Ecological Risk Assessment Is a Living Science: A Study on Heavy Metal(loid) Contamination in Typical Greenhouse Production Systems in Central China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil and Vegetable Sampling
2.3. Soil and Plant Sample Analysis
2.4. Data Analysis
2.4.1. Geo-Accumulation Index
2.4.2. Accumulation Factor
2.4.3. Potential Ecological Risk Index
2.4.4. Non-Carcinogenic Risk Assessment
2.4.5. Carcinogenic Risk Assessment
2.5. Source Apportionment
2.6. Statistical Analysis
3. Results and Discussion
3.1. Contamination of Target Elements in Soils
3.2. Contamination of Target Elements in Vegetables
3.3. Source Analysis of Target Heavy Metal(loid)s
3.4. Human Health Risks
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lv, P.; Wei, Z.M.; Yu, Z.M.; Zhang, J.Z.; Wang, L.M. Heavy metal contamination in soils of greenhouse vegetable production systems in a cold region of China. Int. J. Agric. Biol. Eng. 2019, 12, 98–102. [Google Scholar] [CrossRef]
- Cao, Z.Q.; Wei, B.G.; Yang, L.S.; Yu, J.P.; Meng, M.; Chen, Q.; Li, F. Different crop rotation patterns vary heavy metals behavior in soils under plastic sheds: Evidence from field research. Process Saf. Environ. Prot. 2022, 162, 543–552. [Google Scholar] [CrossRef]
- Cao, C.; Zhang, Q.; Ma, Z.B.; Wang, X.M.; Chen, H.; Wang, J.J. Fractionation and mobility risks of heavy metals and metalloids in wastewater-irrigated agricultural soils from greenhouses and fields in Gansu, China. Geoderma 2018, 328, 1–9. [Google Scholar] [CrossRef]
- Al-Hamad, A.A.; Al-Taani, A.A.; Ghrefat, H.; Khawajah, M.; Zoubi, A. Assessment of heavy metals in greenhouse cultivated soils, Northern Jordan. Pol. J. Environ. Stud. 2024, 33, 61–75. [Google Scholar] [CrossRef]
- Bataa, B.; Motohira, K.; Dugar, D.; Sainnokhoi, T.-A.; Gendenpil, L.; Sainnokhoi, T.; Pelden, B.; Yohannes, Y.B.; Ganzorig, S.; Nakayama, S.M.M.; et al. Accumulation of Metals in the Environment and Grazing Livestock near A Mongolian Mining Area. Toxics 2022, 10, 773. [Google Scholar] [CrossRef]
- Hua, C.Y.; Sheng, H.Y.; He, J.Y.; Fang, Z.T.; Zhu, M.Y.; Cui, Z.J.; Ren, L.J. Ecological risk, dynamics in fingerprinting, and source apportionment of heavy metals in soils from plateau in Upper Yellow River, Qinghai Province, China. J. Soil. Sediment. 2024, 24, 189–203. [Google Scholar] [CrossRef]
- Zhang, X.; Song, X.Y.; Zhang, H.Y.; Li, Y.S.; Hou, Y.X.; Zhao, X.X. Source apportionment and risk assessment of heavy metals in typical greenhouse vegetable soils in Shenyang, China. Environ. Monit. Assess. 2024, 196, 72. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Y.; Pan, J.; Zhong, L.; Qiao, M.; Gao, C.; Li, T.; Wang, Y. Can N-Doped Biochar Achieve Safe Vegetable Production in Soil Heavily Contaminated by Heavy Metals? Toxics 2025, 13, 79. [Google Scholar] [CrossRef]
- HJ/T 333-2006; Environmental Quality Evaluation Standards for Farmland of Greenhouse Vegetables Production of China. SEPAC (State Environmental Protection Administration of the People’s Republic of China): Beijing, China, 2006.
- MNY/T 391-2021; Green Food—Environmental Quality for Production Area of China. ARAC (Ministry of Agriculture and Rural Affairs of the People’s Republic of China): Beijing, China, 2021.
