connivens Against Spodoptera frugiperda
4.2. Insecticidal Activity of the Methanolic Extract of Salvia connivens Against Tenebrio molitor
4.3. Ecotoxicological Effect of the Methanolic Extract of Salvia connivens on Poecilia reticulata and Danio rerio
4.4. Identification and Quantification of Rosmarinic Acid
4.5. Insecticidal Activity of Rosmarinic Acid Against Spodoptera frugiperda and Tenebrio molitor
4.6. Ecotoxicological Effect of Rosmarinic Acid on Poecilia reticulata and Danio rerio
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, L.; Liao, X.; Jia, B.; Shi, L.; Kang, L.; Zhou, L.; Kong, W. Recent progress in immunosensors for pesticides. Biosens. Bioelectron. 2020, 164, 112255. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Chauhan, N.; Kashyap, U.; Dolma, S.K.; Reddy, S.G.E. Chemical composition, insecticidal, persistence and detoxification enzyme inhibition activities of essential oil of Artemisia Maritima against the pulse beetle. Molecules 2022, 27, 1547. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Yang, X.; Li, H.; Wu, K. The invasive Spodoptera frugiperda (J.E. Smith) has displaced Ostrinia Furnacalis (Guenée) as the dominant maize pest in the border area of southwestern China. Pest. Manag. Sci. 2023, 79, 3354–3363. [Google Scholar] [CrossRef]
- Gutiérrez-Moreno, R.; Mota-Sanchez, D.; Blanco, C.A.; Whalon, M.E.; Terán-Santofimio, H.; Rodriguez-Maciel, J.C.; DiFonzo, C. Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico. J. Econ. Entomol. 2019, 112, 792–802. [Google Scholar] [CrossRef]
- Carvalho, R.A.; Omoto, C.; Field, L.M.; Williamson, M.S.; Bass, C. Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda. PLoS ONE 2013, 8, e62268. [Google Scholar] [CrossRef]
- Sagna, A.B.; Zéla, L.; Ouedraogo, C.O.W.; Pooda, S.H.; Porciani, A.; Furnival-Adams, J.; Lado, P.; Somé, A.F.; Pennetier, C.; Chaccour, C.J.; et al. Ivermectin as a novel malaria control tool: Getting ahead of the resistance curse. Acta Trop. 2023, 245, 106973. [Google Scholar] [CrossRef] [PubMed]
- Mancini, S.; Fratini, F.; Turchi, B.; Mattioli, S.; Dal Bosco, A.; Tuccinardi, T.; Nozic, S.; Paci, G. Former foodstuff products in Tenebrio molitor rearing: Effects on growth, chemical composition, microbiological load, and antioxidant status. Animals 2019, 9, 484. [Google Scholar] [CrossRef] [PubMed]
- Kavallieratos, N.G.; Nika, E.P.; Skourti, A.; Ntalli, N.; Boukouvala, M.C.; Ntalaka, C.T.; Maggi, F.; Rakotosaona, R.; Cespi, M.; Perinelli, D.R.; et al. Developing a Hazomalania voyronii essential oil nanoemulsion for the eco-friendly management of Tribolium confusum, Tribolium castaneum and Tenebrio molitor larvae and adults on stored wheat. Molecules 2021, 26, 1812. [Google Scholar] [CrossRef]
- Nath, A.; Gadratagi, B.G.; Maurya, R.P.; Ullah, F.; Patil, N.B.; Adak, T.; Govindharaj, G.P.P.; Ray, A.; Mahendiran, A.; Desneux, N.; et al. Sublethal phosphine fumigation induces transgenerational hormesis in a factitious host, Corcyra cephalonica. Pest. Manag. Sci. 2023, 79, 3548–3558. [Google Scholar] [CrossRef]
- Chen, Z.; Schlipalius, D.; Opit, G.; Subramanyam, B.; Phillips, T.W. Diagnostic molecular markers for phosphine resistance in U.S. Populations of Tribolium castaneum and Rhyzopertha dominica. PLoS ONE 2015, 10, e0121343. [Google Scholar] [CrossRef]
