Infants’ Dermal Exposure to Phthalates from Disposable Baby Diapers and Its Association with DNA Oxidative Damage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Sample Collection
2.2. Chemical Analysis
2.3. Statistical Analysis
3. Results and Discussion
3.1. Phthalates in Diapers
3.2. Phthalate Metabolites in Urine
3.3. Correlations Between Phthalates in Diapers and Their Metabolites in Urine
3.4. Associations Between Urinary Phthalate Metabolite Levels and 8-OHdG Concentrations
3.5. Assessment of Daily Intake (DI) and Human Health Risks
4. Conclusions and Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, S.; Qi, Z.; Ma, S.; Li, G.; Long, C.; Yu, Y. A critical review on human internal exposure of phthalate metabolites and the associated health risks. Environ. Pollut. 2021, 279, 116941. [Google Scholar] [CrossRef]
- Pagoni, A.; Arvaniti, O.S.; Kalantzi, O.-I. Exposure to phthalates from personal care products: Urinary levels and predictors of exposure. Environ. Res. 2022, 212, 113194. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, L.; Kannan, K. Phthalates and parabens in personal care products from China: Concentrations and human exposure. Arch. Environ. Contam. Toxicol. 2014, 66, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Harley, K.G.; Berger, K.P.; Kogut, K.; Parra, K.; Lustig, R.H.; Greenspan, L.C.; Calafat, A.M.; Ye, X.; Eskenazi, B. Association of phthalates, parabens and phenols found in personal care products with pubertal timing in girls and boys. Hum. Reprod. 2018, 34, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhong, Y.; He, W.; Huang, S.; Li, Q.; Guo, C.; Ma, S.; Li, G.; Yu, Y. Co-exposure and health risks of parabens, bisphenols, triclosan, phthalate metabolites and hydroxyl polycyclic aromatic hydrocarbons based on simultaneous detection in urine samples from guangzhou, south China. Environ. Pollut. 2021, 272, 115990. [Google Scholar] [CrossRef]
- Tang, Z.; Chai, M.; Cheng, J.; Wang, Y.; Huang, Q. Occurrence and distribution of phthalates in sanitary napkins from six countries: Implications for women’s health. Environ. Sci. Technol. 2019, 53, 13919–13928. [Google Scholar] [CrossRef]
- Gao, C.-J.; Kannan, K. Phthalates, bisphenols, parabens, and triclocarban in feminine hygiene products from the United States and their implications for human exposure. Environ. Int. 2020, 136, 105465. [Google Scholar] [CrossRef]
- Gao, C.-J.; Wang, F.; Shen, H.-M.; Kannan, K.; Guo, Y. Feminine hygiene products—A neglected source of phthalate exposure in women. Environ. Sci. Technol. 2020, 54, 930–937. [Google Scholar] [CrossRef]
- Park, C.J.; Barakat, R.; Ulanov, A.; Li, Z.; Lin, P.-C.; Chiu, K.; Zhou, S.; Perez, P.; Lee, J.; Flaws, J.; et al. Sanitary pads and diapers contain higher phthalate contents than those in common commercial plastic products. Reprod. Toxicol. 2019, 84, 114–121. [Google Scholar] [CrossRef]
- Ishii, S.; Katagiri, R.; Minobe, Y.; Kuribara, I.; Wada, T.; Wada, M.; Imai, S. Investigation of the amount of transdermal exposure of newborn babies to phthalates in paper diapers and certification of the safety of paper diapers. Regul. Toxicol. Pharmacol. 2015, 73, 85–92. [Google Scholar] [CrossRef]