- Liu, J.; Wang, Y.N.; Liu, X.M.; Xu, J.M. Occurrence and health risks of heavy metals in plastic-shed soils and vegetables across China. Agric. Ecosyst. Environ. 2021, 321, 107632. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, W.; Yang, X.; Christie, P.; Luo, Y. Risk assessment of contamination by potentially toxic metals: A case study in the vicinity of an abandoned pyrite mine. Minerals 2019, 9, 783–804. [Google Scholar] [CrossRef]
- Park, S.J.; Choi, J.C.; Park, S.R.; Choi, H.; Kim, M.; Kim, J. Migration of lead and arsenic from food contact paper into a food simulant and assessment of their consumer exposure safety. Food Addit. Contam. Part A-Chem. Anal. Control Expo. Risk Assess. 2018, 35, 2493–2501. [Google Scholar] [CrossRef] [PubMed]
- Cobbina, J. Non-cancer risk assessment from exposure to mercury (Hg), cadmium (Cd), arsenic (As), copper (Cu) and lead (Pb) in boreholes and surface water in tinga, in the Bole-Bamboi District, Ghana. J. Toxicol. Environ. Health 2013, 5, 29–36. [Google Scholar] [CrossRef]
- Jose, C.C.; Xu, B.; Jagannathan, L.; Trac, C.; Mallela, R.K.; Hattori, T.; Lai, D.; Koide, S.; Schones, D.E.; Cuddapah, S. Epigenetic dysregulation by nickel through repressive chromatin domain disruption. Proc. Natl. Acad. Sci. USA 2014, 111, 14631–14636. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Hwang, I.; Park, Y.S.; Lee, D.Y. Occurrence and health risk assessment of antimony, arsenic, barium, cadmium, chromium, nickel, and lead in fresh fruits consumed in South Korea. Appl. Biol. Chem. 2023, 66, 40. [Google Scholar] [CrossRef]
- Hasumi, M.; Suzuki, K.; Matsui, H.; Koike, H.; Ito, K.; Yamanaka, H. Regulation of metallothionein and zinc transporter expression in human prostate cancer cells and tissues. Cancer Lett. 2003, 200, 187–195. [Google Scholar] [CrossRef]
- Rossi, M.C.; Castanheira, I.; Sammán, N.C. Lead, cadmium and arsenic exposure of schoolchildren of northwest Argentina from a risk assessment study. Food Addit. Contam. Part A-Chem. Anal. Control Expo. Risk Assess. 2019, 36, 1314–1326. [Google Scholar] [CrossRef]
- Lao, Y.M.; Qu, C.L.; Zhang, B.; Jin, H. Development and validation of single-step microwave-assisted digestion method for determining heavy metals in aquatic products: Health risk assessment. Food Chem. 2023, 402, 134500. [Google Scholar] [CrossRef]
- Rahmi, E.; Satriawan, H.; Muliana, E. Heavy metal remediation in copper (Cu) contaminated soil of Andosol and Latosol using spinach (Amaranthus sp.) as bioaccumulator. IOP Conf. Ser. Earth Environ. Sci. 2024, 1352, 012032. [Google Scholar] [CrossRef]
- Zhao, Y.; Hou, Y.; Wang, F. Ecological risk and pollution assessment of heavy metals in farmland soil profile with consideration of atmosphere deposition in central China. Toxics 2024, 12, 45. [Google Scholar] [CrossRef]
- Lü, J.; Jiao, W.B.; Qiu, H.Y.; Chen, B.; Huang, X.X.; Kang, B. Origin and spatial distribution of heavy metals and carcinogenic risk assessment in mining areas at You’xi County southeast China. Geoderma 2018, 310, 99–106. [Google Scholar] [CrossRef]
- Hubei Data, Hubei Province Bureau of Statistics of China. 2017. Available online: http://tjj.hubei.gov.cn (accessed on 14 April 2025).
- HPDARA (Hubei Provincial Department of Agriculture and Rural Affairs). 2024. Available online: http://nyt.hubei.gov.cn/bmdt/yw/mtksn/202408/t20240805_5289625.shtml (accessed on 14 April 2025).
- Li, T.; Zhou, J.; Deng, S.; Jiang, Y.; Bie, S.; Zhang, J.; Huang, C.; Gan, G.; Dong, X.; Xiong, M.; et al. Research and Development of Ecological Vegetable Standardization Production Technology in Jingmen City; Herun Institute of Vegetable Science: Jingmen, China, 2019. [Google Scholar]
- Ma, T.T.; Zhou, W.; Chen, L.K.; Li, Y.Q.; Luo, Y.M.; Wu, P. Phthalate esters contamination in vegetable-soil system of facility greenhouses in Jingmen, central China and the assessment of health risk. Environ. Geochem. Health 2020, 42, 2703–2721. [Google Scholar] [CrossRef] [PubMed]
- HUST (Huazhong University of Science and Technology). Qujialing Management Zone (Wusan Farm) Modern Agricultural Demonstration Zone Construction Master Plan (2009–2020); HUST (Huazhong University of Science and Technology): Wuhan, China, 2009. [Google Scholar]
- Ma, T.; Zhou, W.; Chen, L.; Christie, P.; Luo, Y.; Wu, P. Phthalate ester contamination in intensively managed greenhouse facilities and the assessment of carcinogenic and non-carcinogenic risk: A regional study. Int. J. Environ. Res. Public Health 2019, 16, 2818–2837. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ma, T.T.; Yuan, C.; Hou, J.Y.; Wang, Q.L.; Wu, L.H.; Christie, P.; Luo, Y.M. Metal contamination status of the soil-plant system and effects on the soil microbial community near a rare metal recycling smelter. Environ. Sci. Pollut. Res. 2016, 17, 17625–17634. [Google Scholar] [CrossRef]
- Lu, R.K. Soil Science Society of China. In Analysis Methods of Soil Agricultural Chemicals; Science and Technology of China Press: Beijing, China, 1999. [Google Scholar]
- Gil-Díaz, M.; Rodríguez-Valdés, E.; Alonso, J.; Baragaño, D.; Gallego, J.R.; Lobo, M.C. Nanoremediation and long-term monitoring of brownfield soil highly polluted with As and Hg. Sci. Total Environ. 2019, 675, 165–175. [Google Scholar] [CrossRef]
- Nardi, E.P.; Evangelista, F.S.; Tormen, L.; SaintPierre, T.D.; Curtius, A.J.; de Souza, S.S.; Barbosa, F. The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples. Food Chem. 2009, 112, 727–732. [Google Scholar] [CrossRef]
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. GEO J. 1969, 2, 108–118. [Google Scholar]
- Zhao, Q.G.; China National Environmental Monitoring Center (CNEMC). Chinese Elemental Background Values for Soils; Chinese Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- Xiang, J.Q.; Zhao, M.; Yang, J.; Li, C. Soil Geochemical Background Data of Hubei Province; China University of Geosciences Press: Wuhan, China, 2023; ISBN 978-7-5625-5598-8. [Google Scholar]
- Li, Q.S.; Chen, Y.; Fu, H.; Cui, Z.; Shi, L.; Wang, L.; Liu, Z. Health risk of heavy metals in food crops grown on reclaimed tidal flat soil in the Pearl River Estuary, China. J. Hazard. Mater. 2012, 227–228, 148–154. [Google Scholar] [CrossRef]
- Nemerow, N.L. Stream, Lake, Estuary, and Ocean Pollution; Van Nostrand Reinåold Publishing Co.: New York, NY, USA, 1985. [Google Scholar]
- Håkanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Zang, F.; Wang, S.; Nan, Z.; Ma, J.; Zhang, Q.; Chen, Y.; Li, Y. Accumulation, spatio-temporal distribution, and risk assessment of heavy metals in the soil-corn system around a polymetallic mining area from the Loess Plateau, northwest China. Geoderma 2017, 305, 188–196. [Google Scholar] [CrossRef]
- Ma, T.T.; Fan, W.Y.; Pan, X.; Luo, Y.M. Estimating the risks from phthalate esters and metal(loid)s in cultivated edible fungi from Jingmen, central China. Food Chem. 2021, 348, 129065–129073. [Google Scholar] [CrossRef]
- CNPMC (China National Physique Monitoring Center). The Fifth National Physique Monitoring Communique. 2023. Available online: https://www.gov.cn/guoqing/2023-03/12/content_5745851.htm (accessed on 14 April 2025).