- Afful, E.; Elliott, B.; Nayak, M.K.; Phillips, T.W. Phosphine resistance in north American field populations of the lesser grain borer, Rhyzopertha dominica (Coleoptera: Bostrichidae). J. Econ. Entomol. 2018, 111, 463–469. [Google Scholar] [CrossRef]
- Saini, M.K.; Singh, S.; Sharma, D.K. Alternatives to phosphine fumigation in managing stored grain insect pests. Int. J. Agric. Sci. 2022, 18, 522–534. [Google Scholar] [CrossRef]
- Tavares, W.R.; Barreto, M.d.C.; Seca, A.M.L. Aqueous and ethanolic plant extracts as bio-insecticides—Establishing a bridge between raw scientific data and practical reality. Plants 2021, 10, 920. [Google Scholar] [CrossRef]
- Ngegba, P.M.; Cui, G.; Khalid, M.Z.; Zhong, G. Use of botanical pesticides in agriculture as an alternative to synthetic pesticides. Agriculture 2022, 12, 600. [Google Scholar] [CrossRef]
- Hikal, W.M.; Baeshen, R.S.; Said-Al Ahl, H.A.H. Botanical insecticide as simple extractives for pest control. Cogent Biol. 2017, 3, 1404274. [Google Scholar] [CrossRef]
- Damalas, C.A.; Koutroubas, S.D. Botanical pesticides for wco-friendly pest management. In Pesticides in Crop Production; Wiley: Hoboken, NJ, USA, 2020; pp. 181–193. [Google Scholar]
- González-Gallegos, J.G.; Vega-Mares, J.H.; Fernández, J.A. Salvia reginae and S. spellenbergii (Lamiaceae), two new species from Chihuahua, Mexico. Willdenowia 2019, 49, 319. [Google Scholar] [CrossRef]
- González-Chávez, M.M.; Ramos-Velázquez, C.S.; Serrano-Vega, R.; Pérez-González, C.; Sánchez-Mendoza, E.; Pérez-Gutiérrez, S. Anti-inflammatory activity of standardized dichloromethane extract of Salvia connivens on macrophages stimulated by LPS. Pharm. Biol. 2017, 55, 1467–1472. [Google Scholar] [CrossRef]
- Pérez Gutiérrez, S.; Zavala Mendoza, D.; Soto Peredo, C.; Sánchez Sánchez, O.; Zavala Sánchez, M.A. Evaluation of the anti-diarrheal activity of Salvia connivens. Pharm. Biol. 2014, 52, 1467–1470. [Google Scholar] [CrossRef]
- Bautista, E.; Calzada, F.; Yépez-Mulia, L.; Bedolla-García, B.Y.; Fragoso-Serrano, M.; Pastor-Palacios, G.; González-Juárez, D.E. Salvia connivens, a source of bioactive flavones with amoebicidal and giardicidal activity. Rev. Bras. Farmacogn. 2020, 30, 729–732. [Google Scholar] [CrossRef]
- Flores-Macías, A.; Flores-Sánchez, M.A.; León-Herrera, L.R.; Mondragón-Olguín, V.M.; Zavala-Gómez, C.E.; Tapia-Pérez, A.D.; Campos-Guillén, J.; Amaro-Reyes, A.; Sandoval-Cárdenas, D.I.; Romero-Gómez, S.d.J.; et al. Activity of chloroformic extract from Salvia connivens (Lamiales: Lamiaceae) and its principal compounds against Spodoptera frugiperda (Lepidoptera: Noctuidae). Appl. Sci. 2021, 11, 11813. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, J.; Zhang, N.; Yu, W.; Jiang, J.; Dai, G. Insecticidal activities of Salvia hispanica L. essential oil and combinations of their main compounds against the beet armyworm Spodoptera exigua. Ind. Crops Prod. 2021, 162, 113271. [Google Scholar] [CrossRef]
- Kačániová, M.; Vukovic, N.L.; Čmiková, N.; Galovičová, L.; Schwarzová, M.; Šimora, V.; Kowalczewski, P.Ł.; Kluz, M.I.; Puchalski, C.; Bakay, L.; et al. Salvia sclarea essential oil chemical composition and biological activities. Int. J. Mol. Sci. 2023, 24, 5179. [Google Scholar] [CrossRef] [PubMed]
- Geranmayeh, J.; Hashemi, S.M. Contact toxicity of the essential oils from Salvia leriifolia Benth (Lamiaceae) against Lasioderma serricorne (F.). Biharean Biol. 2014, 8, 141119. [Google Scholar]
