Personal PM2.5 Exposure and Associated Factors Among Adults with Allergic Diseases in an Urban Environment: A Panel Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Statistical Analysis
3. Results
3.1. PM2.5 Exposure Characteristics of Participants
3.2. Identification of Variables Influencing Personal Exposure Concentrations
3.3. Result of Linear Mixed-Effects Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LMEs | Linear mixed-effects |
WHO | World Health Organization |
GPS | Global Positioning System |
TAD | Time activity diary |
TWA | Time-weighted average |
M.E. | Microenvironments |
VIF | Variance inflation factor |
BMI | Body mass index |
PM2.5 | Particulate matter with an aerodynamic diameter of 2.5 μm or less |
PM10 | Particulate matter with an aerodynamic diameter of 10 μm or less |
TVOC | Total volatile organic compounds |
Appendix A
Appendix A.1. Data Collection
Variable | Location | Data Sampling Unit | Device |
---|---|---|---|
Personal PM2.5 | All | 1 min | PMM-130 5 |
Indoor | House | 1 min | IAQ-C7 6 |
GPS 1 | All | 1 min | Application |
Survey | All | 1 day | Application |
TAD 2 | All | 1 day | Application |
AWS 3 | Outdoor | 1 min | AWS |
Air pollution 4 | Outdoor | 1 h | Air-Korea |
Items | PMM-130 | IAQ-C7 |
---|---|---|
Device | ||
48 (W) × 21 (H) × 48 (D) mm, 0.45 kg | 200 (W) × 120 (H) × 50 (D) mm, 0.75 kg | |
Metrics | PM2.5, PM10, temperature, relative humidity | PM10, PM2.5, CO2, TVOC, HCHO, NO2, CO, temperature, relative humidity |
Measurement range | 0–1000 µg/m3 (PM2.5) | 0–1000 µg/m3(PM2.5) |
Flow rate | - | 0.1 L/min |
Operating temperature | −10–+60 °C | −5~+60 °C |
Supply voltage | 5 V 2 A DC in/≤200 mA/h | - |
Performance grades 1 | 1st grade (86.2%) | 1st grade (90.7%) |
Communication | Wi-Fi, Bluetooth | WiFi/LTE/LTEM Module |
Data storage | - | Micro SD/Server |
Measurement range | 0–1000 µg/m3(PM2.5) | 0–1000 µg/m3 (PM2.5) |
Type of Sampling Site | Site Name | Latitude–Longitude Code |
---|---|---|
AWS 1 | Gangnam | 37°49′82.00″ N, 127°08′16.20″ E |
Gangbuk | 37°63′97.20″ N, 127°02′57.60″ E | |
Gangseo | 37°57′39.00″ N, 126°82′95.30″ E | |
Gwangmyeong | 37°47′86.40″ N, 126°86′51.92″ E | |
Guro | 37°49′32.80″ N, 126°82′62.90″ E | |
Geumcheon | 37°46′55.10″ N, 126°90′01.60″ E | |
Meteorological administration | 37°49′33.00″ N, 126°91′74.60″ E | |
Nowon | 37°62′18.60″ N, 127°09′19.20″ E | |
Dongdaemoon | 37°58′46.30″ N, 127°06′03.60″ E | |
Mapo | 37°55′16.50″ N, 126°92′91.50″ E | |
Seongbuk | 37°61′13.40″ E, 126°99′98.10″ E | |
Yeongdeungpo | 37°52′70.60″ N, 126°90′70.50″ E | |
Jungnang | 37°58′55.10″ N, 127°08′68.20″ E | |
Hangang | 37°52′48.90″ N, 126 93′90.40″ E | |
Air-Korea | Gangnam-gu | 37°31′02.00″ N, 127°02′50.00″ E |
Gangdong-gu | 37°31′48.00″ N, 127°07′26.00″ E | |
Gangbuk-gu | 37°38′22.00″ N, 127°01′33.00″ E | |
Gangseo-gu | 37°33′03.00″ N, 126°50′58.00″ E | |
Gwanak-gu | 37°28′42.00″ N, 126°57′05.00″ E | |
Gwangjin-gu | 37°32′19.00″ N, 127°04′56.00″ E | |
Guro-gu | 37°29′44.00″ N, 126°53′15.00″ E | |
Geumcheon-gu | 37°27′22.00″ N, 126°53′43.00″ E | |
Nowon-gu | 37°39′15.00″ N, 127°03′24.00″ E | |
Dobong-gu | 37°40′08.00″ N, 127°02′50.00″ E | |
Dongdaemun-gu | 37°34′28.00″ N, 127°02′23.00″ E | |
Dongjak-gu | 37°30′45.00″ N, 126°56′21.00″ E | |
Mapo-gu | 37°33′49.00″ N, 126°54′30.00″ E | |
Seodaemun-gu | 37°34′45.00″ N, 126°56′12.00″ E | |
Seocho-gu | 37°29′01.00″ N, 127°01′57.00″ E | |
Seongdong-gu | 37°33′48.00″ N, 127°02′11.00″ E | |