- USEPA (US Environmental Protection Agency). Risk Assessment Guidance for Superfund: Volume III Part A, Process for Conducting Probabilistic Risk Assessment; US Environmental Protection Agency: Washington, DC, USA, 2011. [Google Scholar]
- USEPA (US Environmental Protection Agency). Integrated Risk Information System, Vol. 2015. 2015. Available online: http://www.epa.gov/iris (accessed on 1 December 2015).
- USEPA (US Environmental Protection Agency). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; OSWER 9355.4-24; Office of Solid Waste and Emergency Response (USEPA): Washington, DC, USA, 2002. [Google Scholar]
- Chowdhury, A.I.; Shill, L.C.; Raihan, M.M.; Rashid, R.; Bhuiyan, M.N.H.; Rez, S.; Alam, M.R. Human health risk assessment of heavy metals in vegetables of Bangladesh. Sci. Rep. 2024, 14, 15616. [Google Scholar] [CrossRef] [PubMed]
- GB 15618-2018; Soil Environmental Quality—Risk Control Standard for Soil Contamination of Agricultural Land of China. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China; State Administration for Market Regulation of China: Beijing, China, 2018.
- MEGJ (Ministry of the Environment Government of Japan). Environmental Quality Standards for Soil Pollution. 2011. Available online: http://www.env.go.jp/en/water/soil/sp.html (accessed on 14 April 2025).
- CCME (Canadian Council of Ministers of the Environment). Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health; CCME: Winnipeg, MB, Canada, 1996. [Google Scholar]
- Cao, C.; Liang, B.Y.; Yang, Y.; Ren, D.; Tang, Q.H.; Wang, C.W.; Li, Z.; Wang, J.J. Temporal variations in absorption and translocation of heavy metal(loid)s in pak choi (Brassica rapa L.) under open-field and greenhouse cultivation. Ecotoxicol. Environ. Saf. 2024, 281, 116667. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.K.; Huang, B.; Hu, W.Y.; Wang, W.X.; Muhammad, I.; Lu, Q.Q.; Jing, G.H.; Zhang, Z. Ecological-health risks assessment and source identification of heavy metals in typical greenhouse vegetable production systems in Northwest China. Environ. Sci. Pollut. Res. 2021, 28, 42583–42595. [Google Scholar] [CrossRef] [PubMed]
- Jing, G.H.; Wang, W.X.; Chen, Z.K.; Huang, B.; Li, Y.M.; Zhang, Y.X.; Yang, Y.Z.; Lu, Q.Q.; Zhang, Z.; Imran, M. Ecological risks of heavy metals in soil under different cultivation systems in Northwest China. Agric. Ecosyst. Environ. 2023, 348, 108428. [Google Scholar] [CrossRef]
- Liu, Y.B.; Ma, Z.H.; Liu, G.N.; Jiang, L.; Dong, L.M.; He, Y.; Shang, Z.F.; Shi, H.D. Accumulation risk and source apportionment of heavy metals in different types of farmland in a typical farming area of northern China. Environ. Geochem. Health 2021, 43, 5177–5194. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, B.; Hu, W.; Weindorf, D.C.; Liu, X.; Yang, L. Accumulation and ecological effects of soil heavy metals in conventional and organic greenhouse vegetable production systems in Nanjing, China. Environ. Earth Sci. 2014, 71, 3605–3616. [Google Scholar] [CrossRef]
- Fan, Y.; Li, H.; Xue, Z.; Zhang, Q.; Cheng, F. Accumulation characteristics and potential risk of heavy metals in soil-vegetable system under greenhouse cultivation condition in northern China. Ecol. Eng. 2017, 102, 367–373. [Google Scholar] [CrossRef]
- Jalali, M.; Mojahed, J.K. Assessment of the health risks of heavy metals in soils and vegetables from greenhouse production systems in Iran. Int. J. Phytorem. 2020, 22, 834–848. [Google Scholar] [CrossRef]
- Fan, Y.N.; Zhang, Y.X.; Chen, Z.K.; Wang, X.K.; Huang, B. Comprehensive assessments of soil fertility and environmental quality in plastic greenhouse production systems. Geoderma 2021, 385, 114899. [Google Scholar] [CrossRef]
- Li, J.; Wang, M.; Zhang, J.; Wang, H.; Yao, J.; Tao, L.; Lu, L.; Yi, T.; Fan, M. Current situation and evaluation of heavy metal pollution in major vegetable bases in Hubei Province. Hubei Agric. Sci. 2016, 55, 6563–6568. Available online: https://api.semanticscholar.org/CorpusID:135300318 (accessed on 14 April 2025).
