The Hidden Legacy of Dimethoate: Clay Binding Effects on Decreasing Long-Term Retention and Reducing Environmental Stability in Croatian Soils
Abstract
:1. Introduction
Chemical structure | ||
IUPAC name | O,O-Dimethyl S-(N-methylcarbamoylmethyl) phosphorodithioate | |
Molecular formula | C5H12NO3PS2 | |
Molar mass (g/mol) | 229.3 | |
Log KOW | 0.704 (pH = 7; 20 °C) | |
Soil sorption coefficient (KOC) | 20 | |
Water solubility (mg/L) | 39,800 (21 °C) | |
pKa | no dissociation | |
Hydrogen bond donor count | 1 | |
Hydrogen bond acceptor count | 5 | |
Topological polar surface area (Å2) | 105 | |
DT50 in aqueous solutions (days) | ||
pH = 2–7 | Stable | |
pH = 9 | 12 |
2. Materials and Methods
2.1. Chemicals
2.2. Soil Samples
2.3. Sorption/Desorption Equilibrium Experiments
2.4. Instrumentation and Operating Conditions
2.5. MS/MS Conditions
2.6. Data Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of Analyzed Soil Samples
3.2. Evaluation of Dimethoate Sorption/Desorption in Croatian Soils Using Different Isotherm Models
3.3. Thermodynamic Analysis of Dimethoate Sorption/Desorption in Croatian Soils
3.4. Dimethoate Sorption/Desorption in Soils: Freundlich Isotherms and the Influence of Soil Physicochemical Properties and Dimethoate Concentration on Curve Shapes
3.5. Correlations Between Soil Characteristics and Dimethoate Sorption/Desorption Processes
3.6. Principal Component Analysis of Soil Characteristics Impacting Dimethoate Sorption and Desorption
3.7. Evaluation of Dimethoate Sorption and Desorption in Soils Using Multiple Regression: Statistical Modelling and Predictors Effects
3.8. Dimethoate Sorption/Desorption Dynamics: Interplay Between Organic Matter, Clay, and Soil Mineralogy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ore, O.T.; Adeola, A.O.; Bayode, A.A.; Adedipe, D.T.; Nomngongo, P.N. Organophosphate Pesticide Residues in Environmental and Biological Matrices: Occurrence, Distribution and Potential Remedial Approaches. Environ. Chem. Ecotoxicol. 2023, 5, 9–23. [Google Scholar] [CrossRef]
- Torres-Palma, R.; Serna-Galvis, E. Sonolysis; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Paidi, M.K.; Satapute, P.; Haider, M.S.; Udikeri, S.S.; Ramachandra, Y.L.; Vo, D.-V.N.; Govarthanan, M.; Jogaiah, S. Mitigation of Organophosphorus Insecticides from Environment: Residual Detoxification by Bioweapon Catalytic Scavengers. Environ. Res. 2021, 200, 111368. [Google Scholar] [CrossRef] [PubMed]
- European Commission. 2019b European Commission Commission Implementing Regulation (EU) 2019/1090 of 26 June 2019 Concerning the Non-Renewal of Approval of the Active Substance Dimethoate Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market, and Amending the Annex to Commission Implementing Regulation (2019) (EU) No 540/2011 (Text with EEA Relevance). Available online: http://data.europa.eu/eli/reg_impl/2019/1090/oj (accessed on 3 March 2025).
- European Commission. 2019d European Commission Commission Implementing Regulation (EU) 2019/677 of 29 April 2019 Concerning the Non-Renewal of the Approval of the Active Substance Chlorothalonil Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market, and Amending Commission Implementing Regulation (EU) (2019) No 540/2011 (Text with EEA Relevance). Available online: http://data.europa.eu/eli/reg_impl/2019/677/oj (accessed on 3 March 2025).
- European Commission. 2020b European Commission Commission Implementing Regulation (EU) 2020/18 of 10 January 2020 Concerning the Non-Renewal of the Approval of the Active Substance Chlorpyrifos Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market, and Amending the Annex to Commission Implementing Regulation (2020) (EU) No 540/2011 (Text with EEA Relevance). Available online: http://data.europa.eu/eli/reg_impl/2020/18/oj (accessed on 3 March 2025).
- European Commission. 2020c European Commission Commission Implementing Regulation (EU) 2020/2087 of 14 December 2020 Concerning the Non-Renewal of the Approval of the Active Substance Mancozeb Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market, and Amending the Annex to Commission Implementing Regulation (2020) (EU) No 540/2011 (Text with EEA Relevance). Available online: http://data.europa.eu/eli/reg_impl/2020/2087/oj (accessed on 3 March 2025).
- Ribas, A.; Botina, L.L.; Araújo, R.D.S.; Vidigal, M.L.; Cristina Da Silva Alves, B.; Martins, G.F. Exploring Honey Bee Toxicological Data as a Proxy for Assessing Dimethoate Sensitivity in Stingless Bees. Chemosphere 2024, 354, 141652. [Google Scholar] [CrossRef]
- Jan, J.; Bashir, S.M.; Sheikh, W.M.; Bhat, O.M.; Rafeeqi, T.A.; Shah, S.A.; Dar, A.H.; Zargar, M.A.; Wani, N.A. Chlorpyrifos and Dimethoate Exposure Impairs Female Fertility by Deregulating WNT Signaling Pathway & Uterine Receptivity. Reprod. Toxicol. 2024, 130, 108735. [Google Scholar] [CrossRef]
- Wang, Z.; Pu, Q.; Li, Y. Bidirectional Selection of the Functional Properties and Environmental Friendliness of Organophosphorus (OP) Pesticide Derivatives: Design, Screening, and Mechanism Analysis. Sci. Total Environ. 2023, 879, 163043. [Google Scholar] [CrossRef]
- Montuori, P.; De Rosa, E.; Di Duca, F.; De Simone, B.; Scippa, S.; Russo, I.; Sorrentino, M.; Sarnacchiaro, P.; Triassi, M. Occurrence, Distribution, and Risk Assessment of Organophosphorus Pesticides in the Aquatic Environment of the Sele River Estuary, Southern Italy. Toxics 2022, 10, 377. [Google Scholar] [CrossRef] [PubMed]
- Maertens, A.; Golden, E.; Hartung, T. Avoiding Regrettable Substitutions: Green Toxicology for Sustainable Chemistry. ACS Sustain. Chem. Eng. 2021, 9, 7749–7758. [Google Scholar] [CrossRef]