Seongbuk-gu | 37°35′20.00″ N, 127°01′00.00″ E | |
Songpa-gu | 37°30′52.00″ N, 127°06′21.00″ E | |
Yangcheon-gu | 37°31′02.00″ N, 126°52′00.00″ E | |
Yeongdeungpo-gu | 37°31′34.00″ N, 126°53′47.00″ E | |
Yongsan-gu | 37°31′57.00″ N, 126°59′24.00″ E | |
Eunpyeong-gu | 37°36′09.00″ N, 126°55′45.00″ E | |
Jongno-gu | 37°34′23.00″ N, 126°58′45.00″ E | |
Jung-gu | 37°33′49.00″ N, 126°59′51.00″ E | |
Jungnang-gu | 37°36′23.00″ N, 127°05′34.00″ E |
Appendix A.2. Results of Statistical Analysis
Site Name | |
---|---|
Air purifier used in M.E. 1 | 1.02 |
Asthma | 1.52 |
BMI 2 | 1.55 |
CO in house | 1.05 |
Outdoor CO | 4.69 |
Occupancy time in academy | 1.01 |
Gender | 1.18 |
Occupancy time in house | 1.34 |
NO2 in house | 1.00 |
Outdoor NO2 | 4.76 |
Outdoor O3 | 2.98 |
Occupancy time in office | 1.34 |
Outdoor PM10 | 1.93 |
Outdoor PM2.5 | 3.69 |
Precipitation | 1.07 |
Relative humidity | 1.33 |
Rhinitis | 1.31 |
Smoke | 1.13 |
Outdoor SO2 | 1.43 |
Temperature | 1.54 |
Wind speed | 1.31 |
Air purifier use in house | 1.02 |
Outdoor PM2.5 | 3.69 |
Precipitation | 1.07 |
Relative humidity | 1.33 |
Rhinitis | 1.31 |
Smoke | 1.13 |
Outdoor SO2 | 1.43 |
Temperature | 1.54 |
Wind speed | 1.31 |
Air purifier use in house | 1.02 |
Variable | Correlation | p-Value |
---|---|---|
Temperature | 0.08 | 0.00 |
Relative humidity | 0.10 | 0.00 |
Wind speed | −0.17 | 0.00 |
Precipitation | −0.04 | 0.00 |
Outdoor PM10 | 0.29 | 0.00 |
Outdoor PM2.5 | 0.39 | 0.00 |
Outdoor SO2 | 0.08 | 0.00 |
Outdoor CO | 0.31 | 0.00 |
Outdoor O3 | −0.03 | 0.00 |
Outdoor NO2 | 0.22 | 0.00 |
PM10 in house | 0.54 | 0.00 |
PM2.5 in house | 0.55 | 0.00 |
Outdoor SO2 | 0.08 | 0.00 |
Outdoor CO | 0.31 | 0.00 |
Outdoor O3 | −0.03 | 0.00 |
Outdoor NO2 | 0.22 | 0.00 |
PM10 in house | 0.54 | 0.00 |
PM2.5 in house | 0.55 | 0.00 |
CO2 in house | 0.01 | 0.12 |
TVOC in house | 0.00 | 0.55 |
CO in house | 0.09 | 0.00 |
HCHO in house | 0.00 | 0.51 |
NO2 in house | 0.06 | 0.00 |
Occupancy time in house | 0.04 | 0.00 |
Occupancy time in office | −0.05 | 0.00 |
Occupancy time in academy | −0.02 | 0.00 |
Occupancy time in other M.E. 1 | −0.01 | 0.47 |
Occupancy time in transportation | −0.01 | 0.14 |
Occupancy time in outdoor | 0.00 | 0.99 |
Age | 0.00 | 0.99 |
BMI 2 | 0.09 | 0.00 |
References
- Brook, R.D.; Bard, R.L.; Burnett, R.T.; Shin, H.H.; Vette, A.; Croghan, C.; Phillips, M.; Rodes, C.; Thornburg, J.; Williams, R. Differences in blood pressure and vascular responses associated with ambient fine particulate matter exposures measured at the personal versus community level. Occup. Environ. Med. 2011, 68, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Stanaway, J.D.; Afshin, A.; Gakidou, E.; Lim, S.S.; Abate, D.; Abate, K.H.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. [Google Scholar]
- Hou, D.; Ge, Y.; Chen, C.; Tan, Q.; Chen, R.; Yang, Y.; Li, L.; Wang, J.; Ye, M.; Li, C.; et al. Associations of long-term exposure to ambient fine particulate matter and nitrogen dioxide with lung function: A cross-sectional study in China. Environ. Int. 2020, 144, 105977. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R.W.; Kang, S.; Anderson, H.R.; Mills, I.C.; Walton, H.A. Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: A systematic review and meta-analysis. Thorax 2014, 69, 660–665. [Google Scholar] [CrossRef]