- GB2762–2022; Maximum Levels of Contaminants in Foods. Chinese Ministry of Health (CMH): Beijing, China, 2022.
- Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO). Limitations on Food Additives and Contaminants; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2001. [Google Scholar]
- European Union (EU). Regulations Regarding Maximum Levels of Certain Contaminants in Food; European Union: Brussels, Belgium, 2023. [Google Scholar]
- Mi, B.; Xiao, W.; Tu, N.; Wu, F. Selection of pollution-safe head cabbage: Interaction of multiple heavy metals in soil on bioaccumulation and transfer. Food Chem. 2024, 452, 139615. [Google Scholar] [CrossRef] [PubMed]
- Kampouroglou, E.E.; Economou-Eliopoulos, M. Assessment of arsenic and associated metals in the soil-plant-water system in Neogene basins of Attica, Greece. CATENA 2017, 150, 206–222. [Google Scholar] [CrossRef]
- Hu, W.; Chen, Y.; Huang, B.; Niedermann, S. Health risk assessment of heavy metals in soils and vegetables from a typical greenhouse vegetable production system in China. Hum. Ecol. Risk Assess. 2014, 20, 1264–1280. [Google Scholar] [CrossRef]
- Magri, E.; Teresa, V.A.; Gonalves, I.T.; Barbosa, J.Z.; Motta, A.V.M. Cadmium and lead concentrations in yerba mate leaves from agroforestry and plantation systems: An international survey in South America. J. Food Compos. Anal. 2021, 96, 103702. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, B.; Dong, L.; Hu, W.; Akhtar, M.S.; Qu, M. Accumulation, sources and health risks of trace metals in elevated geochemical background soils used for greenhouse vegetable production in southwestern China. Ecotoxicol. Environ. Saf. 2017, 137, 233–239. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, H.; Liu, G. The spatial distribution and accumulation characteristics of heavy metals in steppe soils around three mining areas in Xilinhot in Inner Mongolia, China. Environ. Sci. Pollut. Res. 2017, 24, 25416–25430. [Google Scholar] [CrossRef]
- Meng, M.; Yang, L.S.; Wei, B.G.; Li, H.; Yu, J. Contamination assessment and spatial distribution of heavy metals in greenhouse soils in China. J. Ecol. Rural Environ. 2018, 34, 1019–1026. [Google Scholar] [CrossRef]
- Lan, W.; Yao, C.; Luo, F.; Jin, Z.; Lu, S.; Li, J.; Wang, X.; Hu, X. Effects of Application of Pig Manure on the Accumulation of Heavy Metals in Rice. Plants 2022, 11, 207. [Google Scholar] [CrossRef]
- Kalkhajeh, Y.K.; Huang, B.; Hu, W.; Ma, C.; Gao, H.; Thompson, M.L.; Hansen, H.C.B. Environmental soil quality and vegetable safety under current greenhouse vegetable production management in China. Agric. Ecosyst. Environ. 2021, 307, 107230. [Google Scholar] [CrossRef]
- Wei, B.G.; Yu, J.P.; Cao, Z.Q.; Meng, M.; Yang, L.S.; Chen, Q. The Availability and Accumulation of Heavy Metals in Greenhouse Soils Associated with Intensive Fertilizer Application. Int. J. Environ. Res. Public Health 2020, 17, 5359. [Google Scholar] [CrossRef]
- Meng, M.; Yang, L.S.; Yu, J.P.; Wei, B.G.; Li, H.R.; Cao, Z.Q.; Chen, Q.; Zhang, G.Y. Identification of spatial patterns and sources of heavy metals in greenhouse soils using geostatistical and positive matrix factorization (PMF) methods. Land Degrad. Dev. 2021, 32, 5412–5426. [Google Scholar] [CrossRef]
- Yun, S.W.; Son, J. Contamination and spatial distribution of metal(loid)s in the stream sediment near the greenhouse. Horticulturae 2024, 10, 312. [Google Scholar] [CrossRef]