- Engenheiro, E.L.; Hankard, P.K.; Sousa, J.P.; Lemos, M.F.; Weeks, J.M.; Soares, A.M.V.M. Influence of Dimethoate on Acetylcholinesterase Activity and Locomotor Function in Terrestrial Isopods. Environ. Toxicol. Chem. 2005, 24, 603–609. [Google Scholar] [CrossRef]
- Van Scoy, A.; Pennell, A.; Zhang, X. Environmental fate and toxicology of dimethoate. In Reviews of Environmental Contamination and Toxicology; De Voogt, W.P., Ed.; Springer International Publishing: Cham, Switzerland, 2016; Volume 237, pp. 53–70. ISBN 978-3-319-23572-1. [Google Scholar]
- Chambers, H.W.; Meek, E.C.; Chambers, J.E. Chemistry of organophosphorus insecticides. In Hayes’ Handbook of Pesticide Toxicology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1395–1398. [Google Scholar]
- Aroniadou-Anderjaska, V.; Figueiredo, T.H.; De Araujo Furtado, M.; Pidoplichko, V.I.; Braga, M.F.M. Mechanisms of Organophosphate Toxicity and the Role of Acetylcholinesterase Inhibition. Toxics 2023, 11, 866. [Google Scholar] [CrossRef]
- Arnal, N.; Morel, G.; Marra, C.A.; Astiz, M. Pro-Apoptotic Effects of Low Doses of Dimethoate in Rat Brain. Toxicol. Appl. Pharmacol. 2019, 363, 57–63. [Google Scholar] [CrossRef]
- Zaranyika, M.F.; Mlilo, J. Speciation and Persistence of Dimethoate in the Aquatic Environment: Characterization in Terms of a Rate Model That Takes into Account Hydrolysis, Photolysis, Microbial Degradation and Adsorption of the Pesticide by Colloidal and Sediment Particles. South Afr. J. Chem. 2025, 67, 233–240. [Google Scholar]
- Ayed-Boussema, I.; Rjiba, K.; Moussa, A.; Mnasri, N.; Bacha, H. Genotoxicity Associated with Oxidative Damage in the Liver and Kidney of Mice Exposed to Dimethoate Subchronic Intoxication. Environ. Sci. Pollut. Res. 2012, 19, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Dogan, D.; Can, C.; Kocyigit, A.; Dikilitas, M.; Taskin, A.; Bilinc, H. Dimethoate-Induced Oxidative Stress and DNA Damage in Oncorhynchus Mykiss. Chemosphere 2011, 84, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Sharma, Y.; Bashir, S.; Irshad, M.; Nag, T.C.; Dogra, T.D. Dimethoate-Induced Effects on Antioxidant Status of Liver and Brain of Rats Following Subchronic Exposure. Toxicology 2005, 215, 173–181. [Google Scholar] [CrossRef]
- Abdallah, F.B.; Gargouri, B.; Bejaoui, H.; Lassoued, S.; Ammar-Keskes, L. Dimethoate-induced Oxidative Stress in Human Erythrocytes and the Protective Effect of Vitamins C and E in vitro. Environ. Toxicol. 2011, 26, 287–291. [Google Scholar] [CrossRef]
- Saafi-Ben Salah, E.B.; El Arem, A.; Louedi, M.; Saoudi, M.; Elfeki, A.; Zakhama, A.; Najjar, M.F.; Hammami, M.; Achour, L. Antioxidant-Rich Date Palm Fruit Extract Inhibits Oxidative Stress and Nephrotoxicity Induced by Dimethoate in Rat. J. Physiol. Biochem. 2012, 68, 47–58. [Google Scholar] [CrossRef]
- Gargouri, B.; Mansour, R.; Abdallah, F.; Elfekih, A.; Lassoued, S.; Khaled, H. Protective Effect of Quercetin against Oxidative Stress Caused by Dimethoate in Human Peripheral Blood Lymphocytes. Lipids Health Dis. 2011, 10, 149. [Google Scholar] [CrossRef] [PubMed]
- Sasi, S.M.; Alghoul, N.M.; Awayn, N.; Elghoul, A. Positive Effect of Green Tea Extract on Reproductive Toxicity Induced by Dimethoate in Male Mice. Open Vet. J. 2022, 12, 165–170. [Google Scholar] [CrossRef]
- Patel, V.B.; Preedy, V.R. Toxicology: Oxidative Stress and Dietary Antioxidants; Academic Press: London, UK, 2020; ISBN 978-0-12-819092-0. [Google Scholar]
- Dimethoate. Second Revised Draft Human Health Risk Assessment for Registration Review Posted by the Environmental Protection Agency on 17 June 2024. Available online: https://www.regulations.gov/document/EPA-HQ-OPP-2009-0059-0073 (accessed on 3 March 2025).
- IARC. Miscellaneous pesticides. In IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans; IARC: Lyon, France, 1983; Volume 30. [Google Scholar]
- Silva, M.S.; De Souza, D.V.; Alpire, M.E.S.; Malinverni, A.C.D.M.; Da Silva, R.C.B.; Viana, M.D.B.; Oshima, C.T.F.; Ribeiro, D.A. Dimethoate Induces Genotoxicity as a Result of Oxidative Stress: In Vivo and in Vitro Studies. Environ. Sci. Pollut. Res. 2021, 28, 43274–43286. [Google Scholar] [CrossRef]
- Reuber, M.D. Carcinogenicity of Dimethoate. Environ. Res. 1984, 34, 193–211. [Google Scholar] [CrossRef]
- Sadhu, A.; Mandal, A.H.; Ghosh, S.; Lakdawala, P.; Saha, S. Dimethoate-Induced Toxicity: A Comprehensive Review of Its Aquatic Environmental Hazards. Toxicol. Environ. Health Sci. 2024, 16, 243–258. [Google Scholar] [CrossRef]
- El Beit, I.O.D.; Wheelock, J.V.; Cotton, D.E. Factors Affecting the Fate of Dimethoate in Soils. Int. J. Environ. Stud. 1977, 11, 113–124. [Google Scholar] [CrossRef]
- WHO. Environmental Health Criteria 90. Available online: http://www.inchem.org/documents/ehc/ehc/ehc90.htm (accessed on 3 March 2025).
- Abdel-Megeed, A.; El-Nakieb, F.A. Bioremediation of Dimethoate by Effective Microorganisms in Egyptian Contaminant Water. J. Appl. Sci. Res. 2008, 4, 1–10. [Google Scholar]
- Deshpande, N.M.; Dhakephalkar, P.K.; Kanekar, P.P. Plasmid-Mediated Dimethoate Degradation in Pseudomonas Aeruginosa MCMB-427. Lett. Appl. Microbiol. 2001, 33, 275–279. [Google Scholar] [CrossRef]
- USEPA. Revised Interim Reregistration Eligibility Decisions for Dimethoate. US Environmental Protection Agency. Pesticides and Toxic Substances, Washington, DC, USA. 2008; pp. 1–73. Available online: https://nepis.epa.gov/Exe/ZyNET.exe/P10049N4.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2006+Thru+2010&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C06thru10%5CTxt%5C00000008%5CP10049N4.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL (accessed on 3 March 2025).
