The Dark Side of “Smart Drugs”: Cognitive Enhancement vs. Clinical Concerns
Abstract
:1. Introduction
2. Search Strategy
3. Old and New Smart Drugs
3.1. Plant-Derived Smart Drugs
3.1.1. Alkaloid-Containing Plants
Ergoline Alkaloids
Pseudoalkaloids
Tropane Alkaloids
Indole Alkaloids
Other Alkaloids
3.1.2. N,N-Dimethyltryptamine
3.1.3. Terpenes
3.2. Synthetic Cannabinoids
3.3. Synthetic Cathinones
3.4. Designer Drugs
4. Smart Drugs Analysis
4.1. Molecular Analysis
4.2. Micromorpholgy
4.3. Chemical Analysis
5. Neuropharmacological Effects of Amphetamine-Based Smart Drugs
6. Psychological and Adverse Effects of Synthetic Cannabinoids, Cathinones, and DMT-Based Substances
7. The Clinical Impact of Cognitive and Mood Enhancers
7.1. Cognitive Enhancers
7.2. Mood Enhancers
7.3. Neuronal and Ethical Costs
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EMCDDA | European Monitoring Centre for Drugs and Drug Addiction |
EUDA | European Union Drugs Agency |
ISS | Istituto Superiore di Sanità |
SNAP | System Network on New Psychoactive Substances |
AIFA | Italian Medicines Agency |
LSD | Lysergic Acid Diethylamide |
LSA | Lysergic Acid Amide |
CNS | Central Nervous System |
DMT | N,N-Dimethyltryptamine |
MAO | Monoamine Oxidase |
MAOIs | Monoamine Oxidase Inhibitors |
5-OH-DMT | 5-Hydroxy-N,N-Dimethyltryptamine |
5-MeO-DMT | 5-Methoxy-N,N-Dimethyltryptamine |
Δ9-THC | Δ-9-Tetrahydrocannabinol |
SCs | Synthetic Cannabinoids |
CB1 | Cannabinoid Receptor 1 |
CB2 | Cannabinoid Receptor 2 |
HU-210 | (6aR,10aR)-9-(Hydroxymethyl)-6,6-Dimethyl-3-(2-Methyloctan-2-yl)-6a,7,10,10a-Tetrahydrobenzo[c]chromen-1-ol |
CP-47947 | 5-(1,1-Dimethylheptyl)-2-[(1R,3S)-3-Hydroxycyclohexyl]-Phenol |
AM-4030 | (6S,6aR,9R,10aR)-9-(Hydroxymethyl)-6-[(E)-3-Hydroxyprop-1-Enyl]-6-Methyl-3-(2-Methyloctan-2-yl)-6a,7,8,9,10,10a-Hexahydrobenzo[c]chromen-1-ol |
AM-1220 | (Naphthalen-1-yl)[1-[(1-Methylpiperidin-2-yl)Methyl]-1H-Indol-3-yl]Methanone |
THJ-018 | Naphthalen-1-yl[1-(Pent-1-yl)-1H-Indazol-3-yl]Methanone |
THJ-2201 | 1-(5-Fluoropent-1-yl)-1H-Indazol-3-ylMethanone |
5F-APINACA | N-(1-Adamantyl)-5-Fluoropentyl-1H-Indazole-3-Carboxamide |
MDMB-FUBINACA | Methyl 2-[1-(4-Fluorobenzyl)-1H-Indazole-3-Carboxamido]-3,3-Dimethylbutanoate |
ADB-FUBINACA | N-(1-Amino-3,3-Dimethyl-1-Oxobutan-2-yl)-1-(4-Fluorobenzyl)-1H-Indazole-3-Carboxamide |
AB-CHMINACA | N-(1-Amino-3-Methyl-1-Oxobutan-2-yl)-1-(Cyclohexylmethyl)-1H-Indazole-3-Carboxamide |
MAB-CHMINACA | N-(1-Amino-3,3-Dimethyl-1-Oxobutan-2-yl)-1-(Cyclohexylmethyl)-1H-Indazole-3-Carboxamide |
AM-356 | N-(2-Hydroxy-1R-Methylethyl)-5Z,8Z,11Z,14Z-Eicosatetraenamide |
EPH | Ephedrone |
MDPV | 3,4-Methylenedioxypyrovalerone |
βk-MDMA | 3,4-Methylenedioxy-N-Methylcathinone |
MDPBP | Methylenedioxy-α-Pyrrolidinobutyrophenone |
4-MMC | 4-Methylmethcathinone, 4-Methylephedrone |
βk-MBDB | 1,3-Benzodioxol-5-yl)-2-(Methylamino)Butan-1-one |
PMMA | Paramethoxymethamphetamine |
2C-B | 4-Bromo-2,5-Dimethoxyphenethylamine |
2C-I | 4-Iodo-2,5-Dimethoxyphenethylamine |
2C-T-7 | 2,5-Dimethoxy-4-(n)-Propylthiophenethylamine |
DOB | 2,5-Dimethoxy-4-Bromoamphetamine |
DOI | 2,5-Dimethoxy-4-Iodoamphetamine |
25I-NBMOe | 2-(4-Iodo-2,5-Dimethoxyphenyl)-N-[(2-Methoxyphenyl)Methyl]Ethanamine |
4-APB | 4-(2-Aminopropyl) Benzofuran |
5-APB | 5-(2-Aminopropyl) Benzofuran |
6-APB | 6-(2-Aminopropyl) Benzofuran |
DiTP | Di-Isopropyltryptamine |
4-OH-DiPT | 4-Hydroxy-N,N-Diisopropyltryptamine |
BZP | 1-Benzylpiperazine |
mCPP | 1-(m-Chlorophenyl) Piperazine |
TFMPP | 1-(m-Trifluoromethylphenyl) Piperazine |
2-DPMP | 2-Diphenylmethylpiperidine |
D2PM | Diphenyl-2-Pyrrolidinyl-Methanol |
MOTUs | Molecular Operational Taxonomic Units |
BLAST | Basic Local Alignment Search Tool |
BOLD-IDS | Barcode of Life Database Identification System |
SEM | Scanning Electron Microscopy |
TEM | Transmission Electron Microscopy |
EDS | X-ray Energy Dispersive System |
LOD | Limit of Detection |
LOQ | Limit of Quantification |
SPE | Solid-Phase Extraction |
RP-HPLC-DAD | Reverse-Phase High-Performance Liquid Chromatography Coupled with Diode Array Detector |
LC-MS | Liquid Chromatography Coupled with Mass Spectrometry |
LC-MS/MS | Liquid Chromatography Tandem Mass Spectrometry |
GC-MS | Gas Chromatography Coupled with Mass Spectrometry |
GC-FID | Gas Chromatography Coupled with Flame Ionization Detector |
ADHD | Attention Deficit-Hyperactivity Disorder |
CUD | Caffeine Use Disorder |
3-MMC | 3-Methylmethcathinone |
CE | Cognitive Enhancers |
COMT | Catechol-O-Methyltransferase |
PTSD | Post-Traumatic Stress Disorder |
Drug Compounds Index
References
- European Drug Agency (EUDA). Available online: https://www.euda.europa.eu/index_en (accessed on 30 December 2024).
- European Drug Agency (EUDA). European Drug Report 2024: Trends and Developments; EUDA: Brussels, Belgium, 2024; Available online: https://www.euda.europa.eu/publications/european-drug-report/2024_en (accessed on 30 December 2024).
- European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). European Drug Report 2024: Trends and Developments; Publications Office of the European Union: Luxembourg, 2024; Available online: https://www.euda.europa.eu (accessed on 30 December 2024).
- Castellanos, D.; Singh, S.; Thornton, G.; Avila, M.; Moreno, A. Synthetic cannabinoid use: A case series of adolescents. J. Adolesc. Health 2011, 49, 347–349. [Google Scholar] [CrossRef] [PubMed]
- Baumann, M.H.; Walters, H.M.; Niello, M.; Sitte, H.H. Neuropharmacology of synthetic cathinones. Handb. Exp. Pharmacol. 2018, 252, 113–142. [Google Scholar]
- Prosser, J.M.; Nelson, L.S. The toxicology of bath salts: A review of synthetic cathinones. J. Med. Toxicol. 2012, 8, 33–42. [Google Scholar]
- Hassan, Z.; Muzaimi, M.; Navaratnam, V.; Yusoff, N.H.M.; Suhaimi, F.W.; Vadivelu, R.; Vicknasingam, B.K.; Amato, D.; von Hörsten, S.; Ismail, N.I.W.; et al. From Kratom to mitragynine and its derivatives: Physiological and behavioural effects related to use, abuse, and addiction. Neurosci. Biobehav. Rev. 2013, 37, 138–151. [Google Scholar]
- Singh, D.; Narayanan, S.; Vicknasingam, B.; Corazza, O.; Santacroce, R.; Roman-Urrestarazu, A. Changing trends in the use of kratom (Mitragyna speciosa) in Southeast Asia. Hum. Psychopharmacol. Clin. Exp. 2017, 32, e2582. [Google Scholar]
- Schifano, F.; Orsolini, L.; Papanti, G.D.; Corkery, J.M. NPS: Medical consequences associated with their intake. Curr. Top. Behav. Neurosci. 2017, 32, 351–380. [Google Scholar] [PubMed]
- Italian National Institute of Health (ISS). Available online: https://www.iss.it (accessed on 30 December 2024).
- Italian Medicines Agency (AIFA). Available online: https://www.aifa.gov.it (accessed on 30 December 2024).
- Miller, J.J.; Yazdanpanah, M.; Colantonio, D.A.; Beriault, D.R.; Delaney, S.R. New Psychoactive Substances: A Canadian Perspective on Emerging Trends and Challenges for the Clinical Laboratory. Clin. Biochem. 2024, 133–134, 110810. [Google Scholar]
- Malík, M.; Tlustoš, P. Nootropics as Cognitive Enhancers: Types, Dosage, and Side Effects of Smart Drugs. Nutrients 2022, 14, 3367. [Google Scholar] [CrossRef]
- Maslow, A. Toward a Psychology of Being; Van Nostrand: New York, NY, USA, 1962. [Google Scholar]
- Italian National Institute of Health (ISS). Smart Drugs Report. Available online: https://www.iss.it/documents/20126/2344091/Smart_Drugs.pdf (accessed on 30 December 2024).