- Khatoon, N.; Ali, S.; Hussain, A.; Huang, J.; Yu, Z.; Liu, H. Evaluating the Carcinogenic and Non-Carcinogenic Health Risks of Heavy Metals Contamination in Drinking Water, Vegetables, and Soil from Gilgit-Baltistan, Pakistan. Toxics 2025, 13, 5. [Google Scholar] [CrossRef] [PubMed]
- Dahal, B.M.; Fuerhacker, M.; Mentler, A.; Shrestha, R.R.; Blum, W.E.H. Screening of arsenic in irrigation water used for vegetable production in Nepal. Arch. Agron. Soil Sci. 2008, 54, 41–51. [Google Scholar] [CrossRef]
- Chorom, M.; Karkaragh, R.M.; Kaviani, B.; Kalkhajeh, Y.K. Monometal and competitive adsorption of Cd, Ni, and Zn in soil treated with different contents of cow manure. Appl. Environ. Soil Sci. 2013, 2013, 50–57. [Google Scholar] [CrossRef]
- Cao, H.C.; Luan, Z.Q.; Wang, J.D.; Zhang, X.L. Potential ecological risk of cadmium, lead and arsenic in agricultural black soil in Jilin province, China. Stoch. Environ. Res. Risk Assess. 2009, 23, 57–64. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Zhou, X.; You, X.; Shi, Y.; Xu, J. Source identification and spatial distribution of heavy metals in tobacco-growing soils in Shandong province of China with multivariate and geostatistical analysis. Environ. Sci. Pollut. Res. 2017, 24, 5964–5975. [Google Scholar] [CrossRef]
- Yang, L.Q.; Di, L.; Sun, F.L.; Tian, W.F.; Huang, B.; Fan, G. Bioaccessibility and health risk assessment of trace metals in soils of greenhouse vegetable production near the industrial areas of the Yangtze River Delta, China. Environ. Sci. Pollut. Res. 2020, 27, 30729–30740. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, Z.; Zhang, Q.; Liu, X.; Zhuo, X.; Wu, T.; Wang, L.; Wei, X.; Ji, J. Ecological risk assessment of Cd and other heavy metals in soil-rice system in the karst areas with high geochemical background of Guangxi, China. Sci. Chi. Earth Sci. 2021, 64, 1126–1139. [Google Scholar] [CrossRef]
- Liu, M.; Yang, Y.; Yun, X.Y.; Zhang, M.M.; Wang, J. Concentrations, distribution, sources, and ecological risk assessment of heavy metals in agricultural topsoil of the Three Gorges Dam region, China. Environ. Monit. Assess. 2015, 187, 147. [Google Scholar] [CrossRef]
- Çelebi, A.; Şengörür, B.; Torabi Haghighi, A.; Danandeh Mehr, A. Riparian Soil Pollution Caused by Sediment Metal Transport: Seasonal Changes and Ecological Risk Assessment. Toxics 2024, 12, 213. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.K.; Muhammad, I.; Zhang, Y.X.; Hu, W.Y.; Lu, Q.Q.; Wang, W.X.; Huang, B.; Hao, M.D. Transfer of heavy metals in fruits and vegetables grown in greenhouse cultivation systems and their health risks in Northwest China. Sci. Total Environ. 2021, 766, 142663. [Google Scholar] [CrossRef] [PubMed]
- Yeganeh, M.; Afyuni, M.; Khoshgoftarmanesh, A.H.; Khodakarami, L.; Amini, M.; Soffyanian, A.R.; Schulin, R. Mapping of human health risks arising from soil nickel and mercury contamination. J. Hazard. Mater. 2013, 244–245, 225–239. [Google Scholar] [CrossRef]
- Zeng, L.; Zhou, F.; Zhang, X.; Qin, J.; Li, H. Distribution of heavy metals in soils and vegetables and health risk assessment in the vicinity of three contaminated sites in Guangdong Province, China. Hum. Ecol. Risk Assess. 2018, 24, 1901–1915. [Google Scholar] [CrossRef]
- Guo, J.K.; Zhang, Y.; Liu, W.J.; Zhao, J.; Yu, S.H.; Jia, H.L.; Zhang, C.; Li, Y.T. Incorporating in vitro bioaccessibility into human health risk assessment of heavy metals and metalloid (As) in soil and pak choi (Brassica chinensis L.) from greenhouse vegetable production fields in a megacity in Northwest China. Food Chem. 2022, 373, 131488. [Google Scholar] [CrossRef]