- Pan, L.; Sun, J.; Li, Z.; Zhan, Y.; Xu, S.; Zhu, L. Organophosphate Pesticide in Agricultural Soils from the Yangtze River Delta of China: Concentration, Distribution, and Risk Assessment. Environ. Sci. Pollut. Res. 2018, 25, 4–11. [Google Scholar] [CrossRef]
- Velasco, A.; Rodríguez, J.; Castillo, R.; Ortíz, I. Residues of Organochlorine and Organophosphorus Pesticides in Sugarcane Crop Soils and River Water. J. Environ. Sci. Health Part B 2012, 47, 833–841. [Google Scholar] [CrossRef]
- Li, A.J.; Kannan, K. Urinary Concentrations and Profiles of Organophosphate and Pyrethroid Pesticide Metabolites and Phenoxyacid Herbicides in Populations in Eight Countries. Environ. Int. 2018, 121, 1148–1154. [Google Scholar] [CrossRef] [PubMed]
- Saeid, M.H.E.; Turki, A.M.A.; Wable, M.I.A.; Nasser, G.A. Evaluation of Pesticide Residues in Saudi Arabia Ground Water. Res. J. Environ. Sci. 2011, 5, 171–178. [Google Scholar] [CrossRef]
- Ensminger, M.; Bergin, R.; Spurlock, F.; Goh, K.S. Pesticide Concentrations in Water and Sediment and Associated Invertebrate Toxicity in Del Puerto and Orestimba Creeks, California, 2007–2008. Environ. Monit. Assess. 2011, 175, 573–587. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality, 4th Edition, Incorporating the 1st Addendum. Available online: https://www.who.int/Publications/i/Item/9789241549950 (accessed on 3 March 2025).
- Gao, J.; Liu, L.; Liu, X.; Zhou, H.; Lu, J.; Huang, S.; Wang, Z. The Occurrence and Spatial Distribution of Organophosphorous Pesticides in Chinese Surface Water. Bull. Environ. Contam. Toxicol. 2009, 82, 223–229. [Google Scholar] [CrossRef]
- CDPR. Sampling for Pesticide Residues in California Well Water. Well Inventory Database Cumulative Report 1986–2003. Available online: https://www.cdpr.ca.gov/wp-content/uploads/2024/11/response2021.pdf (accessed on 3 March 2025).
- Hernández, F.; Serrano, R.; Miralles, M.C.; Font, N. Gas and Liquid Chromatography and Enzyme Linked Immuno Sorbent Assay in Pesticide Monitoring of Surface Water from the Western Mediterranean (Comunidad Valenciana, Spain). Chromatographia 1996, 42, 151–158. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Contaminant Candidate List 3; United States Environmental Protection Agency (USEPA), Office of Ground Water and Drinking Water: Washington, DC, USA, 2009.
- Srivastava, M.K.; Raizada, R.B. Development Effect of Technical Dimethoate in Rats: Maternal and Fetal Toxicity Evaluation. Indian J. Exp. Biol. 1996, 34, 329–333. [Google Scholar] [PubMed]
- Tsatsakis, A.M.; Tsakiris, I.N. Fenthion, dimethoate and other pesticides in olive oils of organic and conventional cultivation. In Olives and Olive Oil in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2010; pp. 415–424. ISBN 978-0-12-374420-3. [Google Scholar]
- Laicher, D.; Benkendorff, K.; White, S.; Conrad, S.; Woodrow, R.L.; Butcherine, P.; Sanders, C.J. Pesticide Occurrence in an Agriculturally Intensive and Ecologically Important Coastal Aquatic System in Australia. Mar. Pollut. Bull. 2022, 180, 113675. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil Degradation in the European Mediterranean Region: Processes, Status and Consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef]
- Broznić, D.; Didović, M.P.; Rimac, V.; Marinić, J. Sorption and Leaching Potential of Organophosphorus Insecticide Dimethoate in Croatian Agricultural Soils. Chemosphere 2021, 273, 128563. [Google Scholar] [CrossRef]
- Motoki, Y.; Iwafune, T.; Seike, N.; Otani, T.; Asano, M. Effects of Organic Carbon Quality on the Sorption Behavior of Pesticides in Japanese Soils. J. Pestic. Sci. 2014, 39, 105–114. [Google Scholar] [CrossRef]
- Meftaul, I.M.; Venkateswarlu, K.; Dharmarajan, R.; Annamalai, P.; Megharaj, M. Sorption–Desorption of Dimethoate in Urban Soils and Potential Environmental Impacts. Environ. Sci. Process. Impacts 2020, 22, 2256–2265. [Google Scholar] [CrossRef] [PubMed]
- Matallo, M.; Romero, E.; Pena, A.; Rasero, F.S.; Dios, G. Leaching of Mecoprop and Dichlorprop in Calcareous Soil. Effect of the Exogen Organic Matter Addition in This Process. J. Environ. Sci. Health Part B 1999, 34, 617–632. [Google Scholar] [CrossRef]
- Kuisi, M.A. Adsorption of Dimethoate and 2,4-D on Jordan Valley Soils and Their Environmental Impacts. Environ. Geol. 2002, 42, 666–671. [Google Scholar] [CrossRef]
- Groisman, L. Sorption of Organic Compounds of Varying Hydrophobicities from Water and Industrial Wastewater by Long- and Short-Chain Organoclays. Appl. Clay Sci. 2004, 24, 159–166. [Google Scholar] [CrossRef]
- Vagi, M.C.; Petsas, A.S.; Kostopoulou, M.N.; Lekkas, T.D. Adsorption and Desorption Processes of the Organophosphorus Pesticides, Dimethoate and Fenthion, onto Three Greek Agricultural Soils. Int. J. Environ. Anal. Chem. 2010, 90, 369–389. [Google Scholar] [CrossRef]
- Rani, S.; Sud Sant, D. Time and Temperature Dependent Sorption Behaviour of Dimethoate Pesticide in Various Indian Soils. Int. Agrophys. 2014, 28, 479–490. [Google Scholar] [CrossRef]
- Gensch, L.; Jantke, K.; Rasche, L.; Schneider, U.A. Corrigendum to ‘Pesticide Risk Assessment in European Agriculture: Distribution Patterns, Ban-Substitution Effects and Regulatory Implications’ [Environ. Pollut. 348 (2024) 123836]. Environ. Pollut. 2025, 366, 125431. [Google Scholar] [CrossRef]
- European Commision. EU Soil Strategy for 2030, Reaping the Benefits of Healthy Soils for People, Food, Nature and Climate; European Commision: Brussels, Belgium, 2021. [Google Scholar]
- Proposal for a Directive of the European Parliament and of the Council on Soil Monitoring and Resilience (Soil Monitoring Law)—General Approach. Available online: https://Data.Consilium.Europa.Eu/Doc/Document/ST-11299-2024-INIT/En/Pdf (accessed on 3 March 2025).