- Hernández-Caracheo, K.; Guerrero-López, L.; Rodríguez-Sánchez, B.; Rodríguez-Núñez, E.; Rodríguez-Chávez, J.L.; Delgado-Lamas, G.; Campos-Guillén, J.; Amaro-Reyes, A.; Monroy-Dosta, M.d.C.; Zavala-Gómez, C.E.; et al. Evaluation of the insecticidal potential of Heterotheca inuloides acetonic and methanolic extracts against Spodoptera frugiperda and their ecotoxicological effect on Poecilia Reticulata. Plants 2023, 12, 3555. [Google Scholar] [CrossRef] [PubMed]
- Dalzochio, T.; Rodrigues, G.Z.P.; Petry, I.E.; Gehlen, G.; da Silva, L.B. The use of biomarkers to assess the health of aquatic ecosystems in Brazil: A Review. Int. Aquat. Res. 2016, 8, 283–298. [Google Scholar] [CrossRef]
- Falfushynska, H.; Khatib, I.; Kasianchuk, N.; Lushchak, O.; Horyn, O.; Sokolova, I.M. Toxic effects and mechanisms of common pesticides (Roundup and Chlorpyrifos) and their mixtures in a zebrafish model (Danio rerio). Sci. Total Environ. 2022, 833, 155236. [Google Scholar] [CrossRef]
- Ramos-López, M.A.; Pérez, S.; Rodríguez-Hernández, C.; Guevara-Fefer, P.; Zavala-Sánchez, M.A. Activity of Ricinus communis (Euphorbiaceae) against Spodoptera frugiperda (Lepidoptera: Noctuidae). Afr. J. Biotechnol. 2010, 9, 1359–1365. [Google Scholar]
- Park, J.B.; Choi, W.H.; Kim, S.H.; Jin, H.J.; Han, Y.S.; Lee, Y.S.; Kim, N.J. Developmental characteristics of Tenebrio molitor larvae (Coleoptera: Tenebrionidae) in different instars. Int. J. Indust Entomol. 2014, 28, 5–9. [Google Scholar] [CrossRef]
- Reséndiz-Melgoza, J.A. Evaluación De Dietas Artificiales Para La Cría De Tenebrio Molitor (Coleoptera: Tenebrionidae) Bajo Condiciones Controladas Para Elaboración De Harina Rica En Proteína; Universidad Autónoma de Querétaro: Querétaro, México, 2023. [Google Scholar]
- Mirzaeva, D.A.; Khujamshukurov, N.A.; Zokirov, B.; Soxibov, B.O.; Kuchkarova, D.K. Influence of temperature and humidity on the development of Tenebrio molitor L. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 3544–3559. [Google Scholar] [CrossRef]
- USEPA. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, 5th ed.; United States Environmental Protection Agency: Washington, DC, USA, 2002; p. 33.
- Martínez-Jerónimo, F.; Espinosa-Chávez, F. Ensayo de toxicidad aguda con larvas y juveniles de los peces Brachydanio rerio y Poecilia reticulata. In Ensayos Toxicológicos Para La Evaluación De Sustancias Químicas En Agua Y Suelo: La Experiencia En México; Ramírez-Romero, P., Mendoza-Cantú, A., Eds.; Instituto Nacional de Ecología, SEMARNAT: Ciudad de México, Mexico, 2008; pp. 115–126. [Google Scholar]
- OECD. Test No. 236: Fish Embryo Acute Toxicity (FET) Test, OECD Guidelines for the Testing of Chemicals; OECD Publishing: Paris, France, 2013; pp. 1–9. [Google Scholar] [CrossRef]
- Díaz-Resendiz, K.J.G.; Hermosillo-Escobedo, A.T.; Ventura-Ramón, G.H.; Toledo-Ibarra, G.A.; Girón-Pérez, D.A.; Bueno-Durán, A.Y.; Girón-Pérez, M.I. Death of guppy fish (Poecilia reticulata) leukocytes induced by in vivo exposure to temephos and spinosad. Int. J. Environ. Health Res. 2022, 32, 701–711. [Google Scholar] [CrossRef]
- Norma Oficial Mexicana NOM-087-SEMARNAT-SSA1-2002, Protección Ambiental—Salud Ambiental—Residuos Peligrosos Biológico-Infecciosos—Clasificación Y Especificaciones De Manejo. Available online: https://dof.gob.mx/nota_detalle.php?codigo=704675&fecha=17/02/2003#gsc.tab=0 (accessed on 27 October 2024).