- Liu, T.; Gong, W.; Zhou, C.; Bai, G.; Meng, R.; Huang, B.; Zhang, H.; Xu, Y.; Hu, R.; Hou, Z.; et al. Mortality burden based on the associations of ambient PM2.5 with cause-specific mortality in China: Evidence from a death-spectrum wide association study (DWAS). Ecotoxicol. Environ. Saf. 2023, 259, 115045. [Google Scholar] [CrossRef]
- Zhang, A.; Qi, Q.; Jiang, L.; Zhou, F.; Wang, J. Population exposure to PM2.5 in the urban area of Beijing. PLoS ONE 2013, 8, e63486. [Google Scholar] [CrossRef] [PubMed]
- Pun, V.C.; Kazemiparkouhi, F.; Manjourides, J.; Suh, H.H. Long-term PM2.5 exposure and respiratory, cancer, and cardiovascular mortality in older US adults. Am. J. Epidemiol. 2017, 186, 961–969. [Google Scholar] [CrossRef]
- Huang, C.; Hu, J.; Xue, T.; Xu, H.; Wang, M. High-resolution spatiotemporal modeling for ambient PM2.5 exposure assessment in China from 2013 to 2019. Environ. Sci. Technol. 2021, 55, 2152–2162. [Google Scholar] [CrossRef]
- Johannesson, S.; Gustafson, P.; Molnár, P.; Barregard, L.; Sällsten, G. Exposure to fine particles (PM2.5 and PM1) and black smoke in the general population: Personal, indoor, and outdoor levels. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 613–624. [Google Scholar] [CrossRef]
- van Nunen, E.; Hoek, G.; Tsai, M.-Y.; Probst-Hensch, N.; Imboden, M.; Jeong, A.; Naccarati, A.; Tarallo, S.; Raffaele, D.; Nieuwenhuijsen, M.; et al. Short-term personal and outdoor exposure to ultrafine and fine particulate air pollution in association with blood pressure and lung function in healthy adults. Environ. Res. 2021, 194, 110579. [Google Scholar] [CrossRef]
- Hwang, Y.; Lee, K. Contribution of microenvironments to personal exposures to PM10 and PM2.5 in summer and winter. Atmos. Environ. 2018, 175, 192–198. [Google Scholar] [CrossRef]
- Shimada, Y.; Matsuoka, Y. Analysis of indoor PM2.5 exposure in Asian countries using time use survey. Sci. Total Environ. 2011, 409, 5243–5252. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Kim, J.; Kim, T.; Lee, K.; Yang, W.; Jun, S.; Yu, S. Personal exposures to PM2.5 and their relationships with microenvironmental concentrations. Atmos. Environ. 2012, 47, 407–412. [Google Scholar] [CrossRef]
- Dimitroulopoulou, C.; Ashmore, M.R.; Byrne, M.A.; Kinnersley, R.P. Modelling of indoor exposure to nitrogen dioxide in the UK. Atmos. Environ. 2001, 35, 269–279. [Google Scholar] [CrossRef]
- Schembari, A.; Triguero-Mas, M.; de Nazelle, A.; Dadvand, P.; Vrijheid, M.; Cirach, M.; Martinez, D.; Figueras, F.; Querol, X.; Basagaña, X.; et al. Personal, indoor and outdoor air pollution levels among pregnant women. Atmos. Environ. 2013, 64, 287–295. [Google Scholar] [CrossRef]
- McGrath, J.A.; Sheahan, J.N.; Dimitroulopoulou, C.; Ashmore, M.R.; Terry, A.C.; Byrne, M.A. PM exposure variations due to different time activity profile simulations within a single dwelling. Build. Environ. 2017, 116, 55–63. [Google Scholar] [CrossRef]
- Doiron, D.; de Hoogh, K.; Probst-Hensch, N.; Mbatchou, S.; Eeftens, M.; Cai, Y.; Schindler, C.; Fortier, I.; Hodgson, S.; Gaye, A.; et al. Residential air pollution and associations with wheeze and shortness of breath in adults: A combined analysis of cross-sectional data from two large European cohorts. Environ. Health Perspect. 2017, 125, 097025. [Google Scholar] [CrossRef] [PubMed]