- Ventegodt, S.; Merrick, J.; Andersen, N.J. Quality of Life Theory III. Maslow Revisited. Sci. World J. 2003, 3, 1050–1057. [Google Scholar]
- Hondebrink, L.; Kasteel, E.E.J.; Tukker, A.M.; Wijnolts, F.M.J.; Verboven, A.H.A.; Westerink, R.H.S. Neuropharmacological Characterization of the New Psychoactive Substance Methoxetamine. Neuropharmacology 2017, 123, 1–9. [Google Scholar]
- Kapka-Skrzypczak, L.; Kulpa, P.; Sawicki, K.; Cyranka, M.; Wojtyła, A.; Kruszewski, M. Legal Highs—Legal Aspects and Legislative Solutions. Ann. Agric. Environ. Med. 2011, 18, 304–309. [Google Scholar] [PubMed]
- Gonçalves, J.; Luís, Â.; Gallardo, E.; Duarte, A.P. Psychoactive Substances of Natural Origin: Toxicological Aspects, Therapeutic Properties, and Analysis in Biological Samples. Molecules 2021, 26, 1397. [Google Scholar] [CrossRef] [PubMed]
- Graziano, S.; Orsolini, L.; Rotolo, M.C.; Tittarelli, R.; Schifano, F.; Pichini, S. Herbal Highs: Review on Psychoactive Effects and Neuropharmacology. Curr. Neuropharmacol. 2017, 15, 750–761. [Google Scholar] [CrossRef]
- Lo Faro, A.F.; Di Trana, A.; La Maida, N.; Tagliabracci, A.; Giorgetti, R.; Busardò, F.P. Biomedical Analysis of New Psychoactive Substances (NPS) of Natural Origin. J. Pharm. Biomed. Anal. 2020, 179, 112945. [Google Scholar] [CrossRef]
- Paulke, A.; Kremer, C.; Wunder, C.; Achenbach, J.; Djahanschiri, B.; Elias, A.; Schwed, J.S.; Hübner, H.; Gmeiner, P.; Proschak, E.; et al. Argyreia nervosa (Burm. f.): Receptor Profiling of Lysergic Acid Amide and Other Potential Psychedelic LSD-Like Compounds by Computational and Binding Assay Approaches. J. Ethnopharmacol. 2013, 148, 492–497. [Google Scholar] [CrossRef]
- Modi, A.J.; Khadabadi, S.S.; Deokata, U.A.; Farooqui, I.A.; Deore, S.L.; Gangwani, M.R. Argyreia speciosa Linn. f.: Fitochimica, Farmacognosia e Studi Farmacologici. J. Farmacogno. Fitotre. 2010, 2, 34–42. [Google Scholar]
- Lee, M.R. The History of Ephedra (Ma-Huang). J. R. Coll. Physicians Edinb. 2011, 41, 78–84. [Google Scholar] [CrossRef]
- Costa, V.M.; Grando, L.G.R.; Milandri, E.; Nardi, J.; Teixeira, P.; Mladěnka, P.; Remião, F. Natural Sympathomimetic Drugs: From Pharmacology to Toxicology. Biomolecules 2022, 12, 1793. [Google Scholar] [CrossRef]
- Richardson, W.H., III; Slone, C.M.; Michels, J.E. Herbal Drugs of Abuse: An Emerging Problem. Emerg. Med. Clin. N. Am. 2007, 25, 435–457. [Google Scholar] [CrossRef]
- Swathy, S.S.; Panicker, S.; Nithya, R.S.; Anuja, M.M.; Rejitha, S.; Indira, M. Antiperoxidative and Antiinflammatory Effect of Sida cordifolia Linn. on Quinolinic Acid-Induced Neurotoxicity. Neurochem. Res. 2010, 35, 1361–1367. [Google Scholar] [CrossRef]
- Rejitha, S.; Prathibha, P.; Indira, M. Amelioration of Alcohol-Induced Hepatotoxicity by the Administration of Ethanolic Extract of Sida cordifolia Linn. Br. J. Nutr. 2012, 108, 1256–1263. [Google Scholar] [CrossRef]
- Kumar, S.; Lakshmi, P.K.; Sahi, C.; Pawar, R.S. Sida cordifolia Accelerates Wound Healing Process Delayed by Dexamethasone in Rats: Effect on ROS and Probable Mechanism of Action. J. Ethnopharmacol. 2019, 235, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, H.; Wright, C.L.; Jones, S.; da Silva, G.R.; McKillen, J.; Gilmore, B.F.; Kavanagh, O.; Green, B.D. Extracts of Sida cordifolia Contain Polysaccharides Possessing Immunomodulatory Activity and Rosmarinic Acid Compounds with Antibacterial Activity. BMC Complement. Med. Ther. 2022, 22, 27. [Google Scholar] [CrossRef]
- Jain, A.; Choubey, S.; Singour, P.K.; Rajak, H.; Pawar, R.S. Sida cordifolia (Linn)—An Overview. J. Appl. Pharm. Sci. 2011, 1, 23–31. [Google Scholar]
- Capasso, A.; de Feo, V. Alkaloids from Brugmansia arborea (L.) Lagerhein Reduce Morphine Withdrawal in Vitro. Phytother. Res. 2003, 17, 826–829. [Google Scholar]
- Kim, H.G.; Jang, D.; Jung, Y.S.; Oh, H.J.; Oh, S.M.; Lee, Y.G.; Kang, S.C.; Kim, D.O.; Lee, D.Y.; Baek, N.I. Anti-Inflammatory Effect of Flavonoids from Brugmansia arborea L. Flowers. J. Microbiol. Biotechnol. 2020, 30, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Bracci, A.; Daza-Losada, M.; Aguilar, M.; De Feo, V.; Miñarro, J.; Rodríguez-Arias, M. A Methanol Extract of Brugmansia arborea Affects the Reinforcing and Motor Effects of Morphine and Cocaine in Mice. Evid.-Based Complement. Altern. Med. 2013, 2013, 482976. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, J.; Kim, O.J.; Kim, W.C. Intoxication by Angel’s Trumpet: Case Report and Literature Review. BMC Res. Notes 2014, 7, 553. [Google Scholar] [CrossRef]
- American College of Emergency Physicians (ACEP). Angel’s Trumpet and Devil’s Breath: A Trip into Psychonaut Culture. Available online: https://www.acep.org/toxicology/newsroom/apr2020/angels-trumpet-and-devils-breath-a-trip-into-psychonaut-culture (accessed on 30 December 2024).
- Göpel, C.; Laufer, C.; Marcus, A. Three Cases of Angel’s Trumpet Tea-Induced Psychosis in Adolescent Substance Abusers. Nord. J. Psychiatry 2002, 56, 49–52. [Google Scholar] [CrossRef]
- Feng, L.Y.; Battulga, A.; Han, E.; Chung, H.; Li, J.H. New Psychoactive Substances of Natural Origin: A Brief Review. J. Food Drug Anal. 2017, 25, 461–471. [Google Scholar] [CrossRef]
- Eastlack, S.C.; Cornett, E.M.; Kaye, A.D. Kratom-Pharmacology, Clinical Implications, and Outlook: A Comprehensive Review. Pain Ther. 2020, 9, 55–69. [Google Scholar] [PubMed]
- Brunetti, P.; Lo Faro, A.F.; Tini, A.; Busardò, F.P.; Carlier, J. Pharmacology of Herbal Sexual Enhancers: A Review of Psychiatric and Neurological Adverse Effects. Pharmaceuticals 2020, 13, 309. [Google Scholar] [CrossRef] [PubMed]
- Meireles, V.; Rosado, T.; Barroso, M.; Soares, S.; Gonçalves, J.; Luís, Â.; Caramelo, D.; Simão, A.Y.; Fernández, N.; Duarte, A.P.; et al. Mitragyna speciosa: Clinical, Toxicological Aspects and Analysis in Biological and Non-Biological Samples. Medicines 2019, 6, 35. [Google Scholar] [CrossRef]
- Manganyi, M.C.; Bezuidenhout, C.C.; Regnier, T.; Ateba, C.N. A Chewable Cure “Kanna”: Biological and Pharmaceutical Properties of Sceletium tortuosum. Molecules 2021, 26, 2557. [Google Scholar] [CrossRef]
- Brendler, T.; Brinckmann, J.A.; Feiter, U.; Gericke, N.; Lang, L.; Pozharitskaya, O.N.; Shikov, A.N.; Smith, M.; Wyk, B.V. Sceletium for Managing Anxiety, Depression, and Cognitive Impairment: A Traditional Herbal Medicine in Modern-Day Regulatory Systems. Curr. Neuropharmacol. 2021, 19, 1384–1400. [Google Scholar] [CrossRef]
- Soysal, E.N.; Fındık, V.; Dedeoglu, B.; Aviyente, V.; Tantillo, D.J. Theoretical Investigation of the Biogenetic Pathway for Formation of Antibacterial Indole Alkaloids from Voacanga africana. ACS Omega 2022, 7, 31591–31596. [Google Scholar]
- Harada, M.; Asaba, K.N.; Iwai, M.; Kogure, N.; Kitajima, M.; Takayama, H. Asymmetric Total Synthesis of an Iboga-Type Indole Alkaloid, Voacangalactone, Newly Isolated from Voacanga africana. Org. Lett. 2012, 14, 5800–5803. [Google Scholar]
- Tan, P.V.; Penlap, V.B.; Nyasse, B.; Nguemo, J.D. Anti-Ulcer Actions of the Bark Methanol Extract of Voacanga africana in Different Experimental Ulcer Models in Rats. J. Ethnopharmacol. 2000, 73, 423–428. [Google Scholar] [PubMed]