- Bernard, A. Dermal exposure to hazardous chemicals in baby diapers: A re-evaluation of the quantitative health risk assessment conducted by the French Agency for Food, Environmental and Occupational Health and Safety (ANSES). Int. J. Environ. Res. Public Health 2022, 19, 4159. [Google Scholar] [CrossRef]
- Razavi, N.; Es’haghi, Z. Employ of magnetic polyaniline coated chitosan nanocomposite for extraction and determination of phthalate esters in diapers and wipes using gas chromatography. Microchem. J. 2018, 142, 359–366. [Google Scholar] [CrossRef]
- Whyatt, R.M.; Liu, X.; Rauh, V.A.; Calafat, A.M.; Just, A.C.; Hoepner, L.; Diaz, D.; Quinn, J.; Adibi, J.; Perera, F.P.; et al. Maternal prenatal urinary phthalate metabolite concentrations and child mental, psychomotor, and behavioral development at 3 years of age. Environ. Health Perspect. 2012, 120, 290–295. [Google Scholar] [CrossRef]
- Engel, S.M.; Villanger, G.D.; Nethery, R.C.; Thomsen, C.; Sakhi, A.K.; Drover, S.S.M.; Hoppin, J.A.; Zeiner, P.; Knudsen, G.P.; Reichborn-Kjennerud, T.; et al. Prenatal phthalates, maternal thyroid function, and risk of attention-deficit hyperactivity disorder in the Norwegian mother and child cohort. Environ. Health Perspect. 2018, 126, 057004. [Google Scholar] [CrossRef]
- Koniecki, D.; Wang, R.; Moody, R.P.; Zhu, J. Phthalates in cosmetic and personal care products: Concentrations and possible dermal exposure. Environ. Res. 2011, 111, 329–336. [Google Scholar] [CrossRef]
- Olkowska, E.; Gržinić, G. Skin models for dermal exposure assessment of phthalates. Chemosphere 2022, 295, 133909. [Google Scholar] [CrossRef]
- Hopf, N.B.; De Luca, H.P.; Borgatta, M.; Koch, H.M.; Pälmke, C.; Benedetti, M.; Berthet, A.; Reale, E. Human skin absorption of three phthalates. Toxicol. Let. 2024, 398, 38–48. [Google Scholar] [CrossRef]
- Pan, W.; Zeng, D.; Ding, N.; Luo, K.; Man, Y.b.; Zeng, L.; Zhang, Q.; Luo, J.; Kang, Y. Percutaneous penetration and metabolism of plasticizers by skin cells and its implication in dermal exposure to plasticizers by skin wipes. Environ. Sci. Technol. 2020, 54, 10181–10190. [Google Scholar] [CrossRef]
- Bao, Y.; Li, M.; Xie, Y.; Guo, J. Investigating the permeation mechanism of typical phthalic acid esters (PAEs) and membrane response using molecular dynamics simulations. Membranes 2022, 12, 596. [Google Scholar] [CrossRef] [PubMed]
- Bekö, G.; Weschler, C.J.; Langer, S.; Callesen, M.; Toftum, J.; Clausen, G. Children’s phthalate intakes and resultant cumulative exposures estimated from urine compared with estimates from dust ingestion, inhalation and dermal absorption in their homes and daycare centers. PLoS ONE 2013, 8, e62442. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, J.; Moon, H.-B.; Park, J.; Choi, K.; Kim, S.K.; Kim, S. Association of phthalate exposures with urinary free cortisol and 8-hydroxy-2′-deoxyguanosine in early childhood. Sci. Total Environ. 2018, 627, 506–513. [Google Scholar] [CrossRef]
- Rocha, B.A.; Asimakopoulos, A.G.; Barbosa, F.; Kannan, K. Urinary concentrations of 25 phthalate metabolites in Brazilian children and their association with oxidative DNA damage. Sci. Total Environ. 2017, 586, 152–162. [Google Scholar] [CrossRef]
- Graille, M.; Wild, P.; Sauvain, J.-J.; Hemmendinger, M.; Guseva Canu, I.; Hopf, N.B. Urinary 8-OHdG as a biomarker for oxidative stress: A systematic literature review and meta-analysis. Int. J. Mol. Sci. 2020, 21, 3743. [Google Scholar] [CrossRef]