- Mirabelli, M.C.; Boehmer, T.K.; Damon, S.A.; Sircar, K.D.; Wall, H.K.; Yip, F.Y.; Zahran, H.S.; Garbe, P.L. Air quality awareness among US adults with respiratory and heart disease. Am. J. Prev. Med. 2018, 54, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Ścibor, M.; Balcerzak, B.; Galbarczyk, A.; Jasienska, G. Associations between daily ambient air pollution and pulmonary function, asthma symptom occurrence, and quick-relief inhaler use among asthma patients. Int. J. Environ. Res. Public Health 2022, 19, 4852. [Google Scholar] [CrossRef]
- Chen, C.; Cai, J.; Wang, C.; Shi, J.; Chen, R.; Yang, C.; Li, H.; Lin, Z.; Meng, X.; Zhao, A.; et al. Estimation of personal PM2. 5 and BC exposure by a modeling approach–results of a panel study in Shanghai, China. Environ. Int. 2018, 118, 194–202. [Google Scholar] [CrossRef]
- McCracken, J.P.; Schwartz, J.; Diaz, A.; Bruce, N.; Smith, K.R. Longitudinal relationship between personal CO and personal PM2. 5 among women cooking with woodfired cookstoves in Guatemala. PLoS ONE 2013, 8, e55670. [Google Scholar] [CrossRef]
- Chen, X.C.; Chow, J.C.; Ward, T.J.; Cao, J.J.; Lee, S.C.; Watson, J.G.; Lau, N.C.; Yim, S.H.; Ho, K.F. Estimation of personal exposure to fine particles (PM2. 5) of ambient origin for healthy adults in Hong Kong. Sci. Total Environ. 2019, 654, 514–524. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.; Yoo, C.; Yeh, S.W.; Yoon, J.H.; Lee, D.; Lee, J.B.; Choi, J.Y. Statistical seasonal forecasting of winter and spring PM2.5 concentrations over the Korean Peninsula. Asia Pac. J. Atmos. Sci. 2022, 58, 549–561. [Google Scholar] [CrossRef]
- Lee, G.; Ahn, J.; Park, S.M.; Moon, J.; Park, R.; Sim, M.S.; Choi, H.; Park, J.; Ahn, J.Y. Sulfur isotope-based source apportionment and control mechanisms of PM2.5 sulfate in Seoul, South Korea during winter and early spring (2017–2020). Sci. Total Environ. 2023, 905, 167112. [Google Scholar] [CrossRef]
- Park, S.Y.; Kwon, J.; Gim, J.A.; Park, I.H.; Lee, C.M.; Song, D.J. Assessing Personal PM2.5 Exposure: A Method Leveraging Movement Routes and Activity Space Information. Indoor Air 2025, 2025, 2412518. [Google Scholar] [CrossRef]
- Lim, S.; Said, B.; Zurba, L.; Mosler, G.; Addo-Yobo, E.; Adeyeye, O.O.; Arhin, B.; Evangelopoulos, D.; Fapohunda, V.T.; Fortune, F.; et al. Characterising sources of PM2· 5 exposure for school children with asthma: A personal exposure study across six cities in sub-Saharan Africa. Lancet Child Adolesc. Health 2024, 8, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Mu, G.; Wang, B.; Yang, S.; Wang, X.; Zhou, M.; Song, W.; Qiu, W.; Ye, Z.; Zhou, Y.; Chen, W. Assessment for personal PM2. 5 exposure with a modeling method: A panel study in Wuhan, China. Atmos. Pollut. Res. 2020, 11, 1991–1997. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Korea Disease Control and Prevention Agency (KDCA). Obesity. 2020. Available online: https://health.kdca.go.kr/healthinfo/biz/health/gnrlzHealthInfo/gnrlzHealthInfo/gnrlzHealthInfoView.do?cntnts_sn=5292#:~:text=(2)%20%EC%9A%B0%EB%A6%AC%EB%82%98%EB%9D%BC%EC%9D%98%20%EB%B9%84%EB%A7%8C%20%EA%B8%B0%EC%A4%80,%EA%B3%A0%EB%8F%84%20%EB%B9%84%EB%A7%8C)%EC%9C%BC%EB%A1%9C%20%EA%B5%AC%EB%B6%84%ED%95%A9%EB%8B%88%EB%8B%A4 (accessed on 28 February 2025).
- World Health Organization (WHO). World Health Organization (WHO) Air Quality Guidelines (AQGs) and Estimated Reference Levels (RLs). 2023. Available online: https://www.eea.europa.eu/publications/status-of-air-quality-in-Europe-2022/europes-air-quality-status-2022/world-health-organization-who-air (accessed on 28 February 2025).