- Norton, S.A. Betel: Consumption and Consequences. J. Am. Acad. Dermatol. 1998, 38, 81–88. [Google Scholar]
- Rehman, S.U.; Choe, K.; Yoo, H.H. Review on a Traditional Herbal Medicine, Eurycoma longifolia Jack (Tongkat ali): Its Traditional Uses, Chemistry, Evidence-Based Pharmacology, and Toxicology. Molecules 2016, 21, 331. [Google Scholar] [CrossRef]
- Ruan, J.; Li, Z.; Zhang, Y.; Chen, Y.; Liu, M.; Han, L.; Zhang, Y.; Wang, T. Bioactive Constituents from the Roots of Eurycoma longifolia. Molecules 2019, 24, 3157. [Google Scholar] [CrossRef] [PubMed]
- Bhat, R.; Karim, A.A. Tongkat Ali (Eurycoma longifolia Jack): A Review on Its Ethnobotany and Pharmacological Importance. Fitoterapia 2010, 81, 669–679. [Google Scholar] [PubMed]
- Deluca, P.; Davey, Z.; Corazza, O.; Di Furia, L.; Farre, M.; Flesland, L.H.; Mannonen, M.; Majava, A.; Peltoniemi, T.; Pasinetti, M.; et al. Identifying Emerging Trends in Recreational Drug Use; Outcomes from the Psychonaut Web Mapping Project. Prog. Neuropsychopharmacol. Biol. Psychiatry 2012, 39, 221–226. [Google Scholar]
- Rumalla, C.S.; Jadhav, A.N.; Smillie, T.; Fronczek, F.R.; Khan, I.A. Alkaloids from Heimia salicifolia. Phytochemistry 2008, 69, 1756–1762. [Google Scholar]
- Kempf, J.; Stedtler, U.; Neusüss, C.; Weinmann, W.; Auwärter, V. Identification of Sinicuichi Alkaloids in Human Serum After Intoxication Caused by Oral Intake of a Heimia salicifolia Extract. Forensic Sci. Int. 2008, 179, e57–e61. [Google Scholar] [PubMed]
- Simão, A.Y.; Antunes, M.; Cabral, E.; Oliveira, P.; Rosendo, L.M.; Brinca, A.T.; Alves, E.; Marques, H.; Rosado, T.; Passarinha, L.A.; et al. An Update on the Implications of New Psychoactive Substances in Public Health. Int. J. Environ. Res. Public Health 2022, 19, 4869. [Google Scholar] [CrossRef]
- Malaca, S.; Lo Faro, A.F.; Tamborra, A.; Pichini, S.; Busardò, F.P.; Huestis, M.A. Toxicology and Analysis of Psychoactive Tryptamines. Int. J. Mol. Sci. 2020, 21, 9279. [Google Scholar] [CrossRef]
- Estrella-Parra, E.A.; Almanza-Pérez, J.C.; Alarcón-Aguilar, F.J. Ayahuasca: Uses, Phytochemical and Biological Activities. Nat. Prod. Bioprospect. 2019, 9, 251–265. [Google Scholar] [CrossRef]
- Arunotayanun, W.; Gibbons, S. Natural Product ‘Legal Highs’. Nat. Prod. Rep. 2012, 29, 1304–1316. [Google Scholar]
- Simão, A.Y.; Gonçalves, J.; Duarte, A.P.; Barroso, M.; Cristóvão, A.C.; Gallardo, E. Toxicological Aspects and Determination of the Main Components of Ayahuasca: A Critical Review. Medicines 2019, 6, 106. [Google Scholar] [CrossRef]
- Hamill, J.; Hallak, J.; Dursun, S.M.; Baker, G. Ayahuasca: Psychological and Physiologic Effects, Pharmacology, and Potential Uses in Addiction and Mental Illness. Curr. Neuropharmacol. 2019, 17, 108–128. [Google Scholar] [CrossRef] [PubMed]
- Tittarelli, R.; Mannocchi, G.; Pantano, F.; Romolo, F.S. Recreational Use, Analysis, and Toxicity of Tryptamines. Curr. Neuropharmacol. 2015, 13, 26–46. [Google Scholar] [CrossRef] [PubMed]
- Camargo-Ricalde, S.L. Descripción, Distribución, Anatomía, Composición Química y Usos de Mimosa tenuiflora (Fabaceae-Mimosoideae) en México [Description, Distribution, Anatomy, Chemical Composition and Uses of Mimosa tenuiflora (Fabaceae-Mimosoideae) in Mexico]. Rev. Biol. Trop. 2000, 48, 939–954. [Google Scholar]
- Blackledge, R.D.; Phelan, C.P. Identification of Bufotenine in Yopo Seeds via GC/IRD. Microgram J. 2006, 4, 3–11. [Google Scholar]
- Rodd, R. Snuff Synergy: Preparation, Use, and Pharmacology of Yopo and Banisteriopsis caapi Among the Piaroa of Southern Venezuela. J. Psychoact. Drugs 2002, 34, 273–279. [Google Scholar] [CrossRef]
- Martinez, S.T.; Almeida, M.R.; Pinto, A.C. Alucinógenos Naturais: Um Voo da Europa Medieval ao Brasil. Quim. Nova 2009, 32, 2501–2507. [Google Scholar] [CrossRef]
- Rodd, R.; Sumabila, A. Yopo, Ethnicity, and Social Change: A Comparative Analysis of Piaroa and Cuiva Yopo Use. J. Psychoact. Drugs 2011, 43, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Batiha, G.E.; Olatunde, A.; El-Mleeh, A.; Hetta, H.F.; Al-Rejaie, S.; Alghamdi, S.; Zahoor, M.; Magdy Beshbishy, A.; Murata, T.; Zaragoza-Bastida, A.; et al. Bioactive Compounds, Pharmacological Actions, and Pharmacokinetics of Wormwood (Artemisia absinthium). Antibiotics 2020, 9, 353. [Google Scholar] [CrossRef]
- Padosch, S.A.; Lachenmeier, D.W.; Kröner, L.U. Absinthism: A Fictitious 19th Century Syndrome with Present Impact. Subst. Abuse Treat. Prev. Policy 2006, 1, 14. [Google Scholar] [CrossRef]
- Papaseit, E.; Pérez-Mañá, C.; Pérez-Acevedo, A.P.; Hladun, O.; Torres-Moreno, M.C.; Muga, R.; Torrens, M.; Farré, M. Cannabinoids: From Pot to Lab. Int. J. Med. Sci. 2018, 15, 1286–1295. [Google Scholar] [CrossRef]
- Castaneto, M.S.; Gorelick, D.A.; Desrosiers, N.A.; Hartman, R.L.; Pirard, S.; Huestis, M.A. Synthetic Cannabinoids: Epidemiology, Pharmacodynamics, and Clinical Implications. Drug Alcohol Depend. 2014, 144, 12–41. [Google Scholar] [PubMed]
- Alves, V.L.; Gonçalves, J.L.; Aguiar, J.; Teixeira, H.M.; Câmara, J.S. The Synthetic Cannabinoids Phenomenon: From Structure to Toxicological Properties. A Review. Crit. Rev. Toxicol. 2020, 50, 359–382. [Google Scholar] [CrossRef] [PubMed]
- Messina, F.; Rosati, O.; Curini, M.; Marcotullio, M.C. Cannabis and Bioactive Cannabinoids; Elsevier: Amsterdam, The Netherlands, 2015; Volume 45, ISBN 9780444634733. [Google Scholar]
- Bukke, V.N.; Archana, M.; Villani, R.; Serviddio, G.; Cassano, T. Pharmacological and Toxicological Effects of Phytocannabinoids and Recreational Synthetic Cannabinoids: Increasing Risk of Public Health. Pharmaceuticals 2021, 14, 965. [Google Scholar] [CrossRef] [PubMed]
- Elsohly, M.A.; Gul, W.; Wanas, A.S.; Radwan, M.M. Synthetic Cannabinoids: Analysis and Metabolites. Life Sci. 2014, 97, 78–90. [Google Scholar] [CrossRef]
- Shafi, A.; Berry, A.J.; Sumnall, H.; Wood, D.M.; Tracy, D.K. New Psychoactive Substances: A Review and Updates. Ther. Adv. Psychopharmacol. 2020, 10, 2045125320967197. [Google Scholar]
- EMCDDA. European Drug Report 2022. Trends and Developments; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar] [CrossRef]
- Debruyne, D.; Le Boisselier, R. Emerging Drugs of Abuse: Current Perspectives on Synthetic Cannabinoids. Subst. Abuse Rehabil. 2015, 6, 113–129. [Google Scholar]
- Marchetti, B.; Bilel, S.; Tirri, M.; Arfè, R.; Corli, G.; Roda, E.; Locatelli, C.A.; Cavarretta, E.; De Giorgio, F.; Marti, M. The Old and the New: Cardiovascular and Respiratory Alterations Induced by Acute JWH-018 Administration Compared to Δ9-THC-A Preclinical Study in Mice. Int. J. Mol. Sci. 2023, 24, 1631. [Google Scholar] [CrossRef]
- Correia, B.; Fernandes, J.; Botica, M.J.; Ferreira, C.; Quintas, A. Novel Psychoactive Substances: The Razor’s Edge Between Therapeutical Potential and Psychoactive Recreational Misuse. Medicines 2022, 9, 19. [Google Scholar] [CrossRef]
- United Nations Office on Drugs and Crime (UNODC). Scientific Report ST/NAR/48 Rev.1. Available online: https://www.unodc.org/documents/scientific/STNAR48_Rev.1_ebook.pdf (accessed on 30 December 2024).