- Ato-García, M.; López-Pina, J.A.; Velandrino-Nicolás, A.P.; Sánchez-Meca, J. Estadística Avanzada Con El Paquete Systat; Universidad de Murcia: Murcia, Spain, 1990; Volume 3. [Google Scholar]
- Pavela, R.; Chermenskaya, T. Potential insecticidal activity of extracts from 18 species of medicinal plants on larvae of Spodoptera littoralis—Short communication. Plant Protect Sci. 2004, 40, 145–150. [Google Scholar] [CrossRef]
- Kamaraj, C.; Rahuman, A.A.; Bagavan, A. Antifeedant and larvicidal effects of plant extracts against Spodoptera litura (F.), Aedes aegypti L. and Culex quinquefasciatus Say. Parasitol. Res. 2008, 103, 325–331. [Google Scholar] [CrossRef]
- Sakr, H.; Roshdy, S. Effect of Hyptis brevipes (Lamiaceae) methanol extract on Spodoptera littoralis (Lepidoptera: Noctuidae) larvae. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 651–658. [Google Scholar]
- Ayil-Gutiérrez, B.A.; Sánchez-Teyer, L.F.; Vazquez-Flota, F.; Monforte-González, M.; Tamayo-Ordóñez, Y.; Tamayo-Ordóñez, M.C.; Rivera, G. Biological effects of natural products against Spodoptera spp. Crop Prot. 2018, 114, 195–207. [Google Scholar] [CrossRef]
- Zavala-Sánchez, M.A.; Gutiérrez, S.P.; Romo-Asunción, D.; Cárdenas-Ortega, N.C.; Ramos-López, M.A. Activity of four Salvia species against Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Southwest. Entomol. 2013, 38, 67–73. [Google Scholar] [CrossRef]
- Taha-Salaime, L.; Lebedev, G.; Abo-Nassar, J.; Marzouk, S.; Inbar, M.; Ghanim, M.; Aly, R. Activity of Ajuga iva extracts against the african cotton leafworm Spodoptera littoralis. Insects 2020, 11, 726. [Google Scholar] [CrossRef]
- Benhizia, T.; Lebbal, S.; Zeraib, A.; Hasrouri, B.; Messaoudia, Y.A.; Ziani, A. Evaluation of the aphicidal activity of Salvia microphylla (Lamiaceae) aqueous extracts against Aphis pomi (Aphididae). Acta Univ. Sapientiae Agric. Environ. 2023, 15, 110–118. [Google Scholar] [CrossRef]
- Marouf, A.; Sangari, S.; Jabbari, L. An investigation on fumigant effect of the extract of Origanum vulgare (Lamiales: Lamiaceae) for control of two stored-product beetles. J. Entomol. Soc. Iran. 2008, 27, 29–41. [Google Scholar]
- Kosini, D.; Nukenine, E.N.; Tofel, K.H. Efficacy of cameroonian Ocimum cansum Sim (Lamiaceae) leaf extract fractions against Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae), infesting bambara groundnut. J. Entomol. Zool. Stud. 2015, 3, 487–494. [Google Scholar]
- Jbilou, R.; Amri, H.; Bouayad, N.; Ghailani, N.; Ennabili, A.; Sayah, F. Insecticidal effects of extracts of seven plant species on larval development, α-amylase activity and offspring production of Tribolium castaneum (Herbst) (Insecta: Coleoptera: Tenebrionidae). Bioresour. Technol. 2008, 99, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Khidr, S.K.; Khalil, S.M. Efficacy of six aqueous plant extracts and three commercial entomopathogenic fungi against the corn ground beetle larvae, Zabrus tenebrioides under laboratory conditions. Arab. J. Plant Prot. 2024, 42, 120. Available online: https://arabjournalpp.org/wp-content/uploads/2024/04/V421-Pages-120-127-MS-22-23.pdf (accessed on 27 October 2024).