- Jones, E.R.; Laurent, J.G.C.; Young, A.S.; MacNaughton, P.; Coull, B.A.; Spengler, J.D.; Allen, J.G. The effects of ventilation and filtration on indoor PM2.5 in office buildings in four countries. Build. Environ. 2021, 200, 107975. [Google Scholar] [CrossRef]
- Huang, Y.; Ho, S.S.H.; Ho, K.F.; Lee, S.C.; Yu, J.Z.; Louie, P.K. Characteristics and health impacts of VOCs and carbonyls associated with residential cooking activities in Hong Kong. J. Hazard. Mater. 2011, 186, 344–351. [Google Scholar] [CrossRef]
- Lee, M.; Carter, E.; Yan, L.; Chan, Q.; Elliott, P.; Ezzati, M.; Kelly, F.; Schauer, J.J.; Wu, Y.; Yang, X.; et al. Determinants of personal exposure to PM2.5 and black carbon in Chinese adults: A repeated-measures study in villages using solid fuel energy. Environ. Int. 2021, 146, 106297. [Google Scholar] [CrossRef]
- Xie, Q.; Dai, Y.; Zhu, X.; Hui, F.; Fu, X.; Zhang, Q. High contribution from outdoor air to personal exposure and potential inhaled dose of PM2.5 for indoor-active university students. Environ. Res. 2022, 215, 114225. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Environmental Research (NIER). Korean Exposure Factors Handbook; National Institute of Environmental Research: Incheon, Republic of Korea, 2019. [Google Scholar]
- Toivola, M.; Nevalainen, A.; Alm, S. Personal exposures to particles and microbes in relation to microenvironmental concentrations. Indoor Air 2004, 14, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Koistinen, K.J.; Hänninen, O.; Rotko, T.; Edwards, R.D.; Moschandreas, D.; Jantunen, M.J. Behavioral and environmental determinants of personal exposures to PM2.5 in EXPOLIS–Helsinki, Finland. Atmos. Environ. 2001, 35, 2473–2481. [Google Scholar] [CrossRef]
- Mu, G.; Wang, B.; Cheng, M.; Nie, X.; Ye, Z.; Zhou, M.; Zhou, Y.; Chen, W. Long-term personal PM2.5 exposure and lung function alternation: A longitudinal study in Wuhan urban adults. Sci. Total Environ. 2022, 845, 157327. [Google Scholar] [CrossRef]
- McCarron, A.; Semple, S.; Braban, C.F.; Gillespie, C.; Swanson, V.; Price, H.D. Personal exposure to fine particulate matter (PM2.5) and self-reported asthma-related health. Soc. Sci. Med. 2023, 337, 116293. [Google Scholar] [CrossRef]
- Li, X.; Clark, S.; Floess, E.; Baumgartner, J.; Bond, T.; Carter, E. Personal exposure to PM2. 5 of indoor and outdoor origin in two neighboring Chinese communities with contrasting household fuel use patterns. Sci. Total Environ. 2021, 800, 149421. [Google Scholar] [CrossRef]
- Lim, S.; Bassey, E.; Bos, B.; Liberty, M.; Varaden, D.; Arku, R.E.; Baumgartner, J.; Brauer, M.; Ezzati, M.; Kelly, F.J.; et al. Comparing human exposure to fine particulate matter in low and high-income countries: A systematic review of studies measuring personal PM2.5 exposure. Sci. Total Environ. 2022, 833, 155207. [Google Scholar] [CrossRef]
- Xu, Y.; Yi, L.; Cabison, J.; Rosales, M.; O’Sharkey, K.; Chavez, T.A.; Johnson, M.; Lurmann, F.; Pavlovic, N.; Bastain, T.M.; et al. The impact of GPS-derived activity spaces on personal PM2. 5 exposures in the MADRES cohort. Environ. Res. 2022, 214, 114029. [Google Scholar] [CrossRef]
- Docherty, K.S.; Wu, W.; Lim, Y.B.; Ziemann, P.J. Contributions of organic peroxides to secondary aerosol formed from reactions of monoterpenes with O3. Environ. Sci. Technol. 2005, 39, 4049–4059. [Google Scholar] [CrossRef]