- Shevyrin, V.A.; Morzherin, Y.Y. Cannabinoidi: Strutture, Effetti e Classificazione. Russ. Chem. Bull. 2015, 64, 1249–1266. [Google Scholar]
- Fattore, L.; Fratta, W. Beyond THC: The New Generation of Cannabinoid Designer Drugs. Front. Behav. Neurosci. 2011, 5, 60. [Google Scholar]
- Pieprzyca, E.; Skowronek, R.; Nižnanský, Ľ.; Czekaj, P. Synthetic Cathinones—From Natural Plant Stimulant to New Drug of Abuse. Eur. J. Pharmacol. 2020, 875, 173012. [Google Scholar] [PubMed]
- Almeida, A.S.; Silva, B.; Pinho, P.G.; Remião, F.; Fernandes, C. Synthetic Cathinones: Recent Developments, Enantioselectivity Studies, and Enantioseparation Methods. Molecules 2022, 27, 2057. [Google Scholar] [CrossRef] [PubMed]
- Karila, L.; Megarbane, B.; Cottencin, O.; Lejoyeux, M. Synthetic Cathinones: A New Public Health Problem. Curr. Neuropharmacol. 2015, 13, 12–20. [Google Scholar]
- German, C.L.; Fleckenstein, A.E.; Hanson, G.R. Bath Salts and Synthetic Cathinones: An Emerging Designer Drug Phenomenon. Life Sci. 2014, 97, 2–8. [Google Scholar]
- Gonçalves, J.L.; Alves, V.L.; Aguiar, J.; Teixeira, H.M.; Câmara, J.S. Synthetic Cathinones: An Evolving Class of New Psychoactive Substances. Crit. Rev. Toxicol. 2019, 49, 549–566. [Google Scholar] [PubMed]
- Soares, J.; Costa, V.M.; Bastos, M.L.; Carvalho, F.; Capela, J.P. An Updated Review on Synthetic Cathinones. Arch. Toxicol. 2021, 95, 2895–2940. [Google Scholar] [CrossRef]
- Valente, M.J.; Guedes de Pinho, P.; de Lourdes Bastos, M.; Carvalho, F.; Carvalho, M. Khat and Synthetic Cathinones: A Review. Arch. Toxicol. 2014, 88, 15–45. [Google Scholar]
- Kuropka, P.; Zawadzki, M.; Szpot, P. A Review of Synthetic Cathinones Emerging in Recent Years (2019–2022). Forensic Toxicol. 2023, 41, 25–46. [Google Scholar]
- Kelly, J.P. Cathinone Derivatives: A Review of Their Chemistry, Pharmacology, and Toxicology. Drug Test Anal. 2011, 3, 439–453. [Google Scholar]
- Zawilska, J.B.; Wojcieszak, J. Novel Psychoactive Substances: Classification and General Information. In Synthetic Cathinones; Zawilska, J.B., Ed.; Springer: Cham, Switzerland, 2018; pp. 11–24. [Google Scholar]
- White, C.M. Mephedrone and 3,4-Methylenedioxypyrovalerone (MDPV): Synthetic Cathinones with Serious Health Implications. J. Clin. Pharmacol. 2016, 56, 1319–1325. [Google Scholar]
- Pantano, F.; Tittarelli, R.; Mannocchi, G.; Pacifici, R.; Di Luca, A.; Busardò, F.P.; Marinelli, E. Neurotoxicity Induced by Mephedrone: An Up-to-Date Review. Curr. Neuropharmacol. 2017, 15, 738–749. [Google Scholar]
- Zawilska, J.B. Mephedrone and Other Cathinones. Curr. Opin. Psychiatry 2014, 27, 256–262. [Google Scholar] [PubMed]
- Schifano, F.; Albanese, A.; Fergus, S.; Stair, J.L.; Deluca, P.; Corazza, O.; Davey, Z.; Corkery, J.; Siemann, H.; Scherbaum, N.; et al. Mephedrone (4-Methylmethcathinone; ‘Meow Meow’): Chemical, Pharmacological, and Clinical Issues. Psychopharmacology 2011, 214, 593–602. [Google Scholar] [PubMed]
- Highfield, R. Designer Drugs. World Health 1986, 26–27. Available online: https://apps.who.int/iris/handle/10665/53599 (accessed on 30 December 2024).
- Luethi, D.; Liechti, M.E. Designer Drugs: Mechanism of Action and Adverse Effects. Arch. Toxicol. 2020, 94, 1085–1133. [Google Scholar]
- Hill, S.L.; Thomas, S.H. Clinical Toxicology of Newer Recreational Drugs. Clin. Toxicol. 2011, 49, 705–719. [Google Scholar]
- Cocchi, V.; Gasperini, S.; Hrelia, P.; Tirri, M.; Marti, M.; Lenzi, M. Novel Psychoactive Phenethylamines: Impact on Genetic Material. Int. J. Mol. Sci. 2020, 21, 9616. [Google Scholar] [CrossRef]
- Krabseth, H.M.; Tuv, S.S.; Strand, M.C.; Karinen, R.A.; Wiik, E.; Vevelstad, M.S.; Westin, A.A.; Øiestad, E.L.; Vindenes, V. Novel Psychoactive Substances. Tidsskr. Nor. Laegeforen. 2016, 136, 714–717. [Google Scholar]
- Dean, B.V.; Stellpflug, S.J.; Burnett, A.M.; Engebretsen, K.M. 2C or Not 2C: Phenethylamine Designer Drug Review. J. Med. Toxicol. 2013, 9, 172–178. [Google Scholar]
- Zawilska, J.B.; Kacela, M.; Adamowicz, P. NBOMes—Highly Potent and Toxic Alternatives of LSD. Front. Neurosci. 2020, 14, 78. [Google Scholar]
- Smith, C.D.; Robert, S. ‘Designer Drugs’: Update on the Management of Novel Psychoactive Substance Misuse in the Acute Care Setting. Clin. Med. 2014, 14, 409–415. [Google Scholar]
- Wood, D.M.; Dargan, P.I. Use and Acute Toxicity Associated with the Novel Psychoactive Substances Diphenylprolinol (D2PM) and Desoxypipradrol (2-DPMP). Clin. Toxicol. 2012, 50, 727–732. [Google Scholar]
- Lindigkeit, R.; Boehme, A.; Eiserloh, I.; Luebbecke, M.; Wiggermann, M.; Ernst, L.; Beuerle, T. Spice: A Never-Ending Story? Forensic Sci. Int. 2009, 191, 58–63. [Google Scholar] [PubMed]
- Schmidt, M.M.; Sharma, A.; Schifano, F.; Feinmann, C. “Legal Highs” on the Net—Evaluation of UK-Based Websites, Products, and Product Information. Forensic Sci. Int. 2011, 206, 92–97. [Google Scholar]
- Atwood, B.K.; Lee, D.; Straiker, A.; Widlanski, T.S.; Mackie, K. CP47,497-C8 and JWH073, Commonly Found in ‘Spice’ Herbal Blends, Are Potent and Efficacious CB(1) Cannabinoid Receptor Agonists. Eur. J. Pharmacol. 2011, 659, 139–145. [Google Scholar]
- Dresen, S.; Kneisel, S.; Weinmann, W.; Zimmermann, R.; Auwärter, V. Development and Validation of a Liquid Chromatography-Tandem Mass Spectrometry Method for the Quantitation of Synthetic Cannabinoids of the Aminoalkylindole Type and Methanandamide in Serum and Its Application to Forensic Samples. J. Mass Spectrom. 2011, 46, 163–171. [Google Scholar]
- Auwärter, V.; Dresen, S.; Weinmann, W.; Müller, M.; Pütz, M.; Ferreirós, N. ‘Spice’ and Other Herbal Blends: Harmless Incense or Cannabinoid Designer Drugs? J. Mass Spectrom. 2009, 44, 832–837. [Google Scholar]
- Vardakou, I.; Pistos, C.; Spiliopoulou, C. Spice Drugs as a New Trend: Mode of Action, Identification, and Legislation. Toxicol. Lett. 2010, 197, 157–162. [Google Scholar]
- Cornara, L.; Borghesi, B.; Canali, C.; Andrenacci, M.; Basso, M.; Federici, S.; Labra, M. Smart Drugs: Green Shuttle or Real Drug? Int. J. Legal Med. 2013, 127, 1109–1123. [Google Scholar]
- Mezzasalma, V.; Ganopoulos, I.; Galimberti, A.; Cornara, L.; Ferri, E.; Labra, M. Poisonous or Non-Poisonous Plants? DNA-Based Tools and Applications for Accurate Identification. Int. J. Legal Med. 2017, 131, 1–19. [Google Scholar]
- Cornara, L.; Smeriglio, A.; Frigerio, J.; Labra, M.; Di Gristina, E.; Denaro, M.; Mora, E.; Trombetta, D. The Problem of Misidentification Between Edible and Poisonous Wild Plants: Reports from the Mediterranean Area. Food Chem. Toxicol. 2018, 119, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Malaspina, P.; Betuzzi, F.; Ingegneri, M.; Smeriglio, A.; Cornara, L.; Trombetta, D. Risk of Poisoning from Garden Plants: Misidentification Between Laurel and Cherry Laurel. Toxins 2022, 14, 726. [Google Scholar] [CrossRef] [PubMed]
- Antil, S.; Abraham, J.S.; Sripoorna, S.; Maurya, S.; Dagar, J.; Makhija, S.; Bhagat, P.; Gupta, R.; Sood, U.; Lal, R.; et al. DNA Barcoding, an Effective Tool for Species Identification: A Review. Mol. Biol. Rep. 2023, 50, 761–775. [Google Scholar] [CrossRef]
- Chen, S.; Yin, X.; Han, J.; Sun, W.; Yao, H.; Song, J.; Li, X. DNA Barcoding in Herbal Medicine: Retrospective and Prospective. J. Pharm. Anal. 2023, 13, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Pandit, R.; Travadi, T.; Sharma, S.; Joshi, C.; Joshi, M. DNA Meta-Barcoding Using rbcL-Based Mini-Barcode Revealed Presence of Unspecified Plant Species in Ayurvedic Polyherbal Formulations. Phytochem. Anal. 2021, 32, 804–810. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. ClustalW and ClustalX Version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- BOLD Identification System (IDS). Available online: http://v3.boldsystems.org (accessed on 30 December 2024).