- PubChem—Substance and Compound Databases. Available online: https://pubchem.ncbi.nlm.nih.gov/#query=dimethoate (accessed on 3 March 2025).
- US EPA. Standard Operating Procedures. Soil Sampling; U.S. EPA ID LSASDPROC-300-R5; EPA: Washington, DC, USA, 2023. Available online: https://www.epa.gov/sites/default/files/2015-06/documents/Soil-Sampling.pdf#:~:text=This%20document%20describes%20general%20and%20specific%20procedures%2C%20methods,soil%20samples%20for%20field%20screening%20or%20laboratory%20analysis (accessed on 3 March 2025).
- Hendershot, W.H.; Lalande, H. Soil reaction and exchangeable acidity. In Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; Canadian Society of Soil Science: Pinawa, MB, Canada; CRC Press: Boca Raton, FL, USA, 2008; pp. 173–179. ISBN 978-0-8493-3586-0. [Google Scholar]
- Hendershot, W.H.; Lalande, H.; Duquette, M. Ion exchange and exchangeable cations. In Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; Canadian Society of Soil Science: Pinawa, MB, Canada; CRC Press: Boca Raton, FL, USA, 2008; pp. 197–207. ISBN 978-0-8493-3586-0. [Google Scholar]
- Skjemstad, J.O.; Baldock, J.A. Total and Organic Carbon. In Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; Canadian Society of Soil Science: Pinawa, MB, Canada; CRC Press: Boca Raton, FL, USA, 2008; pp. 225–239. ISBN 978-0-8493-3586-0. [Google Scholar]
- Kononova, M.M.; Belchikova, N.P. Rapid Analysis of Humus Composition in Mineral Soil. Pochvovedenie 1961, 10, 75–87. [Google Scholar]
- HRN EN 15936:2013; Sludge, Treated Biowaste, Soil and Waste–Determination of Total Organic Carbon (TOC) by Dry Combustion. European Committee for Standardization: Brussels, Belgium, 2012; Hrvatski zavod za norme (HZN): Zagreb, Croatia, 2013.
- HRN EN 15407:2011; Solid Recovered Fuels–Methods for the Determination of Carbon (C), Hydrogen (H) and Nitrogen (N) Content. Hrvatski zavod za norme (HZN): Zagreb, Croatia, 2011.
- OECD. OECD Guidelines for Testing of Chemicals, Proposal for Updating Guideline No 106: Adsorption/Desorption Using a Batch Equilibrium Method, Paris, France, 2000. Pp. 1e45. Available online: https://www.oecd.org/en/publications/test-no-106-adsorption-desorption-using-a-batch-equilibrium-method_9789264069602-en.html (accessed on 3 March 2025).
- Barałkiewicz, D.; Pikosz, B.; Belter, M.; Marcinkowska, M. Speciation Analysis of Chromium in Drinking Water Samples by Ion-Pair Reversed-Phase HPLC–ICP-MS: Validation of the Analytical Method and Evaluation of the Uncertainty Budget. Accredit. Qual. Assur. 2013, 18, 391–401. [Google Scholar] [CrossRef]
- Selim, H.M.; Zhu, H. Atrazine Sorption–Desorption Hysteresis by Sugarcane Mulch Residue. J. Environ. Qual. 2005, 34, 325–335. [Google Scholar] [CrossRef]
- Hinz, C. Description of Sorption Data with Isotherm Equations. Geoderma 2001, 99, 225–243. [Google Scholar] [CrossRef]
- Rubinić, V.; Husnjak, S. Clay and Humus Contents Have the Key Impact on Physical Properties of Croatian Pseudogleys. Agric. Conspec. Sci. 2016, 81, 187–191. [Google Scholar]
- Petković Didović, M.; Kowalkowski, T.; Broznić, D. Emerging Contaminant Imidacloprid in Mediterranean Soils: The Risk of Accumulation Is Greater than the Risk of Leaching. Toxics 2022, 10, 358. [Google Scholar] [CrossRef]
- Helling, C.S. Pesticide Mobility in Soils III. Influence of Soil Properties. Soil Sci. Soc. Am. J. 1971, 35, 743–748. [Google Scholar] [CrossRef]
- Calvet, R. Adsorption of Organic Chemicals in Soils. Environ. Health Perspect. 1989, 83, 145–177. [Google Scholar] [CrossRef]
- Sheng, G.; Johnston, C.T.; Teppen, B.J.; Boyd, S.A. Potential Contributions of Smectite Clays and Organic Matter to Pesticide Retention in Soils. J. Agric. Food Chem. 2001, 49, 2899–2907. [Google Scholar] [CrossRef]
- Wauchope, R.D.; Yeh, S.; Linders, J.B.H.J.; Kloskowski, R.; Tanaka, K.; Rubin, B.; Katayama, A.; Kördel, W.; Gerstl, Z.; Lane, M.; et al. Pesticide Soil Sorption Parameters: Theory, Measurement, Uses, Limitations and Reliability. Pest Manag. Sci. 2002, 58, 419–445. [Google Scholar] [CrossRef]
- Zebec, V.; Semialjac, Z.; Marković, M.; Tadić, V.; Radić, D.; Rastija, D. Influence of Physical and Chemical Properties of Different Soil Types on Optimal Soil Moisture for Tillage. Poljoprivreda 2017, 23, 10–18. [Google Scholar] [CrossRef]