- Gu, Y.G.; Gao, Y.P.; Lin, Q. Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in southern China’s largest city, Guangzhou. Appl. Geochem. 2016, 67, 52–58. [Google Scholar] [CrossRef]
- Neaman, A.; Sauvé, S.; Páez, R.; Lizardi, N.; Mazuela, P.; Figueroa, L.; Yáñez, C. Human Health Risks from Consuming Vegetables Grown in Anomalously High-Arsenic Soils. Soil Sci. Plant Nutr. 2024, 24, 1030–1041. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, Y.; Sun, C.; Sun, T.; Liu, X.; Li, J.; Fang, L.; Fan, Z. Heavy metals in soil of an urban industrial zone in a metropolis: Risk assessment and source apportionment. Stoch. Environ. Res. Risk Assess. 2020, 34, 435–446. [Google Scholar] [CrossRef]
- Chera-Anghel, I.A.; Stefan-van Staden, R.I. Extraction of heavy metals by cooking/preserving of seafood, tuna and poultry from Romania—A source of contamination with heavy metals. Food Chem. 2023, 407, 135158. [Google Scholar] [CrossRef]
- Ma, Q.; Zhu, Y.; Li, Y.; Zhang, Z.; Huang, J.; Zuo, Y. Quantification of heavy metals and health risk assessment in Sichuan pickle. J. Food Sci. 2022, 87, 2229–2244. [Google Scholar] [CrossRef]
- Han, L.; Fan, Y.; Chen, R.; Zhai, Y.; Liu, Z.; Zhao, Y.; Li, R.; Xia, L. Probabilistic Risk Assessment of Heavy Metals in Mining Soils Based on Fractions: A Case Study in Southern Shaanxi, China. Toxics 2023, 11, 997. [Google Scholar] [CrossRef] [PubMed]
Study Area | Site | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|---|
Hubei Province [34] | 1–9 | 12.3 | 0.172 | 86.0 | 30.7 | 0.0800 | 3.73 | 26.7 | 83.6 |
Jingmen Central Area [35] | 1–3 | 12.5 | 0.190 | 78.0 | 27.1 | 0.0571 | 33.40 | 31.0 | 67.0 |
Zhongxiang City [35] | 4, 5 | 12.1 | 0.260 | 81.0 | 30.5 | 0.0515 | 37.50 | 27.5 | 82.0 |
Jingshan City [35] | 6, 7 | 12.3 | 0.200 | 79.0 | 29.2 | 0.0630 | 34.50 | 29.9 | 73.0 |
Shayang County [35] | 8, 9 | 12.1 | 0.150 | 76.0 | 24.9 | 0.0636 | 30.70 | 29.5 | 55.0 |
No. | Area | Vegetable Type | As (mg/kg) | Cd (mg/kg) | Cr (mg/kg) | Cu (µg/kg) | Hg (µg/kg) | Ni (mg/kg) | Pb (mg/kg) | Zn (mg/kg) | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Zilingpu (ZL) n = 24 | Green eggplant | 15.06 ± 0.16 | 2.53 ± 0.55 | 17.91 ± 1.29 | 152.98 ± 3.88 | 87.43 ± 3.47 | 38.66 ± 5.00 | 20.55 ± 0.64 | 73.05 ± 4.16 | |
Yellow cucumber | 15.95 ± 0.21 | 2.07 ± 0.90 | 11.16 ± 3.00 | 144.34 ± 7.11 | 97.15 ± 3.03 | 35.65 ± 6.61 | 17.56 ± 0.58 | 72.02 ± 1.38 | |||
Cucumber | 13.92 ± 0.14 | 2.51 ± 0.83 | 12.20 ± 3.10 | 146.13 ± 5.08 | 50.06 ± 2.21 | 37.26 ± 5.51 | 26.16 ± 0.53 | 72.47 ± 0.90 | |||
Tomato | 13.44 ± 0.70 | 1.55 ± 0.50 | 32.48 ± 2.27 | 167.90 ± 4.63 | 28.17 ± 0.20 | 37.80 ± 5.21 | 17.19 ± 0.75 | 81.17 ± 2.38 | |||
Green chili | 11.23 ± 0.12 | 2.09 ± 0.78 | 23.64 ± 2.58 | 178.29 ± 2.27 | 70.04 ± 3.45 | 31.36 ± 6.05 | 19.43 ± 0.87 | 73.21 ± 5.46 | |||
Small cushaw | 14.00 ± 0.90 | 1.73 ± 0.35 | 64.47 ± 3.95 | 164.37 ± 5.65 | 58.71 ± 1.72 | 33.40 ± 3.76 | 22.05 ± 1.41 | 72.39 ± 5.19 | |||
2 | Zhanghe (ZH) n = 12 | Long purple eggplant | 13.43 ± 0.96 | 2.53 ± 1.13 | 75.39 ± 2.48 | 188.17 ± 13.70 | 26.32 ± 0.57 | 28.03 ± 2.26 | 22.05 ± 1.97 | 124.90 ± 5.53 | |
Green chili | 11.91 ± 0.40 | 2.11 ± 0.43 | 66.29 ± 1.59 | 205.76 ± 8.48 | 20.65 ± 0.34 | 27.06 ± 3.63 | 22.05 ± 2.27 | 168.02 ± 1.39 | |||
Cauliflower | 12.73 ± 0.90 | 3.42 ± 3.21 | 81.12 ± 2.41 | 196.07 ± 7.63 | 59.41 ± 1.39 | 32.65 ± 2.60 | 22.42 ± 2.23 | 114.03 ± 9.71 | |||
3 | Tuanlin (TL) n = 24 | Cherry tomato | 13.62 ± 0.56 | 1.73 ± 0.13 | 16.89 ± 2.03 | 175.26 ± 10.58 | 58.72 ± 0.37 | 30.07 ± 7.63 | 15.70 ± 0.58 | 163.54 ± 5.20 | |