- De Mattia, F.; Gentili, R.; Bruni, I.; Galimberti, A.; Sgorbati, S.; Casiraghi, M.; Labra, M. A Multi-Marker DNA Barcoding Approach to Save Time and Resources in Vegetation Surveys. Bot. J. Linn. Soc. 2012, 169, 518–529. [Google Scholar] [CrossRef]
- Restani, P. (Ed.) Food Supplements Containing Botanicals: Benefits, Side Effects, and Regulatory Aspects; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Thompson, M.; Ellison, S.L.R.; Wood, R. Harmonized Guidelines for Single-Laboratory Validation of Methods of Analysis (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 835–855. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO). How to Meet ISO 17025: Requirements for Method Verification; AOAC International: Rockville, MD, USA, 2007; Available online: https://www.aoac.org/wp-content/uploads/2019/09/ALACC-method-verification.pdf (accessed on 30 December 2024).
- AOAC. Guidelines for Single Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals; AOAC International: Gaithersburg, MD, USA, 2002; Available online: https://s27415.pcdn.co/wp-content/uploads/2020/01/64ER20-7/Validation_Methods/d-AOAC_Guidelines_For_Single_Laboratory_Validation_Dietary_Supplements_and_Botanicals.pdf (accessed on 30 December 2024).
- EURACHEM. Guide to Quality in Analytical Chemistry, 3rd ed.; 2016. Available online: https://www.eurachem.org/index.php/60-publications/guides (accessed on 30 December 2024).
- International Council for Harmonisation (ICH). ICH Q2(R1) Validation of Analytical Procedures: Text and Methodology; 2005. Available online: http://www.gmp-compliance.org/guidelines/gmp-guideline/ich-q2r1-validation-of-analytical-procedures-text-and-methodology (accessed on 30 December 2024).
- Heydari, R.; Mousavi, M. Simultaneous Determination of Saccharine, Caffeine, Salicylic Acid, and Benzoic Acid in Different Matrices by Salt and Air-Assisted Homogeneous Liquid-Liquid Extraction and High-Performance Liquid Chromatography. J. Chil. Chem. Soc. 2016, 61, 3090–3094. [Google Scholar] [CrossRef]
- Farrington, K.; Magner, E.; Regan, F. Predicting the Performance of Molecularly Imprinted Polymers: Selective Extraction of Caffeine by Molecularly Imprinted Solid-Phase Extraction. Anal. Chim. Acta 2006, 566, 60–68. [Google Scholar]
- Nave, F.; Cabrita, M.J.; da Costa, C.T. Use of Solid-Supported Liquid-Liquid Extraction in the Analysis of Polyphenols in Wine. J. Chromatogr. A 2007, 1169, 23–30. [Google Scholar] [PubMed]
- Li, X.; Ma, R.; Su, H.; Sun, H.; Ma, G.; Su, Z.; Zha, S. Rapid Purification of Huperzine A and B with Two Polystyrene-Based Resins by Preparative Low-Pressure Liquid Chromatography. J. Liq. Chromatogr. Relat. Technol. 2006, 29, 569–582. [Google Scholar]
- Wang, G.; Cao, Q.; Zhu, X.; Yang, X.; Yang, M.; Ding, Z. Molecular Imprinted Solid-Phase Extraction of Huperzine A from Huperzia serrata. J. Appl. Polym. Sci. 2009, 113, 3049–3058. [Google Scholar]
- Li, C.; Du, F.; Yu, C.; Xu, X.; Zheng, J.; Xu, F.; Zhu, D. A Sensitive Method for the Determination of the Novel Cholinesterase Inhibitor ZT-1 and Its Active Metabolite Huperzine A in Rat Blood Using Liquid Chromatography/Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 651–656. [Google Scholar] [CrossRef]
- Patil, D.; Gautam, M.; Mishra, S.; Karupothula, S.; Gairola, S.; Jadhav, S.; Pawar, S.; Patwardhan, B. Determination of Withaferin A and Withanolide A in Mice Plasma Using High-Performance Liquid Chromatography-Tandem Mass Spectrometry: Application to Pharmacokinetics After Oral Administration of Withania somnifera Aqueous Extract. J. Pharm. Biomed. Anal. 2013, 80, 203–212. [Google Scholar] [PubMed]
- Gao, S.; Zhou, X.; Lang, L.; Liu, H.; Li, J.; Li, H.; Wei, S.; Wang, D.; Xu, Z.; Cai, H.; et al. Simultaneous Determination of Schisandrin and Promethazine with Its Metabolite in Rat Plasma by HPLC-MS/MS and Its Application to a Pharmacokinetic Study. Int. J. Anal. Chem. 2019, 2019, 3497045. [Google Scholar]
- Wei, B.; Li, Q.; Fan, R.; Su, D.; Ou, X.; Chen, K.; Chen, X.; Jia, Y.; Bi, K. UFLC-MS/MS Method for Simultaneous Determination of Six Lignans of Schisandra chinensis (Turcz.) Baill. in Normal and Insomniac Rats Brain Microdialysates and Homogenate Samples: Towards an In-Depth Study for Its Sedative-Hypnotic Activity. J. Mass Spectrom. 2013, 48, 448–458. [Google Scholar]
- Yu, B.; Sheng, D.; Tan, Q. Determination of Schisandrin A and Schisandrin B in Traditional Chinese Medicine Preparation Huganpian Tablet by RP-HPLC. Chem. Pharm. Bull. 2019, 67, 713–716. [Google Scholar]
- Li, Q.; Sun, L.X.; Xu, L.; Jia, Y.; Wang, Z.W.; Shen, Z.D.; Bi, K.S. Determination and Pharmacokinetic Study of Syringin and Chlorogenic Acid in Rat Plasma After Administration of Aidi Lyophilizer. Biomed. Chromatogr. 2006, 20, 1315–1320. [Google Scholar]
- Xiao, P.; Chen, J.; Li, X.; Chen, Y. Ultrasound-Assisted Extraction Coupled with SPE-HPLC-DAD for the Determination of Three Bioactive Phenylpropanoids from Radix Isatidis. Anal. Methods 2014, 6, 7547–7553. [Google Scholar] [CrossRef]
- Pedersen, D.S.; Capone, D.L.; Skouroumounis, G.K.; Pollnitz, A.P.; Sefton, M.A. Quantitative Analysis of Geraniol, Nerol, Linalool, and α-Terpineol in Wine. Anal. Bioanal. Chem. 2003, 375, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Bergler, G.; Nolleau, V.; Picou, C.; Perez, M.; Ortiz-Julien, A.; Brulfert, M.; Camarasa, C.; Bloem, A. Dispersive Liquid-Liquid Microextraction for the Quantitation of Terpenes in Wine. J. Agric. Food Chem. 2020, 68, 13302–13309. [Google Scholar] [CrossRef] [PubMed]
- Pichini, S.; Pellegrini, M.; Pacifici, R.; Marchei, E.; Murillo, J.; Puig, C.; Vall, O.; García-Algar, O. Quantification of Arecoline (Areca Nut Alkaloid) in Neonatal Biological Matrices by High-Performance Liquid Chromatography/Electrospray Quadrupole Mass Spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 1958–1964. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Li, K.; Wang, X.; Luo, X.; Su, M.; Tan, W.; Chang, X.; Shi, Y. Identification of Metabolites of the Cardioprotective Alkaloid Dehydrocorydaline in Rat Plasma and Bile by Liquid Chromatography Coupled with Triple Quadrupole Linear Ion Trap Mass Spectrometry. Molecules 2017, 22, 1686. [Google Scholar] [CrossRef]
- Brandt, S.D.; Kavanagh, P.V.; Westphal, F.; Elliott, S.P.; Wallach, J.; Colestock, T.; Burrow, T.E.; Chapman, S.J.; Stratford, A.; Nichols, D.E.; et al. Return of the Lysergamides. Part II: Analytical and Behavioural Characterization of N6-Allyl-6-Norlysergic Acid Diethylamide (AL-LAD) and (2′S,4′S)-Lysergic Acid 2,4-Dimethylazetidide (LSZ). Drug Test Anal. 2017, 9, 38–50. [Google Scholar] [CrossRef]
- Dong, X.; Wang, W.; Ma, S.; Sun, H.; Li, Y.; Guo, J. Molecularly Imprinted Solid-Phase Extraction of (-)-Ephedrine from Chinese Ephedra. J. Chromatogr. A 2005, 1070, 125–130. [Google Scholar] [CrossRef]
- Bagheri, H.; Khalilian, F.; Ahangar, L.E. Liquid-Liquid-Liquid Microextraction Followed by HPLC with UV Detection for Quantitation of Ephedrine in Urine. J. Sep. Sci. 2008, 31, 3212–3217. [Google Scholar] [CrossRef]
- Zhu, H.; Ali, I.; Hussain, H.; Hussain, M.; Wang, X.B.; Song, X.; Luo, G.; Zhang, Z.; Wang, Z.; Wang, D. Extraction and Purification of cis/trans-Asarone from Acorus tatarinowii Schott: Accelerated Solvent Extraction and Silver Ion Coordination High-Speed Counter-Current Chromatography. J. Chromatogr. A 2021, 1643, 462080. [Google Scholar] [CrossRef]
- Deng, C.; Lin, S.; Huang, T.; Duan, G.; Zhang, X. Development of Gas Chromatography/Mass Spectrometry Following Headspace Solid-Phase Microextraction for Fast Determination of Asarones in Plasma. Rapid Commun. Mass Spectrom. 2006, 20, 2120–2126. [Google Scholar] [CrossRef]