- Sun, Y.; Du, W.; Fu, P.; Wang, Q.; Li, J.; Ge, X.; Zhang, Q.; Zhu, C.; Ren, L.; Xu, W.; et al. Primary and secondary aerosols in Beijing in winter: Sources, variations and processes. Atmos. Chem. Phys. 2016, 16, 8309–8329. [Google Scholar] [CrossRef]
- Hassani, A.; Hosseini, V. An assessment of gasoline motorcycle emissions performance and understanding their contribution to Tehran air pollution. Transp. Res. Part D Transp. Environ. 2016, 47, 1–12. [Google Scholar] [CrossRef]
- Lin, Y.C.; Li, Y.C.; Amesho, K.T.; Chou, F.C.; Cheng, P.C. Characterization and quantification of PM2.5 emissions and PAHs concentration in PM2.5 from the exhausts of diesel vehicles with various accumulated mileages. Sci. Total Environ. 2019, 660, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Chuang, M.-T.; Chou, C.C.K.; Lin, C.Y.; Lee, J.H.; Lin, W.C.; Chen, Y.Y.; Chang, C.C.; Lee, C.T.; Kong, S.S.K.; Lin, T.H. A numerical study of reducing the concentration of O3 and PM2.5 simultaneously in Taiwan. J. Environ. Manag. 2022, 318, 115614. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Y.; Wang, J.; Chen, L.; Wang, Z.; Feng, S.; Lin, N.; Du, W. Quantify individual variation of real-time PM2.5 exposure in urban Chinese homes based on a novel method. Indoor Air 2022, 32, e12962. [Google Scholar] [CrossRef]
- Dai, S.; He, Y.; Zeng, N.; Wang, Z. Assessment on the Personal Exposure Risk Associated with Real-Time Indoor PM2. 5 in Different Microenvironments. Indoor Air 2024, 2024, 2236778. [Google Scholar] [CrossRef]
- Fujino, R.; Miyamoto, Y. PM2.5 decrease with precipitation as revealed by single-point ground-based observation. Atmos. Sci. Lett. 2022, 23, e1088. [Google Scholar] [CrossRef]
- Tai, A.P.; Mickley, L.J.; Jacob, D.J. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ. 2010, 44, 3976–3984. [Google Scholar] [CrossRef]
- Chate, D.M.; Rao, P.S.P.; Naik, M.S.; Momin, G.A.; Safai, P.D.; Ali, K. Scavenging of aerosols and their chemical species by rain. Atmos. Environ. 2003, 37, 2477–2484. [Google Scholar] [CrossRef]
- Chate, D.M.; Pranesha, T.S. Field studies of scavenging of aerosols by rain events. J. Aerosol Sci. 2004, 35, 695–706. [Google Scholar] [CrossRef]
- Lee, C.M.; Kim, Y.S.; Lee, T.H.; Kim, J.C.; Kim, J.H. Efficiency of Removal for PM10 and NO2 by Air Cleaner in Residential Indoor Environment with Monte-Carlo Simulation. Kor. J. Environ. Health Sci. 2004, 30, 221–229. [Google Scholar]
- Zhang, A.; Liu, Y.; Ji, J.S.; Zhao, B. Air purifier intervention to remove indoor PM2.5 in urban China: A cost-effectiveness and health inequality impact study. Environ. Sci. Technol. 2023, 57, 4492–4503. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Bai, L.; He, Z.; Liu, X.; Xu, X. The effect of air purifiers on the reduction in indoor PM2.5 concentrations and population health improvement. Sustain. Cities Soc. 2021, 75, 103298. [Google Scholar] [CrossRef]
- Park, S.Y.; Jang, H.; Kwon, J.; Cho, Y.S.; Lee, C.M. Proposal for concentration calibration method for field evaluation of particulate matters monitors based on light scattering using decision tree techniques. J. Odor Indoor Environ. 2023, 22, 314–327. [Google Scholar] [CrossRef]
Item | Information | |
---|---|---|
Sampling date | 1st: 21 November 2022–16 April 2023 2nd: 1 November 2023–16 April 2024 | |