Long purple eggplant | 13.67 ± 0.50 | 2.69 ± 0.83 | 11.42 ± 1.49 | 173.70 ± 10.57 | 38.85 ± 2.36 | 29.21 ± 4.05 | 16.82 ± 0.40 | 159.10 ± 3.92 | |||
Pumpkin | 13.94 ± 0.60 | 1.51 ± 0.10 | 12.73 ± 1.99 | 202.59 ± 7.58 | 46.57 ± 2.33 | 30.71 ± 2.98 | 18.31 ± 0.06 | 194.82 ± 3.61 | |||
Cucumber | 14.18 ± 0.12 | 1.58 ± 0.47 | 12.73 ± 1.17 | 174.52 ± 11.95 | 93.17 ± 1.91 | 31.57 ± 3.80 | 19.43 ± 1.34 | 170.72 ± 6.21 | |||
Lettuce | 15.39 ± 0.88 | 1.78 ± 0.89 | 10.12 ± 1.70 | 176.00 ± 8.02 | 22.79 ± 0.53 | 32.32 ± 4.37 | 22.05 ± 0.17 | 151.92 ± 0.76 | |||
Garland chrysanthemum | 15.34 ± 0.60 | 1.73 ± 0.35 | 11.42 ± 1.19 | 223.86 ± 9.53 | 42.70 ± 0.34 | 29.21 ± 5.49 | 25.04 ± 0.90 | 195.97 ± 2.18 | |||
4 | Zhongxiang (ZX) n = 16 | Cauliflower | 11.14 ± 0.83 | 1.75 ± 0.37 | 66.02 ± 5.57 | 206.45 ± 9.47 | 31.07 ± 1.63 | 25.13 ± 5.59 | 26.53 ± 2.07 | 141.78 ± 7.56 | |
Asparagus lettuce | 12.50 ± 0.34 | 2.95 ± 2.02 | 36.37 ± 1.88 | 162.35 ± 14.71 | 16.47 ± 0.59 | 32.22 ± 6.47 | 21.30 ± 1.25 | 83.39 ± 5.34 | |||
Chinese cabbage | 12.10 ± 0.55 | 1.71 ± 0.27 | 73.57 ± 2.11 | 178.84 ± 9.86 | 28.57 ± 0.71 | 29.42 ± 5.00 | 24.29 ± 2.17 | 88.75 ± 4.25 | |||
Green chili | 10.09 ± 0.49 | 1.89 ± 0.47 | 33.25 ± 5.19 | 161.06 ± 16.33 | 42.93 ± 0.83 | 32.43 ± 6.22 | 19.06 ± 1.14 | 77.64 ± 4.58 | |||
5 | Pengdun (PD) n = 16 | Cherry tomato | 12.63 ± 0.64 | 1.18 ± 0.04 | 28.07 ± 4.23 | 184.12 ± 6.34 | 38.64 ± 0.15 | 34.58 ± 4.89 | 26.16 ± 1.24 | 102.01 ± 7.67 | |
Mini cucumber | 13.21 ± 0.12 | 1.73 ± 0.77 | 80.08 ± 2.11 | 193.72 ± 10.22 | 31.75 ± 1.63 | 35.22 ± 3.78 | 25.78 ± 1.76 | 101.74 ± 4.83 | |||
Purple eggplant | 13.21 ± 0.12 | 1.44 ± 0.38 | 83.20 ± 1.87 | 182.33 ± 12.52 | 29.65 ± 1.28 | 33.93 ± 3.29 | 24.29 ± 1.08 | 96.09 ± 2.54 | |||
Green chili | 12.37 ± 0.25 | 1.84 ± 0.50 | 64.74 ± 2.87 | 207.69 ± 10.83 | 24.62 ± 0.66 | 35.33 ± 4.99 | 22.05 ± 1.30 | 96.84 ± 3.04 | |||
6 | Xinshi (XS) n = 20 | Cucumber | 10.28 ± 0.16 | 1.18 ± 0.17 | 13.33 ± 3.05 | 137.95 ± 8.63 | 22.03 ± 0.46 | 30.59 ± 3.68 | 17.27 ± 0.86 | 73.20 ± 2.97 | |
Tomato | 10.83 ± 0.14 | 1.28 ± 0.26 | 12.39 ± 2.84 | 133.67 ± 6.32 | 23.55 ± 0.52 | 31.55 ± 5.17 | 16.38 ± 0.65 | 71.95 ± 3.85 | |||
Bitter gourd | 10.35 ± 0.13 | 1.12 ± 0.25 | 12.34 ± 1.69 | 146.85 ± 5.95 | 20.98 ± 0.32 | 30.98 ± 4.57 | 15.40 ± 1.24 | 73.16 ± 4.67 | |||
Purple eggplant | 10.97 ± 0.02 | 1.30 ± 0.52 | 15.40 ± 3.55 | 144.40 ± 7.66 | 22.01 ± 0.49 | 30.68 ± 3.68 | 14.96 ± 0.95 | 74.68 ± 3.88 | |||
Green chili | 11.03 ± 0.31 | 1.35 ± 0.35 | 14.68 ± 2.28 | 146.35 ± 8.18 | 22.84 ± 0.52 | 31.23 ± 3.82 | 15.85 ± 0.84 | 74.62 ± 5.85 | |||
7 | Yonglong (YL) n = 20 | Tomato | 14.24 ± 0.51 | 1.66 ± 0.27 | 25.65 ± 2.23 | 158.62 ± 6.65 | 52.35 ± 0.62 | 33.95 ± 3.45 | 18.64 ± 0.96 | 69.16 ± 4.65 | |
Green chili | 13.56 ± 0.15 | 1.67 ± 0.38 | 22.39 ± 3.82 | 146.63 ± 6.95 | 51.00 ± 0.31 | 32.63 ± 3.69 | 19.65 ± 0.55 | 83.96 ± 4.95 | |||
Long purple eggplant | 13.65 ± 0.22 | 1.78 ± 0.42 | 25.95 ± 4.15 | 155.33 ± 5.85 | 52.49 ± 0.29 | 31.06 ± 5.17 | 18.65 ± 0.67 | 88.19 ± 3.48 | |||
Cucumber | 14.02 ± 0.32 | 1.75 ± 0.32 | 26.38 ± 3.19 | 153.32 ± 8.15 | 55.15 ± 0.32 | 33.18 ± 4.98 | 19.85 ± 0.79 | 82.17 ± 3.85 | |||
Cowpea | 12.35 ± 0.22 | 1.69 ± 0.52 | 22.95 ± 2.95 | 159.32 ± 7.56 | 52.15 ± 0.42 | 32.02 ± 4.64 | 18.31 ± 0.95 | 78.17 ± 3.95 | |||
8 | Lishi (LS) n = 24 | Cucumber | 15.63 ± 0.30 | 2.14 ± 0.72 | 36.65 ± 2.84 | 186.35 ± 8.33 | 38.15 ± 0.32 | 43.02 ± 4.97 | 22.32 ± 1.36 | 85.14 ± 4.84 | |