- Śramska, P.; Maciejka, A.; Topolewska, A.; Stepnowski, P.; Haliński, Ł.P. Isolation of Atropine and Scopolamine from Plant Material Using Liquid-Liquid Extraction and EXtrelut® Columns. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1043, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Theodoridis, G.; Kantifes, A.; Manesiotis, P.; Raikos, N.; Tsoukali-Papadopoulou, H. Preparation of a Molecularly Imprinted Polymer for the Solid-Phase Extraction of Scopolamine with Hyoscyamine as a Dummy Template Molecule. J. Chromatogr. A 2003, 987, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Lai, Y.C.; Chen, C.K.; Tseng, L.H.; Wang, C.Y. Characterization of Isoquinoline Alkaloids from Neolitsea sericea var. aurata by HPLC-SPE-NMR. J. Nat. Prod. 2007, 70, 637–642. [Google Scholar] [CrossRef]
- Lima, B.R.; Silva, F.M.A.; Soares, E.R.; Almeida, R.A.; Silva-Filho, F.A.; Barison, A.; Costa, E.V.; Koolen, H.H.F.; Souza, A.D.L.; Pinheiro, M.L.B. Integrative Approach Based on Leaf Spray Mass Spectrometry, HPLC-DAD-MS/MS, and NMR for Comprehensive Characterization of Isoquinoline-Derived Alkaloids in Leaves of Onychopetalum amazonicum RE Fr. J. Braz. Chem. Soc. 2020, 31, 79–89. [Google Scholar]
- Zhang, H.G.; Sun, Y.; Duan, M.Y.; Chen, Y.J.; Zhong, D.F.; Zhang, H.Q. Separation and Identification of Aconitum Alkaloids and Their Metabolites in Human Urine. Toxicon 2005, 46, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.; Claude, B.; Morin, P.; Max, J.P.; Pena, R.; Ribet, J.P. Synthesis and Study of a Molecularly Imprinted Polymer for the Specific Extraction of Indole Alkaloids from Catharanthus roseus Extracts. Anal. Chim. Acta 2011, 683, 198–205. [Google Scholar] [CrossRef]
- De Backer, B.; Debrus, B.; Lebrun, P.; Theunis, L.; Dubois, N.; Decock, L.; Verstraete, A.; Hubert, P.; Charlier, C. Innovative Development and Validation of an HPLC/DAD Method for the Qualitative and Quantitative Determination of Major Cannabinoids in Cannabis Plant Material. J. Chromatogr. B 2009, 877, 4115–4124. [Google Scholar] [CrossRef]
- Nahar, L.; Onder, A.; Sarker, S.D. A Review on the Recent Advances in HPLC, UHPLC, and UPLC Analyses of Naturally Occurring Cannabinoids (2010–2019). Phytochem. Anal. 2020, 31, 413–457. [Google Scholar] [CrossRef]
- Gaunitz, F.; Kieliba, T.; Thevis, M.; Mercer-Chalmers-Bender, K. Solid-Phase Extraction-Liquid Chromatography-Tandem Mass Spectrometry Method for the Qualitative Analysis of 61 Synthetic Cannabinoid Metabolites in Urine. Drug Test Anal. 2020, 12, 27–40. [Google Scholar] [CrossRef]
- Drake, D.J.; Jensen, R.S.; Busch-Petersen, J.; Kawakami, J.K.; Concepcion Fernandez-Garcia, M.; Fan, P.; Makriyannis, A.; Tius, M.A. Classical/Nonclassical Hybrid Cannabinoids: Southern Aliphatic Chain-Functionalized C-6β Methyl, Ethyl, and Propyl Analogues. J. Med. Chem. 1998, 41, 3596–3608. [Google Scholar] [CrossRef]
- Dresen, S.; Ferreirós, N.; Pütz, M.; Westphal, F.; Zimmermann, R.; Auwärter, V. Monitoring of Herbal Mixtures Potentially Containing Synthetic Cannabinoids as Psychoactive Compounds. J. Mass Spectrom. 2010, 45, 1186–1194. [Google Scholar] [CrossRef] [PubMed]
- Murakami, T.; Iwamuro, Y.; Ishimaru, R.; Chinaka, S.; Hasegawa, H. Molecularly Imprinted Polymer Solid-Phase Extraction of Synthetic Cathinones from Urine and Whole Blood Samples. J. Sep. Sci. 2018, 41, 4506–4514. [Google Scholar] [CrossRef] [PubMed]
- Olesti, E.; Pujadas, M.; Papaseit, E.; Pérez-Mañá, C.; Pozo, Ó.J.; Farré, M.; de la Torre, R. GC-MS Quantification Method for Mephedrone in Plasma and Urine: Application to Human Pharmacokinetics. J. Anal. Toxicol. 2017, 41, 100–106. [Google Scholar] [PubMed]
- Shah, S.A.; Deshmukh, N.I.; Barker, J.; Petróczi, A.; Cross, P.; Archer, R.; Naughton, D.P. Quantitative Analysis of Mephedrone Using Liquid Chromatography Tandem Mass Spectroscopy: Application to Human Hair. J. Pharm. Biomed. Anal. 2012, 61, 64–69. [Google Scholar]
- Jankovics, P.; Váradi, A.; Tölgyesi, L.; Lohner, S.; Németh-Palotás, J.; Koszegi-Szalai, H. Identification and Characterization of the New Designer Drug 4′-Methylethcathinone (4-MEC) and Elaboration of a Novel Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Screening Method for Seven Different Methcathinone Analogs. Forensic Sci. Int. 2011, 210, 213–220. [Google Scholar] [PubMed]
- Lesiak, A.D.; Adams, K.J.; Domin, M.A.; Henck, C.; Shepard, J.R. DART-MS for Rapid, Preliminary Screening of Urine for DMAA. Drug Test Anal. 2014, 6, 788–796. [Google Scholar]
- Wikström, M.; Thelander, G.; Dahlgren, M.; Kronstrand, R. An Accidental Fatal Intoxication with Methoxetamine. J. Anal. Toxicol. 2013, 37, 43–46. [Google Scholar]
- Fassette, T.; Martinez, A. An Impaired Driver Found to be Under the Influence of Methoxetamine. J. Anal. Toxicol. 2016, 40, 700–702. [Google Scholar]
- Esposito, M.; Cocimano, G.; Ministrieri, F.; Rosi, G.L.; Nunno, N.D.; Messina, G.; Sessa, F.; Salerno, M. Smart Drugs and Neuroenhancement: What Do We Know? Front. Biosci. (Landmark Ed.) 2021, 26, 347–359. [Google Scholar] [CrossRef]
- Spreitzer, I.; Keife, J.; Strasser, T.; Kalaba, P.; Lubec, J.; Neuhaus, W.; Lubec, G.; Langer, T.; Wackerlig, J.; Loryan, I. Pharmacokinetics of Novel Dopamine Transporter Inhibitor CE-123 and Modafinil with a Focus on Central Nervous System Distribution. Int. J. Mol. Sci. 2023, 24, 16956. [Google Scholar] [CrossRef]
- Lauretani, F.; Giallauria, F.; Testa, C.; Zinni, C.; Lorenzi, B.; Zucchini, I.; Salvi, M.; Napoli, R.; Maggio, M.G. Dopamine Pharmacodynamics: New Insights. Int. J. Mol. Sci. 2024, 25, 5293. [Google Scholar] [CrossRef] [PubMed]
- Chamakalayil, S.; Strasser, J.; Vogel, M.; Brand, S.; Walter, M.; Dürsteler, K.M. Methylphenidate for Attention-Deficit and Hyperactivity Disorder in Adult Patients with Substance Use Disorders: Good Clinical Practice. Front. Psychiatry 2021, 11, 540837. [Google Scholar] [CrossRef]
- Al-Saeed, W.; Al, D.M.; Rizwan, A.; Niyaz, A.; Abbas, N.A. Clinical Uses and Toxicity of Ephedra sinica: An Evidence-Based Comprehensive Retrospective Review (2004–2017). Pharmacogn. J. 2019, 11, 439–444. [Google Scholar] [CrossRef]
- Brito-da-Costa, A.M.; Dias-da-Silva, D.; Gomes, N.G.M.; Dinis-Oliveira, R.J.; Madureira-Carvalho, Á. Pharmacokinetics and Pharmacodynamics of Salvinorin A and Salvia divinorum: Clinical and Forensic Aspects. Pharmaceuticals 2021, 14, 116. [Google Scholar] [CrossRef] [PubMed]
- Teodorini, R.D.; Rycroft, N.; Smith-Spark, J.H. The Off-Prescription Use of Modafinil: An Online Survey of Perceived Risks and Benefits. PLoS ONE 2020, 15, e0227818. [Google Scholar] [CrossRef]
- Urban, K.R.; Gao, W.-J. Performance Enhancement at the Cost of Potential Brain Plasticity: Neural Ramifications of Nootropic Drugs in the Healthy Developing Brain. Front. Syst. Neurosci. 2014, 8, 76261. [Google Scholar] [CrossRef] [PubMed]
- Lees, J.; Michalopoulou, P.G.; Lewis, S.W.; Preston, S.; Bamford, C.; Collier, T.; Kalpakidou, A.; Wykes, T.; Emsley, R.; Pandina, G.; et al. Modafinil and Cognitive Enhancement in Schizophrenia and Healthy Volunteers: The Effects of Test Battery in a Randomised Controlled Trial. Psychol. Med. 2017, 47, 2358–2368. [Google Scholar] [CrossRef]
- Lakhan, S.E.; Kirchgessner, A. Prescription Stimulants in Individuals with and without Attention Deficit Hyperactivity Disorder: Misuse, Cognitive Impact, and Adverse Effects. Brain Behav. 2012, 2, 661–677. [Google Scholar] [CrossRef]
- Battleday, R.M.; Brem, A.K. Modafinil for Cognitive Neuroenhancement in Healthy Non-Sleep-Deprived Subjects: A Systematic Review. Eur. Neuropsychopharmacol. 2016, 26, 391. [Google Scholar] [CrossRef]
- Agritelley, M.S.; Goldberger, J.J. Caffeine Supplementation in the Hospital: Potential Role for the Treatment of Caffeine Withdrawal. Food Chem. Toxicol. 2021, 153, 112228. [Google Scholar] [CrossRef]
- Wilens, T.E.; Kaminski, T.A. Prescription Stimulants: From Cognitive Enhancement to Misuse. Pediatr. Clin. N. Am. 2019, 66, 1109–1120. [Google Scholar] [CrossRef]