- Broznić, D.; Marinić, J.; Tota, M.; Jurešić, G.Č.; Petković, O.; Milin, Č. Hysteretic Behavior of Imidacloprid Sorption-Desorption in Soils of Croatian Coastal Regions. Soil Sediment Contam. Int. J. 2012, 21, 850–871. [Google Scholar] [CrossRef]
- Broznić, D.; Milin, Č. Effects of Temperature on Sorption-Desorption Processes of Imidacloprid in Soils of Croatian Coastal Regions. J. Environ. Sci. Health Part B 2012, 47, 779–794. [Google Scholar] [CrossRef]
- Ben Salem, A.; Chaabane, H.; Caboni, P.; Angioni, A.; Salghi, R.; Fattouch, S. Environmental Fate of Two Organophosphorus Insecticides in Soil Microcosms under Mediterranean Conditions and Their Effect on Soil Microbial Communities. Soil Sediment Contam. Int. J. 2019, 28, 285–303. [Google Scholar] [CrossRef]
- Beltran, J.; Hernandez, F.; Lopez, F.J.; Morell, I. Study of Sorption Processes of Selected Pesticides on Soils and Ceramic Porous Cups Used For Soil Solution Sampling. Int. J. Environ. Anal. Chem. 1995, 58, 287–303. [Google Scholar] [CrossRef]
- Alfonso, L.-F.; Germán, G.V.; María Del Carmen, P.C.; Hossein, G. Adsorption of Organophosphorus Pesticides in Tropical Soils: The Case of Karst Landscape of Northwestern Yucatan. Chemosphere 2017, 166, 292–299. [Google Scholar] [CrossRef]
- Valverde-García, A.; González-Pradas, E.; Villafranca-Sánchez, M.; Del Rey-Bueno, F.; García-Rodriguez, A. Adsorption of Thiram and Dimethoate on Almeria Soils. Soil Sci. Soc. Am. J. 1988, 52, 1571–1574. [Google Scholar] [CrossRef]
- McCall, P.J.; Laskowski, D.A.; Swann, R.L.; Dishburger, H.J. Estimation of environmental partitioning of organic chemicals in model ecosystems. In Residue Reviews; Gunther, F.A., Gunther, J.D., Eds.; Springer: New York, NY, USA, 1983; pp. 231–244. ISBN 978-1-4612-5464-5. [Google Scholar]
- Hernández-Soriano, M.C.; Mingorance, M.D.; Peña, A. Desorption of Two Organophosphorous Pesticides from Soil with Wastewater and Surfactant Solutions. J. Environ. Manag. 2012, 95, S223–S227. [Google Scholar] [CrossRef] [PubMed]
- Van Bladel, R.; Moreale, A. Analyse statistique correlative de l’influence des proprietes des sols sur l’adsorption d’herbicides et insecticides. Chemosphere 1982, 11, 1159–1178. [Google Scholar] [CrossRef]
- Islam, M.S.; Nakagawa, K.; Yu, Z.-Q.; Takao, Y.; Berndtsson, R. Coprostanol Adsorption Behavior in Agricultural Soil, Riverbed Sediment, and Sand. J. Environ. Chem. Eng. 2023, 11, 110029. [Google Scholar] [CrossRef]
- Garg, U.; Kaur, M.P.; Jawa, G.K.; Sud, D.; Garg, V.K. Removal of Cadmium (II) from Aqueous Solutions by Adsorption on Agricultural Waste Biomass. J. Hazard. Mater. 2008, 154, 1149–1157. [Google Scholar] [CrossRef] [PubMed]
- Ismail, B.S.; Enoma, A.O.S.; Cheah, U.B.; Lum, K.Y.; Malik, Z. Adsorption, Desorption, And Mobility Of Two Insecticides In Malaysian Agricultural Soils. J. Environ. Sci. Health Part B 2002, 37, 355–364. [Google Scholar] [CrossRef]
- Eissa, F.; Alsherbeny, S.; El-Sawi, S.; Slaný, M.; Lee, S.S.; Shaheen, S.M.; Jamil, T.S. Remediation of Pesticides Contaminated Water Using Biowastes-Derived Carbon Rich Biochar. Chemosphere 2023, 340, 139819. [Google Scholar] [CrossRef]
- Ayeb, A.; Binous, H.; Dhaouadi, H.; Dridi-Dhaouadi, S. Commercial Dimethoate Pesticide Adsorption on Organic Soil: Experimental and Theoretical Investigations. Chem. Afr. 2024, 7, 5521–5534. [Google Scholar] [CrossRef]
- Pignatello, J.J. Soil Organic Matter as a Nanoporous Sorbent of Organic Pollutants. Adv. Colloid Interface Sci. 1998, 76–77, 445–467. [Google Scholar] [CrossRef]
- Xing, B.; Pignatello, J.J. Dual-Mode Sorption of Low-Polarity Compounds in Glassy Poly(Vinyl Chloride) and Soil Organic Matter. Environ. Sci. Technol. 1997, 31, 792–799. [Google Scholar] [CrossRef]
- Gunasekara, A.S.; Xing, B. Sorption and Desorption of Naphthalene by Soil Organic Matter: Importance of Aromatic and Aliphatic Components. J. Environ. Qual. 2003, 32, 240–246. [Google Scholar] [CrossRef]
- Rotich, H.K.; Zhang, Z.; Zhao, Y.; Li, J. The Adsorption Behavior of Three Organophosphorus Pesticides in Peat and Soil Samples and Their Degradation in Aqueous Solutions at Different Temperatures and pH Values. Int. J. Environ. Anal. Chem. 2004, 84, 289–301. [Google Scholar] [CrossRef]