- de Oliveira, A.C.; Simões, R.C.; Tavares, C.P.S.; Lima, C.A.P.; Costa Sá, I.S.; da Silva, F.M.A.; Figueira, E.A.G.; Nunomura, S.M.; Nunomura, R.C.S.; Roque, R.A. Toxicity of the essential oil from Tetradenia riparia (Hochstetter.) Codd (Lamiaceae) and its principal constituent against malaria and dengue vectors and non-target animals. Pestic. Biochem. Physiol. 2022, 188, 105265. [Google Scholar] [CrossRef]
- Govindarajan, M.; Kadaikunnan, S.; Alharbi, N.S.; Benelli, G. Acute toxicity and repellent activity of the Origanum scabrum Boiss. & Heldr. (Lamiaceae) Essential oil against four mosquito vectors of public health importance and its biosafety on non-target aquatic organisms. Environ. Sci. Pollut. Res. 2016, 23, 23228–23238. [Google Scholar] [CrossRef]
- Sivagnaname, N.; Kalyanasundaram, M. Laboratory evaluation of methanolic extract of Atlantia monophylla (Family: Rutaceae) against immature stages of mosquitoes and non-target organisms. Mem. Inst. Oswaldo Cruz 2004, 99, 115–118. [Google Scholar] [CrossRef]
- Ravindran, D.R.; Bharathithasan, M.; Ramaiah, P.; Rasat, M.S.M.; Rajendran, D.; Srikumar, S.; Ishak, I.H.; Said, A.R.; Ravi, R.; Mohd Amin, M.F. Chemical composition and larvicidal activity of flower extracts from Clitoria ternatea against Aedes (Diptera: Culicidae). J. Chem. 2020, 4, 3837207. [Google Scholar] [CrossRef]
- Helfrich, L.A.; Weigmann, D.L.; Hipkins, P.; Stinson, E.R. Pesticides and Aquatic Animals: A Guide to Reducing Impacts on Aquatic Systems; Virginia Cooperative Extension: Blacksburg, VA, USA, 2009. [Google Scholar]
- Camilo, C.J.; Leite, D.O.D.; da S. Mendes, J.W.; Dantas, A.R.; de Carvalho, N.K.G.; Castro, J.W.G.; Salazar, G.J.T.; Ferreira, M.K.A.; de Meneses, J.E.A.; da Silva, A.W.; et al. Analysis toxicity by different methods and anxiolytic effect of the aqueous extract Lippia sidoides Cham. Sci. Rep. 2022, 12, 20626. [Google Scholar] [CrossRef] [PubMed]
- Nonato, C.d.F.A.; de Melo, E.V.S.; Camilo, C.J.; Ferreira, M.K.A.; de Meneses, J.E.A.; da Silva, A.W.; Santos, H.S.d.; Ribeiro-Filho, J.; Paolla Raimundo e Silva, J.; Tavares, J.F.; et al. Antibacterial activity and anxiolytic effect in adult zebrafish of genus Lippia L. Species. Plants 2023, 12, 1675. [Google Scholar] [CrossRef] [PubMed]
- Xavier, J.; Kripasana, K. Acute toxicity of leaf extracts of Enydra fluctuans Lour in zebrafish (Danio rerio Hamilton). Scientifica 2020, 6, 3965376. [Google Scholar] [CrossRef]
- Abidin, A.Z.; Balan, S.S.; Ali, R.M.; Bahari, H. Toxicity evaluation of Vitex trifolia ethanol extraction using zebrafish (Danio rerio) embryo. Malays. J. Microsc. 2023, 19, 247–258. [Google Scholar]
- Nguyen, T.H.; Nguyen, P.-D.; Quetin-Leclercq, J.; Muller, M.; Ly Huong, D.T.; Pham, H.T.; Kestemont, P. Developmental toxicity of Clerodendrum cyrtophyllum Turcz ethanol extract in zebrafish embryo. J. Ethnopharmacol. 2021, 267, 113538. [Google Scholar] [CrossRef]
- Ullah, R.; Alqahtani, A.S.; Shahat, A.A.; Nasr, F.; Wadaan, M.A.; Farooq, M. The antiproliferative effects of Marrubium vulgare, and toxicity screening in zebrafish embryos. J. King Saud. Univ. Sci. 2024, 36, 103241. [Google Scholar] [CrossRef]