- Ares-Santos, S.; Granado, N.; Espadas, I.; Martinez-Murillo, R.; Moratalla, R. Methamphetamine Causes Degeneration of Dopamine Cell Bodies and Terminals of the Nigrostriatal Pathway Evidenced by Silver Staining. Neuropsychopharmacology 2014, 39, 1066–1080. [Google Scholar] [CrossRef] [PubMed]
- Angelucci, F.; Gruber, S.H.; El Khoury, A.; Tonali, P.A.; Mathé, A.A. Chronic Amphetamine Treatment Reduces NGF and BDNF in the Rat Brain. Eur. Neuropsychopharmacol. 2007, 17, 756–762. [Google Scholar] [CrossRef]
- Jedynak, J.; Hearing, M.; Ingebretson, A.; Ebner, S.R.; Kelly, M.; Fischer, R.A.; Kourrich, S.; Thomas, M.J. Cocaine and Amphetamine Induce Overlapping but Distinct Patterns of AMPAR Plasticity in Nucleus Accumbens Medium Spiny Neurons. Neuropsychopharmacology 2016, 41, 464–476. [Google Scholar] [CrossRef] [PubMed]
- Yano, M.; Steiner, H. Methylphenidate and Cocaine: The Same Effects on Gene Regulation? Trends Pharmacol. Sci. 2007, 28, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Sadasivan, S.; Pond, B.B.; Pani, A.K.; Qu, C.; Jiao, Y.; Smeyne, R.J. Methylphenidate Exposure Induces Dopamine Neuron Loss and Activation of Microglia in the Basal Ganglia of Mice. PLoS ONE 2012, 7, e33693. [Google Scholar] [CrossRef]
- Quansah, E.; Sgamma, T.; Jaddoa, E.; Zetterström, T.S.C. Chronic Methylphenidate Regulates Genes and Proteins Mediating Neuroplasticity in the Juvenile Rat Brain. Neurosci. Lett. 2017, 654, 93–98. [Google Scholar] [CrossRef]
- Pulver, B.; Fischmann, S.; Gallegos, A.; Christie, R. EMCDDA Framework and Practical Guidance for Naming Synthetic Cannabinoids. Drug Test Anal. 2023, 15, 255–276. [Google Scholar] [CrossRef]
- Fattore, L. Synthetic Cannabinoids—Further Evidence Supporting the Relationship Between Cannabinoids and Psychosis. Biol. Psychiatry 2016, 79, 539–548. [Google Scholar] [CrossRef]
- Dos Santos, R.G.; Osório, F.L.; Crippa, J.A.S.; Hallak, J.E.C. Classical Hallucinogens and Neuroimaging: A Systematic Review of Human Studies. Neurosci. Biobehav. Rev. 2016, 71, 715–728. [Google Scholar] [CrossRef]
- Carbonaro, T.M.; Gatch, M.B. Neuropharmacology of N,N-Dimethyltryptamine. Brain Res. Bull. 2016, 126 Pt 1, 74–88. [Google Scholar] [PubMed]
- McKenna, D.J. Clinical Investigations of the Therapeutic Potential of Ayahuasca: Rationale and Regulatory Challenges. Pharmacol. Ther. 2004, 102, 111–129. [Google Scholar]
- European Monitoring Centre for Drugs and Drug Addiction. European Drug Report 2023: Trends and Developments; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- Freud, S. Über Coca: Freud’s Cocaine Discoveries. J. Subst. Abuse Treat. 1984, 1, 205–217. [Google Scholar]
- Nicholson, P.J.; Wilson, N. Smart Drugs: Implications for General Practice. Br. J. Gen. Pract. 2017, 67, 100–101. [Google Scholar] [PubMed]
- AIFA. Smart Drugs: I Rischi Nascosti del “Potenziamento Cognitivo”, 19 April 2014. Subseq. Stud. 2014, 62, 54–59. [Google Scholar]
- Meredith, S.E.; Juliano, L.M.; Hughes, J.R.; Griffiths, R.R. Caffeine Use Disorder: A Comprehensive Review and Research Agenda. J. Caffeine Res. 2013, 3, 114–130. [Google Scholar] [CrossRef]
- European Monitoring Centre for Drugs and Drug Addiction. New Psychoactive Substances: 25 Years of Early Warning and Response in Europe. An Update from the EU Early Warning System (June 2022); Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Comitato Nazionale per la Bioetica. Neuroscienze e Potenziamento Cognitivo Farmacologico: Profili Bioetici, 22 February 2013. Available online: https://bioetica.governo.it/media/3485/p106_2013_enhancement-cognitivo_it.pdf (accessed on 30 December 2024).
- Palazzani, L. La Mente Farmacologicamente Potenziata: Problemi Bioetici e Biogiuridici. Etica Polit./Ethics Polit. 2014, 16, 169–181. [Google Scholar]
- Greely, H.; Sahakian, B.; Harris, J.; Kessler, R.C.; Gazzaniga, M.; Campbell, P.; Farah, M.J. Towards Responsible Use of Cognitive-Enhancing Drugs by the Healthy. Nature 2008, 456, 702–705, Erratum: Nature 2008, 456, 872. [Google Scholar] [CrossRef]
- Farah, M.; Haimm, C.; Sankoorikal, G.; Chatterjee, A. When We Enhance Cognition with Adderall, Do We Sacrifice Creativity? A Preliminary Study. Psychopharmacology 2009, 202, 541–547. [Google Scholar] [CrossRef]
- Preta, B.D.O.C.; Miranda, V.I.A.; Bertoldi, A.D. Psychostimulant Use for Neuroenhancement (Smart Drugs) Among College Students in Brazil. Subst. Use Misuse 2019, 55, 613–621. [Google Scholar]
- Advokat, C. What Are the Cognitive Effects of Stimulant Medications? Emphasis on Adults with Attention-Deficit/Hyperactivity Disorder (ADHD). Neurosci. Biobehav. Rev. 2010, 34, 1256–1266. [Google Scholar]
- Volkow, N.D.; Fowler, J.S.; Wang, G.-J.; Telang, F.; Logan, J.; Wong, C.; Ma, J.; Pradhan, K.; Benveniste, H.; Swanson, J.M. Methylphenidate Decreased the Amount of Glucose Needed by the Brain to Perform a Cognitive Task. PLoS ONE 2008, 3, e2017. [Google Scholar]
- McDermott, H.; Lane, H.; Alonso, M. Working Smart: The Use of ‘Cognitive Enhancers’ by UK University Students. J. Further Higher Educ. 2021, 45, 270–283. [Google Scholar]
- Bogle, K.; Smith, B. Illicit Methylphenidate Use: A Review of Prevalence, Availability, Pharmacology, and Consequences. Curr. Drug Abus. Rev. 2009, 2, 157–176. [Google Scholar]
- Sharif, S.; Guirguis, A.; Fergus, S.; Schifano, F. The Use and Impact of Cognitive Enhancers Among University Students: A Systematic Review. Brain Sci. 2021, 11, 355. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, N. Smart Drug e Potenziamento Cognitivo; Il Pensiero Scientifico Editore: Rome, Italy, 2017. [Google Scholar] [CrossRef]
- Lengvenyte, A.; Strumila, R.; Grikiniene, J. Use of Cognitive Enhancers Among Medical Students in Lithuania. Nord. Stud. Alcohol Drugs 2016, 33, 173–188. [Google Scholar]
- Giurgea, C.; Salama, M. Nootropic Drugs. Prog. Neuropsychopharmacol. 1977, 1, 235–247. [Google Scholar]
- Robbins, T.W. Special Issue on Cognitive Enhancers. Psychopharmacology 2008, 202, 1–2. [Google Scholar]
- Abo-Elmatty, D.M.; Elshazly, S.M.; Zaitone, S.A. Piracetam and Vinpocetine Ameliorate Rotenone-Induced Parkinsonism in Rats. Indian J. Pharmacol. 2012, 44, 774–779. [Google Scholar]
- Husain, M.; Mehta, M.A. Cognitive Enhancement by Drugs in Health and Disease. Trends Cogn. Sci. 2011, 15, 28–36. [Google Scholar]
- Franke, A.G.; Bagusat, C.; Rust, S.; Engel, A.; Lieb, K. Substances Used and Prevalence Rates of Pharmacological Cognitive Enhancement among Healthy Subjects. Psychiatry Clin. Neurosci. 2014, 264 (Suppl. S1), S83–S90. [Google Scholar] [CrossRef] [PubMed]
Molecule | LLE | SPE (Cartridge) | SPE (Elution Solvent) | Analytical Method | Stationary Phase | Mobile Phase (Solvent/Gas Carrier) | MS (m/z) | UV λmax (nm) | IR λmax (vsm−1) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Caffeine | Chloroform + dichloromethane | MIP | Acetonitrile + acetic acid | HPLC–DAD | C18 | Water + acetic acid + acetonitrile | 194 | 272 | 1700 | [128,129] |
Polyphenols | Ethyl acetate + methanol | XTR Chromabond | Ethyl acetate | HPLC–UV HPLC–DAD | C18 | Acidified water + methanol or acetonitrile | 320–380 (band I) 240–270 (band II) | 3500–3200 | [130] | |
Huprazine A | Ethyl ether + chloroform | MIP1/PIN1 | Methanol + ammonia | HPLC–DAD | C18 | Ethanol 95% Ethanol 30% Ethanol 40% | 243 | 305 | 3368–3267 | [131,132] |
Ethanol + isopropanol | LC–MS/MS | C18 | Methanol + water + ammonium formate | 243 | [133] | |||||
Withaferin A | Methyl tert-butyl ether | LC–MS/MS | C18 | Methanol + ammonium acetate | 471 | 214 | 1692 | [134] | ||
Schisandrin | Water | LC–MS/MS | C18 | Water + formic acid + acetonitrile | 432 | [135] | ||||
Methyl Ether + tertbutyl ether + dichloromethane + ethyl acetate | UFLC–MS/MS | Shim-pack XR-ODS | Water + formic acid + acetonitrile | [136] | ||||||
HLB | Methanol + acetic acid + ammonia | HPLC–DAD | C18 Bondclone | Methanol + water | [137] | |||||
Syringin | Methanol | HPLC–DAD | C18 | Water + phosphoric acid + acetonitrile | 431 209 432 371 433 | 200–370 | [138] | |||