- Ma, S.; Hu, X.; Tang, J.; Cui, J.; Lin, M.; Wang, F.; Yang, Y.; Yu, Y. Urinary metabolites and handwipe phthalate levels among adults and children in southern China: Implication for dermal exposure. J. Hazard. Mat. 2022, 439, 129639. [Google Scholar] [CrossRef]
- Kuang, H.; Li, Y.; Jiang, W.; Wu, P.; Tan, J.; Zhang, H.; Pang, Q.; Ma, S.; An, T.; Fan, R. Simultaneous determination of urinary 31 metabolites of VOCs, 8-hydroxy-2′-deoxyguanosine, and trans-3′-hydroxycotinine by UPLC-MS/MS: 13C- and 15N-labeled isotoped internal standards are more effective on reduction of matrix effect. Anal. Bioanal. Chem. 2019, 411, 7841–7855. [Google Scholar] [CrossRef]
- Chai, M.; Han, X.; Zhong, F.Y.; Wang, Y.W.; Tang, Z.W. Contamination and health risk of phthalate esters in marketed sanitary napkins from China. Zhongguo Huanjing Kexue/China Environ. Sci. 2017, 37, 1954–1960. [Google Scholar]
- Yu, Y.; Peng, M.; Liu, Y.; Ma, J.; Wang, N.; Ma, S.; Feng, N.; Lu, S. Co-exposure to polycyclic aromatic hydrocarbons and phthalates and their associations with oxidative stress damage in school children from South China. J. Hazard. Mat. 2021, 401, 123390. [Google Scholar] [CrossRef]
- Kim, J.H.; Kang, D.R.; Kwak, J.M.; Lee, J.K. Concentration and variability of urinary phthalate metabolites, bisphenol A, triclosan, and parabens in Korean mother–infant pairs. Sustainability 2020, 12, 8516. [Google Scholar] [CrossRef]
- Ait Bamai, Y.; Araki, A.; Kawai, T.; Tsuboi, T.; Yoshioka, E.; Kanazawa, A.; Cong, S.; Kishi, R. Comparisons of urinary phthalate metabolites and daily phthalate intakes among Japanese families. Int. J. Hyg. Environ. Health 2015, 218, 461–470. [Google Scholar] [CrossRef]
- Lee, I.; Pälmke, C.; Ringbeck, B.; Ihn, Y.; Gotthardt, A.; Lee, G.; Alakeel, R.; Alrashed, M.; Tosepu, R.; Jayadipraja, E.A.; et al. Urinary concentrations of major phthalate and alternative plasticizer metabolites in children of Thailand, Indonesia, and Saudi Arabia, and associated risks. Environ. Sci. Technol. 2021, 55, 16526–16537. [Google Scholar] [CrossRef] [PubMed]
- Cutanda, F.; Koch, H.M.; Esteban, M.; Sánchez, J.; Angerer, J.; Castaño, A. Urinary levels of eight phthalate metabolites and bisphenol A in mother–child pairs from two Spanish locations. Int. J. Hyg. Environ. Health 2015, 218, 47–57. [Google Scholar] [CrossRef]
- Hammel, S.C.; Levasseur, J.L.; Hoffman, K.; Phillips, A.L.; Lorenzo, A.M.; Calafat, A.M.; Webster, T.F.; Stapleton, H.M. Children’s exposure to phthalates and non-phthalate plasticizers in the home: The TESIE study. Environ. Int. 2019, 132, 105061. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, J.; Park, J.; Kim, H.-J.; Cho, G.; Kim, G.-H.; Eun, S.-H.; Lee, J.J.; Choi, G.; Suh, E.; et al. Concentrations of phthalate metabolites in breast milk in Korea: Estimating exposure to phthalates and potential risks among breast-fed infants. Sci. Total Environ. 2015, 508, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xiao, M.; Huang, K.; Cui, J.; Liu, H.; Yu, Y.; Ma, S.; Liu, X.; Lin, M. Phthalate metabolites in breast milk from mothers in Southern China: Occurrence, temporal trends, daily intake, and risk assessment. J. Hazard. Mat. 2024, 464, 132895. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Lu, S.; Dai, Y.; Rui, C.; Wang, Y.; Zhou, Y.; Li, Y.; Pang, Q.; Fan, R. Higher dermal exposure of cashiers to BPA and its association with DNA oxidative damage. Environ. Int. 2017, 98, 69–74. [Google Scholar] [CrossRef]