- Von Oepen, B.; Kördel, W.; Klein, W. Sorption of Nonpolar and Polar Compounds to Soils: Processes, Measurements and Experience with the Applicability of the Modified OECD-Guideline 106. Chemosphere 1991, 22, 285–304. [Google Scholar] [CrossRef]
- Weber, W.J.; McGinley, P.M.; Katz, L.E. Sorption Phenomena in Subsurface Systems: Concepts, Models and Effects on Contaminant Fate and Transport. Water Res. 1991, 25, 499–528. [Google Scholar] [CrossRef]
- Singh, R.P.; Singh, S.; Srivastava, G. Adsorption Thermodynamics of Carbaryl onto Four Texturally Different Indian Soils. Adsorpt. Sci. Technol. 2011, 29, 277–288. [Google Scholar] [CrossRef]
Soil Properties | Soil | ||||
---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | |
Location | Grobnik | Matulji 1 | Matulji 2 | Varaždin | Otočac |
GCS (a) | 45°20′53″ N 14°30′04″ E | 45°21′27″ N 14°18′20″ E | 45°21′28″ N 14°18′19″ E | 46°17′17″ N 16°44′15″ E | 44°56′31″ N 15°09′08″ E |
Textural classes | clay loam | sandy loam | sandy clay loam | clay | sandy clay loam |
pH (H2O) (b) | 7.03 (±0.19) | 7.10 (±0.09) | 7.11 (±0.04) | 7.01 (±0.08) | 6.73 (±0.09) |
pH (CaCl2) (b) | 6.57 (±0.03) | 6.44 (±0.00) | 6.42 (±0.02) | 6.54 (±0.01) | 6.21 (±0.01) |
HA (cmol/kg) (c) | 13.14 (±0.68) | 11.06 (±1.13) | 13.29 (±1.13) | 3.74 (±0.26) | 27.51 (±0.52) |
CEC (d) (cmol/kg) | 74.39 (±17.19) | 91.32 (±1.22) | 79.83 (±8.88) | 89.37 (±8.87) | 66.12 (±3.48) |
Clay (%) | 35.46 (±0.58) | 17.35 (±0.31) | 20.50 (±0.74) | 40.58 (±0.61) | 28.14 (±0.46) |
Ca2+ (mg/100 g) | 109.70 (±3.10) | 333.43 (±2.97) | 375.17 (±69.42) | 224.10 (±39.19) | 186.50 (±4.07) |
Mg2+ (mg/100 g) | 519.10 (±172.30) | 577.57 (±15.35) | 460.80 (±88.00) | 785.60 (±111.70) | 339.00 (±26.67) |
Na+ (mg/100 g) | 38.55 (±0.48) | 37.89 (±1.55) | 32.02 (±5.54) | 37.83 (±5.58) | 34.42 (±3.63) |
K+ (mg/100 g) | 446.30 (±118.70) | 565.97 (±1.85) | 333.47 (±3.45) | 320.47 (±39.95) | 324.90 (±51.57) |
TOC (e) (%) | 5.75 (±0.20) | 3.68 (±0.12) | 5.20 (±0.08) | 1.96 (±0.09) | 3.68 (±0.06) |
CoxHa (f) (%) | 0.083 (±0.001) | 0.133 (±0.054) | 0.069 (±0.054) | 0.086 (±0.004) | 0.118 (±0.008) |
CoxFa (g) (%) | 0.257 (±0.025) | 0.259 (±0.095) | 0.254 (±0.045) | 0.160 (±0.021) | 0.312 (±0.021) |
N (%) | 0.4665 (±0.0061) | 0.2778 (±0.0037) | 0.4135 (±0.0027) | 0.2003 (±0.0042) | 0.3062 (±0.0068) |
C (%) | 4.722 (±0.077) | 3.239 (±0.132) | 4.449 (±0.022) | 1.580 (±0.012) | 2.965 (±0.011) |
H (%) | 1.662 (±0.013) | 1.028 (±0.017) | 1.139 (±0.018) | 0.473 (±0.07) | 1.093 (±0.017) |
S (%) | 0.039 (±0.0035) | 0.035 (±0.0060) | 0.035 (±0.0040) | 0.012 (±0.0031) | 0.019 (±0.0020) |
O (%) | 93.111 (±0.089) | 95.421 (±0.122) | 93.965 (±0.037) | 97.735 (±0.018) | 95.618 (±0.013) |
ratio H/C | 4.197 (±0.052) | 3.778 (±0.193) | 3.049 (±0.039) | 3.570 (±0.027) | 4.391 (±0.084) |
ratio C/N | 11.804 (±0.053) | 13.594 (±0.457) | 12.548 (±0.120) | 9.204 (±0.148) | 11.296 (±0.292) |
ratio S/C | 0.003 (±0.000) | 0.004 (±0.001) | 0.003 (±0.000) | 0.003 (±0.001) | 0.002 (± 0.000) |
ratio O/C | 14.802 (±0.868) | 22.115 (±0.695) | 15.855 (±1.278) | 46.436 (±1.141) | 24.209 (±0.867) |
ratio (N+O)/C | 14.891 (±0.254) | 22.217 (±0.949) | 15.935 (±0.084) | 46.546 (±0.348) | 24.303 (±0.090) |
ratio E465/E665 | 4.73 (±0.02) | 5.07 (±0.11) | 6.25 (±0.44) | 4.10 (±0.27) | 5.09 (±0.29) |
Fitted/Statistical Parameter | S1 | S2 | S3 | S4 | S5 |
---|---|---|---|---|---|
Freundlich isotherm model | |||||
(a) (mg/kg) (mg/L)1/n | 3.069 (±0.743) | 1.360 (±0.173) | 1.730 (±0.561) | 4.701 (±0.191) | 2.159 (±0.517) |
(b) | 0.967 (±0.093) | 1.143 (±0.019) | 1.215 (±0.112) | 0.799 (±0.001) | 1.166 (±0.084) |
R2 (c) | 0.9681 | 0.9305 | 0.9739 | 0.9581 | 0.9773 |
SRMSE (d) | 0.1093 | 0.2025 | 0.1027 | 0.1732 | 0.0823 |
err-% (e) | 8.69 | 16.10 | 8.17 | 13.77 | 6.55 |
m (f) | 4 ( 9.49 at p 0.05) | ||||
Langmuir isotherm model | |||||
(g) (L/kg) | 0.0125 (±0.0148) | 0.0229 (±0.0054) | −0.0138 (±0.0094) | 0.0263 (±0.0156) | 0.0017 (±0.0125) |
(h) (mg/kg) | 788.91 (±904.61) | 104.52 (±28.97) | −215.15 (±183.39) | 174.61 (±74.47) | −17.28 (±480.64) |
R2 | 0.9428 | 0.7940 | 0.9730 | 0.9753 | 0.9388 |
SRMSE | 0.2975 | 0.9161 | 0.3635 | 0.2549 | 0.3407 |
err-% | 23.66 | 72.84 | 29.05 | 20.27 | 27.09 |
m | 4 ( 9.49 at p 0.05) | ||||
Temkin isotherm model | |||||
(i) (L/mg) | 0.2488 (±0.0374) | 0.1836 (±0.004) | 0.2119 (±0.0161) | 0.3193 (±0.0249) | 0.2200 (±0.0145) |