- Zengin, G.; Llorent-Martínez, E.J.; Córdova, M.L.F.; Bahadori, M.B.; Mocan, A.; Locatelli, M.; Aktumsek, A. Chemical composition and biological activities of extracts from three Salvia species: S. blepharochlaena, S. euphratica Var. Leiocalycina, and S. verticillata Subsp. Amasiaca. Ind. Crops Prod. 2018, 111, 11–21. [Google Scholar] [CrossRef]
- Al-Jaber, H.I.; Shakya, A.K.; Elagbar, Z.A. HPLC profiling of selected phenolic acids and flavonoids in Salvia eigii, Salvia hierosolymitana and Salvia viridis growing wild in Jordan and their in vitro antioxidant activity. PeerJ 2020, 8, e9769. [Google Scholar] [CrossRef] [PubMed]
- Jahani, R.; Behzad, S.; Saffariha, M.; Toufan Tabrizi, N.; Faizi, M. Sedative-hypnotic, anxiolytic and possible side effects of Salvia limbata C. A. Mey. extracts and the effects of phenological stage and altitude on the rosmarinic acid content. J. Ethnopharmacol. 2022, 282, 114630. [Google Scholar] [CrossRef] [PubMed]
- Paje, L.A.; Choi, J.; Lee, H.-D.; Kim, J.; Yu, A.R.; Bae, M.-J.; Geraldino, P.J.L.; Lee, S. Phenolic acids and flavonoids from Salvia plebeia and HPLC-UV profiling of four Salvia species. Heliyon 2022, 8, e09046. [Google Scholar] [CrossRef] [PubMed]
- Mughees, M.; Ul Haq, I.; Rafique, A.; Khan, S.; Shah, M.M. Rosmarinic acid as a potential bioactive compound against economically important insect pests. Fresenius Environ. Bull. 2021, 30, 13192–13199. [Google Scholar]
- Khan, S.; Taning, C.N.T.; Bonneure, E.; Mangelinckx, S.; Smagghe, G.; Ahmad, R.; Fatima, N.; Asif, M.; Shah, M.M. Bioactivity-guided isolation of rosmarinic acid as the principle bioactive compound from the butanol extract of Isodon rugosus against the pea aphid, Acyrthosiphon pisum. PLoS ONE 2019, 14, e0215048. [Google Scholar] [CrossRef]
- Punia, A.; Chauhan, N.S.; Singh, D.; Kesavan, A.K.; Kaur, S.; Sohal, S.K. Effect of gallic acid on the larvae of Spodoptera litura and its parasitoid Bracon hebetor. Sci. Rep. 2021, 11, 531. [Google Scholar] [CrossRef]
- Guerra, D.J.; Cothren, T.J.; Phillips, J.R. Influence of selected phenolic compounds on development of bollworm (Lepidoptera: Noctuidae) larvae. J. Econ. Entomol. 1990, 83, 2115–2118. [Google Scholar] [CrossRef]
- Craioveanu, M.G.; Gheorghe, S.; Lucaciu, I.; Stoica, L.; Constantin, C. Assesment of aquatic toxicity of the caffeic acid complexed with Cr (III) and Pb (II) in the flotation process. Rev. Chim. 2014, 65, 339–343. [Google Scholar]
- Techer, D.; Milla, S.; Fontaine, P.; Viot, S.; Thomas, M. Acute toxicity and sublethal effects of gallic and pelargonic acids on the zebrafish Danio rerio. Environ. Sci. Pollut. Res. 2015, 22, 5020–5029. [Google Scholar] [CrossRef]
- Harishkumar, R.; Reddy, L.P.K.; Karadkar, S.H.; Murad, M.A.; Karthik, S.S.; Manigandan, S.; Selvaraj, C.I.; Christopher, J.G. Toxicity and selective biochemical assessment of quercetin, gallic acid, and curcumin in zebrafish. Biol. Pharm. Bull. 2019, 42, 1969–1976. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, A.K.; Lopes-Ferreira, M.; Rogero, S.O.; Rogero, J.R. Evaluation of resveratrol toxicity in the embryolarval stage of Danio rerio fish. Ecotoxicol. Environ. Contam. 2017, 12, 133–139. [Google Scholar] [CrossRef]
Treatment (ppm) | Larval Mortality (%) | |
---|---|---|
S. frugiperda | T. molitor | |
5000 | 100 ± 0 A | 100 ± 0 A |
4000 | 85 ± 8.19 AB | 85 ± 8.19 A |
2000 | 80 ± 9.18 AB | 50 ± 11.5 B |