- Ketema, R.M.; Ait Bamai, Y.; Miyashita, C.; Saito, T.; Kishi, R.; Ikeda-Araki, A. Phthalates mixture on allergies and oxidative stress biomarkers among children: The Hokkaido study. Environ. Int. 2022, 160, 107083. [Google Scholar] [CrossRef]
- Nishimura, Y.; Kanda, Y.; Sone, H.; Aoyama, H. Oxidative stress as a common key event in developmental neurotoxicity. Oxid. Med. Cell. Longev. 2021, 2021, 6685204. [Google Scholar] [CrossRef]
- Völkel, W.; Kiranoglu, M.; Schuster, R.; Fromme, H. Phthalate intake by infants calculated from biomonitoring data. Toxicol. Lett. 2014, 225, 222–229. [Google Scholar]
- Gao, C.-J.; Liu, L.-Y.; Ma, W.-L.; Ren, N.-Q.; Guo, Y.; Zhu, N.-Z.; Jiang, L.; Li, Y.-F.; Kannan, K. Phthalate metabolites in urine of Chinese young adults: Concentration, profile, exposure and cumulative risk assessment. Sci. Total. Environ. 2016, 543, 19–27. [Google Scholar]
- Schwedler, G.; Rucic, E.; Lange, R.; Conrad, A.; Koch, H.M.; Pälmke, C.; Brüning, T.; Schulz, C.; Schmied-Tobies, M.I.H.; Daniels, A.; et al. Phthalate metabolites in urine of children and adolescents in Germany. Human biomonitoring results of the German En-vironmental Survey GerES V, 2014–2017. Int. J. Hyg. Environ. Health 2020, 225, 113444. [Google Scholar]
- CDC. Fourth National Report on Human Exposure to Environmental Chemicals: Updated Tables, March 2021; Centers for Disease Control and Prevention, U.S. Department of Health and Human Services; Atlanta, Georgia, 2021. [Google Scholar]
Characteristic | Frequency (%) | Mean ± SD a | Median (Range) |
---|---|---|---|
Sex, n (%) | |||
Male | 53 (80.3) | ||
Female | 13 (19.7) | ||
Age, years | 1.28 ± 0.99 | 1.16 (0.1–4.0) | |
≤0.5 | 21 (31.8) | 0.24 ± 0.11 | |
0.5–1.0 | 10 (15.2) | 0.80 ± 0.14 | |
≥1.0 | 35 (53.0) | 2.1 ± 0.71 | |
Frequency of daily diaper changing | 5.33 ± 3.69 | 3 (1–13) | |
Age ≤ 0.5 year | 10.3 ± 1.3 | ||
Age 0.5–1.0 year | 5.2 ± 1.4 | ||
Age ≥ 1.0 year | 2.4 ± 0.7 | ||
Body mass index, kg/m2 | 16.46 ± 1.71 | 16.61 (13.15–20.76) |
Items | Phthalate Contents in the Inner Layer of Diaper (ng/g) | Reference | ||||
---|---|---|---|---|---|---|
DEP | DiBP | DnBP | DEHP | ∑PAEs | ||
Diaper from southern China (n = 66, 2021) | ||||||
Median (range) | 252 (116–3350) | 333 (16.1–4910) | 948 (189–5980) | 1670 (678–5200) | 3420 (1870–12,500) | This study |
Mean | 309 ± 386 | 680 ± 908 | 1270 ± 904 | 1830 ± 934 | 4090 ± 2150 | |
Detection frequency | 100% | 100% | 100% | 100% | 100% | |
Diapers from Japan (n = 10) | ||||||
Median (range) | n.a. | <LOD | (100–200) | (200–600) | n.a. | [10] |
Diapers from six countries (n = 12) | ||||||
Median (range) | (0.8–2.9) | n.a. | (13.4–1610) | (12.6–62.8) | n.a. | [9] |
Sanitary napkins from six countries (n = 48) | ||||||
Median (range) | (<LOD–134) | n.a. | (52.1–7820.4) | (5.5–197.4) | n.a. | [9] |
Sanitary napkins from China (n = 64, 2017–2018) | ||||||
Median (range) | 80 (<LOD–1710) | 230 (<LOD–1590) | 240 (<LOD–2380) | 440 (<LOD–8040) | 1430 (250–8760) | [8] |
Panty liners from New York, the United States (n = 13, 2019) | ||||||