(j) | 51.29 (±10.79) | 56.05 (±2.21) | 68.24 (±5.94) | 37.59 (±3.82) | 71.98 (±5.20) |
R2 | 0.8300 | 0.6968 | 0.9080 | 0.8727 | 0.8303 |
SRMSE | 0.3677 | 0.5135 | 0.2970 | 0.3059 | 0.4104 |
err-% | 29.24 | 40.83 | 23.62 | 25.91 | 32.63 |
m | 4 ( 9.49 at p 0.05) |
Fitted/Statistical Parameter | S1 | S2 | S3 | S4 | S5 |
---|---|---|---|---|---|
Freundlich isotherm model | |||||
(a) (mg/kg) (mg/L)1/n | 6.695 (±0.451) | 3.482 (±0.019) | 5.725 (±0.075) | 9.096 (±0.077) | 6.238 (±0.051) |
(b) | 0.866 (±0.004) | 0.911 (±0.006) | 0.863 (±0.008) | 0.809 (±0.004) | 0.872 (±0.001) |
R2 (c) | 0.9912 | 0.9989 | 0.9941 | 0.9924 | 0.9948 |
SRMSE (d) | 0.0856 | 0.0689 | 0.0679 | 0.0720 | 0. 0468 |
err-% (e) | 6.80 | 5.48 | 5.40 | 5.73 | 3.72 |
m (f) | 4 ( 9.49 at p 0.05) | ||||
Langmuir isotherm model | |||||
(g) (L/kg) | 0.0519 (±0.0233) | 0.0200 (±0.0007) | 0.0313 (±0.0022) | 0.0760 (±0.0025) | 0.0335 (±0.0061) |
(h) (mg/kg) | 149.06 (±66.49) | 174.03 (±6.42) | 183.87 (±11.93) | 127.44 (±3.44) | 220.02 (±10.26) |
R2 | 0.9779 | 0.9691 | 0.9738 | 0.9802 | 0.9523 |
SRMSE | 0.2187 | 0.2311 | 0.2201 | 0.1794 | 0.2969 |
err-% | 17.39 | 18.38 | 17.50 | 14.27 | 23.62 |
m | 4 ( 9.49 at p 0.05) | ||||
Temkin isotherm model | |||||
(i) (L/mg) | 1.0767 (±0.0970) | 0.8934 (±0.0934) | 1.1334 (±0.0730) | 1.3799 (±0.2077) | 0.9715 (±0.0403) |
(j) | 22.76 (±4.07) | 16.85 (±1.22) | 20.84 (±0.01) | 21.51 (±2.48) | 25.51 (±0.27) |
R2 | 0.9209 | 0.8733 | 0.9270 | 0.9463 | 0.9159 |
SRMSE | 0.3407 | 0.3984 | 0.3321 | 0.3146 | 0.3584 |
err-% | 27.09 | 31.68 | 26.40 | 25.02 | 28.50 |
m | 4 (7.81 at p 0.05) |
Parameters | S1 | S2 | S3 | S4 | S5 |
---|---|---|---|---|---|
KOC (a) (L/kg) | 53.63 (±14.76) | 37.09 (±5.91) | 33.36 (±11.33) | 240.49 (±1.53) | 58.57 (±13.14) |
ΔG (b) (kJ/mol) | −9.66 (±0.68) | −8.79 (±0.39) | −8.48 (±0.84) | −13.36 (±0.02) | −9.89 (±0.55) |
H (c) | 0.899 (±0.090) | 0.797 (±0.008) | 0.713 (±0.059) | 1.012 (±0.003) | 0.750 (±0.054) |
λ (d) | 0.055 (±0.052) | 0.121 (±0.006) | 0.189 (±0.055) | −0.005 (±0.002) | 0.157 (±0.045) |
Variable | (g) | (i) | KOC (j) | ∆G (k) | H (l) | λ (m) | ||
---|---|---|---|---|---|---|---|---|
pH (CaCl2) | 0.42 | −0.59 (p = 0.021) | 0.21 | −0.17 | 0.28 | −0.15 | 0.58 (p = 0.024) | −0.61 (p = 0.017) |
HA (a) | −0.49 | 0.61 (p = 0.016) | −0.30 | 0.34 | −0.57 (p = 0.026) | 0.35 | −0.59 (p = 0.020) | 0.62 (p = 0.014) |
CEC (b) | 0.01 | −0.14 | −0.04 | 0.02 | 0.28 | −0.05 | 0.12 | −0.19 |
Clay | 0.92 (p < 0.001) | −0.85 (p < 0.001) | 0.92 (p < 0.001) | −0.80 (p < 0.001) | 0.76 (p = 0.001) | −0.82 (p < 0.001) | 0.82 (p < 0.001) | −0.76 (p = 0.001) |
TOC (c) | −0.48 | 0.44 | −0.40 | 0.42 | −0.78 (p = 0.001) | 0.75 (p = 0.001) | −0.45 | 0.46 |
CoxHa (d) | −0.10 | −0.11 | −0.21 | 0.30 | −0.01 | 0.12 | 0.06 | −0.09 |
CoxFa (e) | −0.58 (p = 0.022) | 0.61 (p = 0.017) | −0.52 (p = 0.045) | 0.53 (p = 0.042) | −0.68 (p = 0.005) | 0.51 | −0.59 (p = 0.022) | 0.57 (p = 0.027) |
N | 0.33 | 0.32 | −0.25 | 0.27 | −0.68 (p = 0.006) | 0.63 (p = 0.011) | −0.33 | 0.36 |
C | −0.52 (p = 0.045) | 0.47 | −0.47 | 0.47 | −0.80 (p < 0.001) | 0.79 (p < 0.001) | −0.47 | 0.48 |
H | −0.41 | 0.34 | −0.40 | 0.50 | −0.76 (p = 0.001) | 0.65 (p = 0.009) | −0.31 | 0.32 |
S | −0.60 (p = 0.018) | 0.44 | −0.64 (p = 0.010) | 0.66 (p = 0.008) | −0.77 (p = 0.001) | 0.83 (p < 0.001) | −0.42 | 0.39 |
O | 0.50 | −0.44 | 0.45 | −0.47 | 0.80 (p < 0.001) | −0.76 (p = 0.001) | 0.43 | −0.44 |
Mg | 0.52 (p = 0.049) | −0.61 (p = 0.015) | 0.43 | −0.41 | 0.68 (p = 0.005) | −0.51 | 0.58 (p = 0.023) | −0.61 (p = 0.015) |
K | −0.43 | 0.17 | −0.62 (p = 0.014) | 0.68 (p = 0.005) | −0.40 | 0.45 | −0.12 | 0.03 |
Na | 0.32 | −0.52 (p = 0.049) | 0.08 | −0.02 | 0.25 | −0.28 | 0.51 | −0.57 (p = 0.028) |
Ca | −0.30 | 0.23 | −0.36 | 0.20 | −0.07 | 0.34 | −0.24 | 0.20 |
Ratio E465/E665 | −0.79 (p < 0.001) | 0.86 (p < 0.001) | −0.57 (p = 0.026) | 0.43 | −0.73 (p = 0.002) | 0.81 (p < 0.001) | −0.88 (p = 0.002) | 0.90 (p < 0.001) |
Ratio H/C | 0.04 | −0.08 | −0.01 | 0.21 | −0.14 | −0.11 | 0.15 | −0.14 |
Ratio C/N | −0.89 (p < 0.001) | 0.74 (p = 0.002) | −0.96 (p < 0.001) | 0.91 (p < 0.001) | −0.89 (p < 0.001) | 0.92 (p < 0.001) | −0.70 (p = 0.004) | 0.64 (p = 0.011) |
Ratio S/C | −0.36 | 0.14 | −0.52 (p = 0.046) | 0.56 (p = 0.029) | −0.25 | 0.40 | −0.10 | 0.03 |