1000 | 65 ± 10.9 B | 50 ± 11.5 B |
500 | 60 ± 11.2 B | 25 ± 9.18 BC |
0 | 5 ± 5 C | 0 ± ND C |
LC50 | 874.28 (330.02–1418.55) ppm | 1856.94 (1417.83–2296.06) ppm |
P. reticulata Adults | |||||||||
Treatment (ppm) | Time (h) | ||||||||
1 h | 3 h | 6 h | 12 h | 24 h | 48 h | 72 h | 96 h | Total | |
500 | 0 | 100 | - | - | - | - | - | - | 100 ± 0 A |
250 | 0 | 25 | 0 | 41.65 | 8.33 | 0 | 8.33 | 0 | 83.33 ± 11.2 A |
125 | 0 | 0 | 0 | 0 | 0 | 16.66 | 16.66 | 0 | 33.33 ± 14.2 B |
62.5 | 0 | 0 | 0 | 0 | 8.33 | 8.33 | 8.33 | 0 | 25 ± 13.1 B |
31.2 | 0 | 0 | 0 | 8.33 | 0 | 8.33 | 0 | 0 | 16.66 ± 11.2 B |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ± ND B |
LC50 | 153.10 (109.41–196.78) ppm | ||||||||
P. reticulata Fingerlings | |||||||||
Treatment (ppm) | Time (h) | ||||||||
1 h | 3 h | 6 h | 12 h | 24 h | 48 h | 72 h | 96 h | Total | |
500 | 0 | 75 | 25 | - | - | - | - | - | 100 A |
250 | 0 | 0 | 0 | 0 | 50 | 25 | 0 | 0 | 75 B |
125 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 C |
62.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 C |
31.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 C |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 C |
LC50 | 238.01 (ND) ppm |
D. rerio Adults | |||||||||
Treatment (ppm) | Time (h) | ||||||||
1 h | 3 h | 6 h | 12 h | 24 h | 48 h | 72 h | 96 h | Total | |
500 | 75 | 25 | - | - | - | - | - | - | 100 ± 0 A |
250 | 0 | 0 | 50 | 50 | - | - | - | - | 100 ± 0 A |
125 | 0 | 0 | 0 | 0 | 0 | 8.33 | 8.33 | 0 | 16.66 ± 11.2 B |
62.5 | 0 | 0 | 0 | 0 | 0 | 8.33 | 0 | 0 | 8.33 ± 8.33 B |
31.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ± ND B |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ± ND B |
LC50 | 154.32 (121.38–187.25) ppm | ||||||||
D. rerio Embryos | |||||||||
Treatment (ppm) | Time (h) | ||||||||
1 h | 3 h | 6 h | 12 h | 24 h | 48 h | 72 h | 96 h | Total | |
500 | 0 | 25 | 50 | 25 | - | - | - | - | 100 ± 0 A |
250 | 0 | 25 | 25 | 0 | 0 | 0 | 0 | 0 | 50 ± 12.9 B |
125 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 25 ± 11.2 BC |
62.5 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 25 ± 11.2 BC |
31.2 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 25 ± 11.2 BC |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ± ND C |
LC50 | 208.38 (152.48–264.28) ppm |
Treatment (ppm) | Larval Mortality (%) | |
---|---|---|
S. frugiperda | T. molitor | |
1000 | 100 ± 0 A | 10 ± 6.88 A |
600 | 95 ± 5 A | 0 ± ND A |
400 | 85 ± 8.19 AB | 0 ± ND A |
160 | 55 ± 11.4 BC | 0 ± ND A |
80 | 45 ± 11.4 C | 0 ± ND A |
0 | 5 ± 5 D | 0 ± ND A |
LC50 | 176.81 (114.38–239.25) ppm | 5256.28 (ND) ppm |
P. reticulata Adults | |||||||||
Treatment (ppm) | Time (h) | ||||||||
1 h | 3 h | 6 h | 12 h | 24 h | 48 h | 72 h | 96 h | Total | |
500 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ± ND |
250 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ± ND |
125 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ± ND |
62.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ± ND |
31.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ± ND |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ± ND |
LC50 | ND | ||||||||
P. reticulata Fingerlings | |||||||||
Treatment (ppm) | Time (h) | ||||||||
1 h | 3 h | 6 h | 12 h | 24 h | 48 h | 72 h | 96 h | Total | |