Median (range) | 386 (45.6–1070) | 299 (25.1–5500) | 393 (21.3–6070) | 164 (11.1–23,400) | 1830 (168–34,500) | [7] |
Sanitary napkins from New York, the United States (n = 18, 2019) | ||||||
Median (range) | 82 (50.9–1200) | 73 (25.9–5400) | 83.3 (22.0–3630) | 38.7 (14.9–858) | 362 (205–11,200) | [7] |
Sanitary napkins from six countries (n = 72) | ||||||
Median (range) | n.a. | 905 | 711 | 822 | 1859 (464–8380) | [6] |
Sanitary napkins from China (n = 40, 2016) | ||||||
Median (range) | n.a. | 1270 | 991 | 1086 | 4974 (2705–13,779) | [26] |
Parent Compound | Metabolite | DF a (%) | Mean ± SD | Median | 95th b | Range | R (p) c |
---|---|---|---|---|---|---|---|
DEP | mEP | 89 | 65.5 ± 80.4 | 33.1 | 229 | <MDL–386 | 0.265 (0.031) |
DiBP | miBP | 100 | 17.4 ± 13.8 | 13.9 | 44 | 0.75–71.3 | 0.316 (0.01) |
DnBP | mnBP | 100 | 60.2 ± 68.8 | 44.6 | 196 | 3.99–451 | 0.297 (0.016) |
DEHP | mEHP | 100 | 70.6 ± 136 | 27.7 | 278 | 0.14–736 | - |
mEHHP | 96 | 71.9 ± 170 | 13.8 | 240 | <MDL–1220 | - | |
mEOHP | 100 | 37.2 ± 62.2 | 10.2 | 180 | 0.34–293 | - | |
∑mDEHP | 100 | 177 ± 278 | 87.1 | - | 0.78–1750 | - | |
∑mPAEs | 100 | 313 ± 309 | 238 | - | 14.8–1860 | 0.318 (0.009) | |
8-OHdG | - | 100 | 1.58 ± 0.84 | 1.38 | - | 0.016–5.066 |
Item | Total (n = 66) | 0−0.5 Year (n = 21) | >0.5−1.0 Year (n = 10) | >1.0−2.0 Year (n = 20) | >2.0 Year (n = 15) |
---|---|---|---|---|---|
DEP | |||||
Median | 19.6 | 61.3 | 26.7 | 14.3 | 7.2 |
Range | 2.1–561 | 41–561 | 18.8–70.5 | 7.3–25.4 | 2.1–10.1 |
95th percentile | 95.4 | ||||
DiBP | |||||
Median | 23 | 38.2 | 20.6 | 14.6 | 21.3 |
Range | 0.18–764 | 2.5–764 | 1.1–80.2 | 0.67–100 | 0.18–188 |
95th percentile | 178 | ||||
DnBP | |||||
Median | 61.7 | 130 | 65.9 | 38.2 | 29 |
Range | 4.5–523 | 34.7–523 | 31.8–182 | 13.8–104 | 4.5–229 |
95th percentile | 231 | ||||
DEHP | |||||
Median | 46.3 | 117 | 74.2 | 28.7 | 22.2 |
Range | 6.1–349 | 52–349 | 20–131 | 12.6–104 | 6.1–40.5 |
95th percentile | 161 | ||||
∑PAEs | |||||
Median | 159 | 380 | 211 | 100 | 79.6 |
Range | 21.2–1220 | 169–1220 | 82.1–405 | 34.4–334 | 21.2–452 |
95th percentile | 690 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, X.; Zhu, J.; Liu, Y.; Ma, S.; Lin, M.; Hu, Y.; Liang, J.; Song, Y.; Li, W.; Zhao, T. Infants’ Dermal Exposure to Phthalates from Disposable Baby Diapers and Its Association with DNA Oxidative Damage. Toxics 2025, 13, 218. https://doi.org/10.3390/toxics13030218
Lai X, Zhu J, Liu Y, Ma S, Lin M, Hu Y, Liang J, Song Y, Li W, Zhao T. Infants’ Dermal Exposure to Phthalates from Disposable Baby Diapers and Its Association with DNA Oxidative Damage. Toxics. 2025; 13(3):218. https://doi.org/10.3390/toxics13030218
Chicago/Turabian StyleLai, Xi, Jiang Zhu, Yangyang Liu, Shengtao Ma, Meiqing Lin, Yan Hu, Jingjing Liang, Yanyan Song, Wenyan Li, and Tianxin Zhao. 2025. "Infants’ Dermal Exposure to Phthalates from Disposable Baby Diapers and Its Association with DNA Oxidative Damage" Toxics 13, no. 3: 218. https://doi.org/10.3390/toxics13030218
APA StyleLai, X., Zhu, J., Liu, Y., Ma, S., Lin, M., Hu, Y., Liang, J., Song, Y., Li, W., & Zhao, T. (2025). Infants’ Dermal Exposure to Phthalates from Disposable Baby Diapers and Its Association with DNA Oxidative Damage. Toxics, 13(3), 218. https://doi.org/10.3390/toxics13030218