Sex | Male | 30 |
Female | 63 | |
Age (median, range) | 39.94 (38, 19–66) |
Item 1 | Unit | All | Weekdays | Weekends | |||
---|---|---|---|---|---|---|---|
Demographics | Number of participants (%) | - | 93 | 93 | |||
Number of days monitored (S.D.) | Days/person | 164.60 | 118.20 (71.81) | 46.40 (28.19) | |||
Gender (%) | Male | - | 30 | 31 (32.26) | |||
Female | - | 63 | 63 (67.74) | ||||
Smoke (%) | Smoke | - | 90 | 90 (96.77) | |||
Non-smoke | - | 3 | 3 (3.23) | ||||
Weight (S.D.) | kg | 64.31(12.68) | |||||
Ages (%) | 19–29 | - | 26 | 26 (27.96) | |||
30–39 | - | 23 | 23 (24.73) | ||||
40–49 | - | 15 | 15 (16.13) | ||||
50–59 | - | 19 | 19 (20.43) | ||||
60–65 | - | 10 | 10 (10.75) | ||||
BMI 2 | Underweight | kg/m2 | 63 | 63 (67.74) | |||
Normal weight | kg/m2 | 15 | 15 (16.13) | ||||
Overweight | kg/m2 | 8 | 8 (8.60) | ||||
Obesity class I | kg/m2 | 4 | 4 (4.30) | ||||
Obesity class II | kg/m2 | 2 | 2 (2.15) | ||||
Obesity class III | kg/m2 | 1 | 1 (1.08) | ||||
Environmental factors | Temperature (S.D.) | °C | 4.26 | 4.27 (6.75) | 4.23 (6.67) | ||
Relative humidity (S.D.) | % | 1.71 | 60.00 (16.08) | 58.85 (16.44) | |||
Wind speed (S.D.) | m/s | 59.68 | 1.73 (0.88) | 1.65 (0.85) | |||
Precipitation (S.D.) | mm | 0.00 | 0.00 (0.00) | 0.00 (0.01) | |||
Outdoor PM10 (S.D.) | μg/m3 | 46.30 | 46.24 (32.83) | 46.47 (27.03) | |||
Outdoor PM2.5 (S.D.) | μg/m3 | 24.24 | 24.09 (14.98) | 24.66 (15.53) | |||
Outdoor NO2 (S.D.) | ppm | 0.02 | 0.03 (0.01) | 0.02 (0.01) | |||
Outdoor SO2 (S.D.) | ppm | 0.00 | 0.00 (0.00) | 0.00 (0.00) | |||
Outdoor O3 (S.D.) | ppm | 0.02 | 0.02 (0.01) | 0.03 (0.01) | |||
Outdoor CO (S.D.) | ppm | 0.51 | 0.51 (0.17) | 0.50 (0.15) | |||
Personal PM2.5 (S.D.) | μg/m3 | 17.38 | 17.36 (24.52) | 17.42 (21.24) | |||
PM10 in house (S.D.) | μg/m3 | 49.59 | 49.47 (356.93) | 49.91 (358.38) | |||
PM2.5 in house (S.D.) | μg/m3 | 34.64 | 34.58 (249.89) | 34.80 (250.87) | |||
CO2 in house (S.D.) | ppm | 877.35 | 866.28 (315.59) | 905.43 (359.29) | |||
TVOC 3 in house (S.D.) | ppm | 494.84 | 491.44 (720.09) | 504.23 (736.07) | |||
CO in house (S.D.) | ppm | 2.33 | 2.34 (2.18) | 2.31 (2.19) | |||
HCHO in house (S.D.) | ppm | 27.01 | 26.96 (34.95) | 27.12 (34.41) | |||
NO2 in house (S.D.) | ppm | 0.00 | 0.00 (0.00) | 0.00 (0.00) | |||
Indoor management (use air purifier) | House | Yes (%) | - | 6031 | 4335 (71.71) | 1696 (28.29) | |
No (%) | - | 12,679 | 9902 (71.88) | 3587 (28.12) | |||
Office | Yes (%) | - | 2328 | 1946 (70.08) | 382 (29.92) | ||
No (%) | - | 16,382 | 11,481 (83.59) | 4901 (16.41) | |||
Other M.E. 4 | Yes (%) | - | 1632 | 1180 (72.30) | 452 (27.70) | ||
No (%) | - | 17,078 | 12,247 (71.71) | 4831 (28.29) | |||
Time activity pattern | House (S.D.) | h | 14.98 | 14.19 (6.03) | 16.97 (7.14) | ||
Office (S.D.) | h | 4.10 | 5.28 (4.96) | 1.13 (3.19) | |||
Academy (S.D.) | h | 0.06 | 0.07 (0.61) | 0.02 (0.33) | |||
Other M.E.4 (S.D.) | h | 2.68 | 2.29 (4.52) | 3.67 (5.96) | |||
Transportation (S.D.) | h | 1.37 | 1.44 (1.81) | 1.19 (1.85) | |||
Outdoor (S.D.) | h | 0.80 | 0.72 (1.60) | 1.01 (2.16) | |||
Allergy disease | Asthma (%) | - | 36 | 36 (38.71) | |||
Rhinitis (%) | - | 46 | 46 (49.46) | ||||
Conjunctivitis (%) | - | 11 | 11 (11.83) | ||||
Sampling information | Season | Spring (%) | days/person | 52.58 | 52.58 (31.94) | ||