500 | 0 | 0 | 0 | 0 | 16.66 | 0 | 8.33 | 0 | 25 ± 13.1 A |
250 | 0 | 0 | 0 | 0 | 0 | 0 | 8.33 | 8.33 | 16.66 ± 11.2 A |
125 | 0 | 0 | 0 | 0 | 0 | 0 | 8.33 | 0 | 8.33 ± 8.33 A |
62.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ± ND A |
31.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ± ND A |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ± ND A |
LC50 | 658.88 (338.75–979) ppm |
D. rerio Adults | |||||||||
Treatment (ppm) | Time (h) | ||||||||
1 h | 3 h | 6 h | 12 h | 24 h | 48 h | 72 h | 96 h | Total | |
500 | 0 | 0 | 0 | 0 | 0 | 33.33 | 25 | 0 | 58.33 ± 14.9 A |
250 | 0 | 0 | 0 | 0 | 0 | 0 | 8.33 | 0 | 8.33 ± 8.33 B |
125 | 0 | 0 | 0 | 0 | 0 | 0 | 8.33 | 0 | 8.33 ± 8.33 B |
62.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ± ND B |
31.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ± ND B |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ± ND B |
LC50 | 463.81 (352.14–575.48) ppm | ||||||||
D. rerio Embryos | |||||||||
Treatment (ppm) | Time (h) | ||||||||
1 h | 3 h | 6 h | 12 h | 24 h | 48 h | 72 h | 96 h | Total | |
500 | 0 | 12.5 | 75 | 12.5 | - | - | - | - | 100 ± 0 A |
250 | 0 | 0 | 68.75 | 31.25 | - | - | - | - | 100 ± 0 A |
125 | 0 | 0 | 68.75 | 31.25 | - | - | - | - | 100 ± 0 A |
62.5 | 0 | 0 | 43.75 | 50 | 0 | 0 | 0 | 0 | 93.75 ± 6.25 A |
31.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 93.75 ± 6.25 A | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ± ND B | |
LC50 | 21.42 (12.95–29.88 ppm) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Cervantes, M.; León-Herrera, L.R.; Ventura-Salcedo, S.A.; Monroy-Dosta, M.d.C.; Rodríguez-deLeón, E.; Bah, M.M.; Campos-Guillén, J.; Amaro-Reyes, A.; Zavala-Gómez, C.E.; Figueroa-Brito, R.; et al. Salvia connivens Methanolic Extract Against Spodoptera frugiperda and Tenebrio molitor and Its Effect on Poecilia reticulata and Danio rerio. Toxics 2025, 13, 94. https://doi.org/10.3390/toxics13020094
Rodríguez-Cervantes M, León-Herrera LR, Ventura-Salcedo SA, Monroy-Dosta MdC, Rodríguez-deLeón E, Bah MM, Campos-Guillén J, Amaro-Reyes A, Zavala-Gómez CE, Figueroa-Brito R, et al. Salvia connivens Methanolic Extract Against Spodoptera frugiperda and Tenebrio molitor and Its Effect on Poecilia reticulata and Danio rerio. Toxics. 2025; 13(2):94. https://doi.org/10.3390/toxics13020094
Chicago/Turabian StyleRodríguez-Cervantes, Manolo, Luis Ricardo León-Herrera, Salvador Alejandro Ventura-Salcedo, María del Carmen Monroy-Dosta, Eloy Rodríguez-deLeón, Mamadou Moustapha Bah, Juan Campos-Guillén, Aldo Amaro-Reyes, Carlos Eduardo Zavala-Gómez, Rodolfo Figueroa-Brito, and et al. 2025. "Salvia connivens Methanolic Extract Against Spodoptera frugiperda and Tenebrio molitor and Its Effect on Poecilia reticulata and Danio rerio" Toxics 13, no. 2: 94. https://doi.org/10.3390/toxics13020094
APA StyleRodríguez-Cervantes, M., León-Herrera, L. R., Ventura-Salcedo, S. A., Monroy-Dosta, M. d. C., Rodríguez-deLeón, E., Bah, M. M., Campos-Guillén, J., Amaro-Reyes, A., Zavala-Gómez, C. E., Figueroa-Brito, R., Mariscal-Ureta, K. E., Pool, H., Ramos-Mayorga, I., & Ramos-López, M. A. (2025). Salvia connivens Methanolic Extract Against Spodoptera frugiperda and Tenebrio molitor and Its Effect on Poecilia reticulata and Danio rerio. Toxics, 13(2), 94. https://doi.org/10.3390/toxics13020094