C18 | Water + methanol | HPLC–DAD | Symmetry C18 | Methanol + water | [139] | |||||
Geraniol | Pentane + diethyl ether | GC–MS | ZB-Wax | Helium | 77 80 93 121 143 | 2900 | [140] | |||
Monoterpenols | Dichloromethane | GC–MS | DB-FFAP | Helium | [141] | |||||
Arecoline | Chloroform/isopropane | HPLC–MS | C18 | Ammonium acetate + acetonitrile | 156 140 118 | [142] | ||||
Dehydrocorydaline | Water-saturated n-butanol ethyl acetate | HPLC–ESI–QTRAP–MS | Silica column | Helium | 351 | [143] | ||||
Lysergamide | Methanol | GC–MS | DB-1 | Helium | 267 | [144] | ||||
UHPLC–QTOF-MS/MS | C18 | Acetonitrile + formic acid | ||||||||
HPLC–DAD | Synergi Fusion–RP | Acetonitrile | ||||||||
LC–MS | PPFP | Water + formic acid Acetonitrile + formic acid | ||||||||
Ephedrine | MIP | Acetonitrile | HPLC | Stainless steel | Acetonitrile + sodium acetate + methanol | 148 117 133 | [145,146] | |||
Toluene-benzene | HPLC | C18 | Acetonitrile | 115 70 | ||||||
α-asarone βasarone | n-hexane | HPLC | C18 | Water + methanol | 208 | 254 | [147] | |||
HS–GC/MS | Fused silica | Helium | [148] | |||||||
Atropine alkaloids | n-hexane, Diethyl ether | GC–MS GC–FID | RTX-5 RTX-5 | Helium Argon | [149] | |||||
MIP | Acetonitrile + acetic acid | HPLC | C18 | Acetonitrile Aqueous ammonium acetate | [150] | |||||
Isoquinoline alkaloids | GP-resin | Methanol Chloroform | HPLC | C18 | Trifluoroacetic acid + acetonitrile | 129 51 102 50 76 | 280 | [151] | ||
Ammonium hydroxide Dichloromethane | HPLC–DAD–MS/MS | C18 | Trifluoroacetic acid + methanol | [152] | ||||||
Indole alkaloids | Chloroform, methanol | HPLC | C8, C18 and phenyl–hexyl | Monosodium phosphate + citric acid | 117 89 118 63 116 | [153] | ||||
MIP | Methanol Acetonitrile | HPLC–UV | XTerra MS C18 | Acetonitrile + acetic acid + ammonia buffer | [154] |
Molecule | LLE | SPE (Cartridge) | SPE (Elution Solvent) | Analytical Method | Stationary Phase | Mobile Phase (Solvent/Gas Carrier) | MS (m/z) | UV λmax (nm) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Classical cannabinoids | Methanol/chloroform | HPLC–DAD | C18 | Methanol + water | [155] | ||||
Ethanol | HPLC–DAD | C18 | Acetonitrile + formic acid | [156] | |||||
HPLC–DAD | RX-C18 | Water + acetonitrile | |||||||
Acetonitrile + trifluoroacetic acid | |||||||||
HPLC–DAD | EC-C18 | Acetonitrile + formic acid | |||||||
Strata phenyl | Acetonitrile | LC−ESI−MS/MS | Kinetex core-shell biphenyl | Ammonium formate + acetonitrile | [157] | ||||
Hybrid cannabinoids | Ether | HPLC–UV | Chiracel OD | Propanol + hexane | 254 | [158] | |||
IR–HPLC | Silica gel | Ethyl Acetate + hexane | |||||||
Aminoalkylindoles | n-hexane/ethyl acetate | LC–MS/MS | Phenyl hexyl | Formic acid + ammonium formate + methanol | [159] | ||||
Synthetic cathinones | MIP | Methanol | LC–MS/MS | Kinetex C18 | Acetonitrile + formic acid | [160] | |||
Mephedrone | Hexane | GC–MS | Phenylmethylsiloxane | Helium | 130 133 | [161] | |||
Hexane | LC–MS/MS | C18 | Acetonitrile | [162] | |||||
Methcathinones | Water | LC–MS/MS | C18 | Acetonitrile + formic acid | 58 | 210 | [163] | ||
DMAA | Dichloromethane | GC–MS | HP-5 | Helium | 44 | [164] | |||
MXE | Acetonitrile–ethanol | LC–MS/MS | C18 | Formic acid + ammonium + methanol | 190 | [165] | |||
Clean Screen | Methylene chloride + isopropanol + ammonium hydroxide | GC–MS | ZB-50 | Helium | [166] |
Drug/Drug Class | Major Psychological Effects | Major Adverse Effects | References |
---|---|---|---|
Amphetamines (Methamphetamine and Amphetamine-based ligands) | Euphoria, increased alertness, heightened cognitive performance, increased self-confidence, improved mood, and increased sociability | Neurotoxicity, degeneration of dopaminergic neurons, cognitive impairment, psychosis resembling schizophrenia symptoms, addiction potential, and long-term neuroplastic changes, including reduced NGF and BDNF levels | [180,181,182] |
Cocaine | Intense euphoria, increased energy levels, elevated mood, enhanced confidence, reduced feelings of fatigue, and heightened sense of reward | Neurotoxicity, significant addiction risk, cognitive deficits, changes in glutamatergic neurotransmission, dopaminergic neurodegeneration, and impaired synaptic plasticity involving AMPA receptors | [182,183] |
Methylphenidate (MPH) | Enhanced attention, improved cognitive functions, increased wakefulness and alertness, improved working memory, and reduced impulsivity | Dopaminergic neuron loss, increased oxidative stress, neuroinflammation, altered neuroplasticity, heightened sensitivity to neurotoxic effects, and potential long-term neurodegenerative changes | [183,184,185] |
Synthetic Cannabinoids | Relaxation, euphoria, altered sensory perception, sedation, and feelings of dissociation | Severe anxiety, paranoia, psychosis, hallucinations, tachycardia, neurotoxicity, cognitive impairments, risk of addiction, and cardiovascular problems | [69,186,187] |
Synthetic Cathinones (“Bath Salts”) | Increased sociability, euphoria, stimulation, heightened energy, and increased libido | Agitation, severe anxiety, psychosis, paranoia, aggression, hallucinations, cardiovascular toxicity, neurotoxicity, and risk of addiction | [5,6,85] |
DMT-based Substances (Ayahuasca and synthetic DMT analogs) | Altered states of consciousness, spiritual or mystical experiences, visual and auditory hallucinations, and altered perception of time | Anxiety, paranoia, panic reactions, nausea, vomiting, increased heart rate and blood pressure, and risk of serotonin syndrome | [188,189,190] |
Objective | Experimental Activity | Methodology | Expected Outcome |
---|---|---|---|
Identification of emerging NPS | Molecular identification (DNA barcoding and metabarcoding) | DNA extraction, PCR amplification, sequencing, and bioinformatics analysis | Accurate identification of plant and synthetic origin substances |
Morphological characterization of NPS | Micro-morphological analyses (light microscopy, SEM, and TEM) | Microscopic examination of samples at various magnifications and resolutions | Detailed morphological profiles to distinguish substances |
Chemical profiling and characterization | Chemical analyses (GC-MS, HPLC, and LC-MS/MS) | Extraction and quantification of bioactive compounds | Comprehensive chemical fingerprints of identified substances |
Toxicological risk assessment | In vitro and in vivo toxicological studies | Cytotoxicity assays and animal model evaluations | Risk profiles and safety data on NPS |
Development of a comprehensive database | Integration of molecular, morphological, and chemical data into an accessible database | Creation of a centralized digital platform for data storage and retrieval | Enhanced monitoring, rapid identification, and dissemination of information about new psychoactive substances |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ingegneri, M.; Smeriglio, E.; Zebbiche, Y.; Cornara, L.; Visalli, L.; Smeriglio, A.; Trombetta, D. The Dark Side of “Smart Drugs”: Cognitive Enhancement vs. Clinical Concerns. Toxics 2025, 13, 247. https://doi.org/10.3390/toxics13040247
Ingegneri M, Smeriglio E, Zebbiche Y, Cornara L, Visalli L, Smeriglio A, Trombetta D. The Dark Side of “Smart Drugs”: Cognitive Enhancement vs. Clinical Concerns. Toxics. 2025; 13(4):247. https://doi.org/10.3390/toxics13040247
Chicago/Turabian StyleIngegneri, Mariarosaria, Erika Smeriglio, Younes Zebbiche, Laura Cornara, Letterio Visalli, Antonella Smeriglio, and Domenico Trombetta. 2025. "The Dark Side of “Smart Drugs”: Cognitive Enhancement vs. Clinical Concerns" Toxics 13, no. 4: 247. https://doi.org/10.3390/toxics13040247
APA StyleIngegneri, M., Smeriglio, E., Zebbiche, Y., Cornara, L., Visalli, L., Smeriglio, A., & Trombetta, D. (2025). The Dark Side of “Smart Drugs”: Cognitive Enhancement vs. Clinical Concerns. Toxics, 13(4), 247. https://doi.org/10.3390/toxics13040247