Chinese tarragon | 17.69 ± 0.33 | 2.92 ± 0.56 | 39.65 ± 2.62 | 188.34 ± 4.96 | 39.62 ± 0.28 | 41.94 ± 3.11 | 23.54 ± 1.27 | 95.61 ± 5.19 | |||
Water spinach | 17.33 ± 0.17 | 2.87 ± 0.56 | 39.69 ± 3.42 | 195.65 ± 8.67 | 42.49 ± 0.34 | 38.29 ± 2.87 | 20.52 ± 1.10 | 98.62 ± 2.94 | |||
White tomato eggplant | 15.55 ± 0.33 | 2.19 ± 0.57 | 33.85 ± 3.85 | 187.33 ± 9.16 | 33.15 ± 0.38 | 36.19 ± 5.85 | 21.63 ± 1.38 | 86.62 ± 8.81 | |||
Green chili | 16.32 ± 0.35 | 1.97 ± 0.84 | 35.17 ± 2.94 | 176.34 ± 6.32 | 33.28 ± 0.52 | 35.17 ± 3.17 | 20.65 ± 1.39 | 88.85 ± 7.65 | |||
Tomato | 14.33 ± 0.22 | 2.00 ± 0.74 | 35.30 ± 4.89 | 179.68 ± 5.95 | 36.48 ± 0.94 | 38.17 ± 5.86 | 21.08 ± 1.52 | 87.61 ± 6.62 | |||
9 | Guandang (GD) n = 20 | Mini cucumber | 12.39 ± 0.22 | 2.32 ± 0.62 | 55.32 ± 3.19 | 210.32 ± 8.12 | 38.32 ± 0.65 | 35.67 ± 3.16 | 25.62 ± 0.86 | 85.61 ± 4.59 | |
Cherry tomato | 13.26 ± 0.22 | 2.57 ± 0.59 | 52.32 ± 2.92 | 209.32 ± 5.96 | 32.62 ± 0.91 | 33.69 ± 3.25 | 26.65 ± 0.95 | 110.27± 5.89 | |||
Broccoli | 12.99 ± 0.32 | 2.16 ± 0.62 | 52.85 ± 2.88 | 207.96 ± 6.68 | 40.62 ± 0.88 | 35.85 ± 3.40 | 28.17 ± 0.86 | 129.17 ± 4.95 | |||
Purple ball eggplant | 13.28 ± 0.62 | 2.13 ± 0.66 | 53.23 ± 2.62 | 205.36 ± 5.69 | 38.17 ± 1.06 | 36.18 ± 5.52 | 27.62 ± 0.86 | 135.05 ± 6.85 | |||
Green chili | 13.33 ± 0.59 | 2.37 ± 0.75 | 54.22 ± 2.34 | 220.62 ± 5.98 | 36.66 ± 1.10 | 37.17 ± 4.97 | 29.62 ± 0.86 | 143.49 ± 5.92 | |||
GB 15618-2018 [46] | pH ≤ 5.5 | 40 | 0.3 | 150 | 50,000 | 1300 | 60 | 70 | 200 | ||
5.5 < pH ≤ 6.5 | 40 | 0.3 | 150 | 50,000 | 1800 | 70 | 90 | 200 | |||
6.5 < pH ≤ 7.5 | 30 | 0.3 | 200 | 100,000 | 2400 | 100 | 120 | 250 | |||
HJ/T 333-2006 [9] | pH < 6.5 | 30 | 0.3 | 150 | 50,000 | 250 | 40 | 50 | 200 | ||
6.5 < pH < 7.5 | 25 | 0.3 | 200 | 100,000 | 300 | 50 | 50 | 250 | |||
7.5 < pH | 20 | 0.4 | 250 | 100,000 | 350 | 60 | 50 | 300 | |||
NY/T 391-2021 [10] | pH < 6.5 | 25 | 0.3 | 120 | 50,000 | 250 | / | 50 | / | ||
6.5 < pH < 7.5 | 20 | 0.3 | 120 | 60,000 | 300 | / | 50 | / | |||
7.5 < pH | 20 | 0.4 | 120 | 60,000 | 350 | / | 50 | / | |||
Japanese guidelines [47] | 15 | 0.4 | / | 125,000 | / | / | / | / | |||
Canadian guidelines [48] | 12 (1997) | 1.4 (1999) | 64 (1997) | 63,000 (1999) | 6600 (1999) | 45 (2015) | 70 (1999) | 250 (2018) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, T.; Wu, P.; Guo, Y.; Lei, T.; Guo, S.; Chang, H.; Luo, Y. Ecological Risk Assessment Is a Living Science: A Study on Heavy Metal(loid) Contamination in Typical Greenhouse Production Systems in Central China. Toxics 2025, 13, 312. https://doi.org/10.3390/toxics13040312
Ma T, Wu P, Guo Y, Lei T, Guo S, Chang H, Luo Y. Ecological Risk Assessment Is a Living Science: A Study on Heavy Metal(loid) Contamination in Typical Greenhouse Production Systems in Central China. Toxics. 2025; 13(4):312. https://doi.org/10.3390/toxics13040312
Chicago/Turabian StyleMa, Tingting, Peng Wu, Yongchuan Guo, Tian Lei, Shengbo Guo, Huajin Chang, and Yongming Luo. 2025. "Ecological Risk Assessment Is a Living Science: A Study on Heavy Metal(loid) Contamination in Typical Greenhouse Production Systems in Central China" Toxics 13, no. 4: 312. https://doi.org/10.3390/toxics13040312
APA StyleMa, T., Wu, P., Guo, Y., Lei, T., Guo, S., Chang, H., & Luo, Y. (2025). Ecological Risk Assessment Is a Living Science: A Study on Heavy Metal(loid) Contamination in Typical Greenhouse Production Systems in Central China. Toxics, 13(4), 312. https://doi.org/10.3390/toxics13040312