Ratio O/C | 0.73 (p = 0.002) | −0.67 (p = 0.006) | 0.68 (p = 0.006) | −0.68 (p = 0.006) | 0.95 (p < 0.001) | −0.90 (p < 0.001) | 0.65 (p = 0.008) | −0.64 (p = 0.010) |
Ratio (N + O)/C | 0.73 (p = 0.002) | −0.67 (p = 0.006) | 0.68 (p = 0.006) | −0.68 (p = 0.006) | 0.95 (p < 0.001) | −0.90 (p < 0.001) | 0.65 (p = 0.008) | −0.64 (p = 0.010) |
Principal Component | PC 1 | PC 2 | PC 3 | PC 4 |
---|---|---|---|---|
Eigenvalue | 15.25 | 5.11 | 4.19 | 2.85 |
% Total variance | 50.84 | 17.05 | 13.96 | 9.51 |
Cumulative % | 50.84 | 67.89 | 81.85 | 91.36 |
Loadings | ||||
pH | −0.261 | 0.619 | 0.675 | −0.232 |
HA (a) | 0.534 | −0.730 | −0.211 | 0.321 |
CEC (b) | −0.270 | 0.850 | −0.182 | −0.017 |
Clay | −0.772 | −0.298 | 0.501 | −0.014 |
TOC (c) | 0.803 | −0.045 | 0.545 | −0.208 |
CoxHa (d) | −0.031 | 0.427 | −0.129 | 0.524 |
CoxFa (e) | 0.667 | −0.479 | −0.115 | 0.242 |
N | 0.702 | −0.133 | 0.634 | −0.272 |
C | 0.831 | 0.007 | 0.502 | −0.234 |
H | 0.741 | −0.140 | 0.636 | 0.119 |
S | 0.776 | 0.444 | 0.404 | −0.019 |
O | −0.816 | 0.034 | −0.551 | 0.154 |
Mg | −0.679 | 0.082 | 0.638 | −0.052 |
K | 0.339 | 0.133 | 0.673 | 0.537 |
Na | −0.312 | 0.251 | 0.412 | 0.509 |
Ca | 0.156 | 0.756 | −0.305 | −0.518 |
ratio E465/E665 | 0.799 | 0.002 | −0.314 | −0.477 |
ratio H/C | 0.027 | −0.450 | 0.256 | 0.804 |
ratio C/N | −0.933 | −0.262 | 0.055 | −0.120 |
ratio S/C | 0.238 | 0.803 | −0.039 | 0.285 |
ratio O/C | −0.952 | 0.041 | −0.291 | 0.034 |
ratio (N+O)/C | −0.952 | 0.041 | −0.291 | 0.034 |
KFsor (f) | −0.894 | −0.154 | 0.388 | −0.105 |
1/nsor (g) | 0.851 | −0.068 | −0.490 | −0.051 |
KFdes (h) | −0.808 | −0.337 | 0.263 | −0.291 |
1/ndes (i) | 0.780 | 0.310 | −0.144 | 0.457 |
KOC (j) | −0.991 | 0.011 | −0.014 | −0.115 |
∆G (k) | 0.963 | 0.226 | −0.053 | −0.032 |
λ (l) | −0.827 | 0.077 | 0.488 | 0.125 |
H (m) | 0.807 | −0.156 | −0.472 | −0.182 |
Statistic | Value | |||
R2 | 0.9891 | |||
Adjusted R2 | 0.9782 | |||
F-value | 90.56 | |||
p-value (F) | <0.0001 | |||
Std. Err. of Estimate | 0.1886 | |||
Predictor | Coefficient b* | Std. Err. of b* | T value (t (7)) | p-value |
Clay | 0.364 | 0.107 | 3.40 | 0.0115 |
Ratio (N+O)/C | −0.272 | 0.101 | −2.68 | 0.0313 |
Ratio H/C | −0.364 | 0.071 | −5.15 | 0.0013 |
Ratio E465/E665 | −0.829 | 0.135 | −6.12 | 0.0005 |
K | −0.382 | 0.083 | −4.60 | 0.0025 |
CoxFa (a) | −0.093 | 0.076 | −1.22 | 0.2614 |
CoxHa (b) | 0.057 | 0.055 | 1.04 | 0.3335 |
Statistic | Value | |||
R2 | 0.9998 | |||
Adjusted R2 | 0.9995 | |||
F-value | 3277.58 | |||
p-value (F) | <0.0001 | |||
Std. Err. of Estimate | 0.0414 | |||
Predictor | Coefficient b* | Std. Err. of b* | T value (t (7)) | p-Value |
Clay | 0.187 | 0.071 | 2.61 | 0.0475 |
TOC | 1.278 | 0.211 | 6.05 | 0.0018 |
CoxFa (a) | 0.289 | 0.021 | 13.74 | <0.0001 |
Ratio (N+O)/C | 1.594 | 0.297 | 5.38 | 0.0030 |
Ratio H/C | 0.030 | 0.033 | 0.90 | 0.4109 |
Ratio E465/E665 | 0.259 | 0.021 | 12.34 | 0.0001 |
Ratio C/N | 0.630 | 0.075 | 8.38 | 0.0004 |
Ratio S/C | −0.024 | 0.020 | −1.19 | 0.2876 |
K | 0.070 | 0.014 | 4.87 | 0.0046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karleuša, R.; Marinić, J.; Tomić Linšak, D.; Dubrović, I.; Antunović, D.; Broznić, D. The Hidden Legacy of Dimethoate: Clay Binding Effects on Decreasing Long-Term Retention and Reducing Environmental Stability in Croatian Soils. Toxics 2025, 13, 219. https://doi.org/10.3390/toxics13030219
Karleuša R, Marinić J, Tomić Linšak D, Dubrović I, Antunović D, Broznić D. The Hidden Legacy of Dimethoate: Clay Binding Effects on Decreasing Long-Term Retention and Reducing Environmental Stability in Croatian Soils. Toxics. 2025; 13(3):219. https://doi.org/10.3390/toxics13030219
Chicago/Turabian StyleKarleuša, Romano, Jelena Marinić, Dijana Tomić Linšak, Igor Dubrović, Domagoj Antunović, and Dalibor Broznić. 2025. "The Hidden Legacy of Dimethoate: Clay Binding Effects on Decreasing Long-Term Retention and Reducing Environmental Stability in Croatian Soils" Toxics 13, no. 3: 219. https://doi.org/10.3390/toxics13030219
APA StyleKarleuša, R., Marinić, J., Tomić Linšak, D., Dubrović, I., Antunović, D., & Broznić, D. (2025). The Hidden Legacy of Dimethoate: Clay Binding Effects on Decreasing Long-Term Retention and Reducing Environmental Stability in Croatian Soils. Toxics, 13(3), 219. https://doi.org/10.3390/toxics13030219