Fall (%) | days/person | 14.67 | 14.67 (8.91) | ||||
Winter (%) | days/person | 97.35 | 97.35 (59.14) | ||||
Day | Monday | days/person | 23.55 | 23.55 (14.31) | |||
Tuesday | days/person | 23.61 | 23.61 (14.34) | ||||
Wednesday | days/person | 23.67 | 23.67 (14.38) | ||||
Thursday | days/person | 23.67 | 23.67 (14.38) | ||||
Friday | days/person | 23.71 | 23.71 (14.40) | ||||
Saturday | days/person | 23.22 | 23.22 (14.11) | ||||
Sunday | days/person | 23.18 | 23.18 (14.08) |
Space | Weekdays/ Weekends | Personal PM2.5 (μg/m3) | p-Value | |
---|---|---|---|---|
Mean | S.D. | |||
House | Weekdays | 17.04 | 26.39 | >0.05 |
Weekends | 17.16 | 23.80 | ||
Office | Weekdays | 14.87 | 22.02 | <0.05 |
Weekends | 18.14 | 27.36 | ||
Academy | Weekdays | 21.73 | 59.19 | >0.05 |
Weekends | 13.28 | 9.32 | ||
Other M.E. 1 | Weekdays | 15.31 | 17.79 | >0.05 |
Weekends | 15.74 | 19.72 | ||
Transportation | Weekdays | 15.57 | 20.00 | >0.05 |
Weekends | 15.27 | 21.00 | ||
Outdoor | Weekdays | 16.62 | 14.45 | >0.05 |
Weekends | 16.79 | 15.90 |
Variable | Correlation | p-Value | |
---|---|---|---|
Gender | Man (1) | 0.11 | 0.00 |
Woman (0) | |||
Asthma | Yes (1) | 0.12 | 0.00 |
No (0) | |||
Rhinitis | Yes (1) | −0.03 | 0.00 |
No (0) | |||
Conjunctivitis | Yes (1) | −0.01 | 0.31 |
No (0) | |||
Smoke | Smoke (1) | 0.33 | 0.00 |
Non-smoke (0) | |||
Use air purifier in house | Yes (1) | −0.03 | 0.00 |
No (0) | |||
Use air purifier in office | Yes (1) | −0.01 | 0.11 |
No (0) | |||
Use air purifier in M.E. 1 | Yes (1) | −0.02 | 0.00 |
No (0) |
Variable | Variance | S.D. |
---|---|---|
) | 1.7575 | 0.2693 |
Intercept of ID/Week | 0.0028 | 0.0534 |
Intercept of ID | 0.1304 | 0.3611 |
) | 0.1974 | 0.4443 |
Fixed Effects Determinants | Reference Group | Percentage Change (%) | 95%CI | p-Value |
---|---|---|---|---|
Demographics | ||||
Gender (man) | Woman (0) | −2.19 | −1.29 to 18.53 | 0.82 |
Smoke | Yes (1), No (0) | 90.81 | 22.02 to 198.37 | 0.01 |
BMI 1 | ||||
Normal weight | Underweight | 22.32 | −20.41 to 87.99 | 0.36 |
Overweight | Underweight | 19.83 | −25.79 to 93.51 | 0.46 |
Obesity class I | Underweight | 30.86 | −20.03 to 114.14 | 0.29 |
Obesity class II | Underweight | 48.52 | −23.72 to 189.17 | 0.25 |
Obesity class III | Underweight | 47.29 | −39.21 to 256.84 | 0.39 |
Environmental factors | ||||
Outdoor | ||||
Temperature | - | 0.29 | 0.17 to 0.41 | 0.00 |
Relative humidity | - | 0.12 | 0.08 to 0.17 | 0.00 |
Wind speed | - | −2.87 | −3.73 to −2.01 | 0.00 |
Precipitation | - | −91.23 | −97.31 to −71.43 | 0.00 |
Outdoor PM10 | - | −0.20 | −0.23 to −0.17 | 0.00 |
Outdoor PM2.5 | - | 1.38 | 1.30 to 1.46 | 0.00 |
Outdoor NO2 | - | 36.05 | −59.09 to 352.40 | 0.62 |
Outdoor SO2 | - | 126,054.03 | −99.45 to 29,196,639,708.61 | 0.26 |
Outdoor O3 | - | 1231.02 | 431.75 to 3231.65 | 0.00 |
Outdoor CO | - | 22.47 | 12.39 to 33.46 | 0.00 |
In house | ||||
PM2.5 in house | - | 0.01 | 0.01 to 0.01 | 0.00 |
CO in house | - | 0.68 | 0.23 to 1.13 | 0.00 |
NO2 in house | - | 104.75 | −56.83 to 871.12 | 0.37 |
Time activity pattern | ||||
Use air purifier in house | Yes (1), No (0) | −5.53 | −8.47 to −2.49 | 0.00 |
Use air purifier in M.E. 2 | Yes (1), No (0) | 3.65 | −0.10 to 7.55 | 0.06 |
Allergy disease | ||||
Asthma | Yes (1), No (0) | 6.57 | −13.23 to 30.87 | 0.55 |
Rhinitis | Yes (1), No (0) | 3.92 | −22.24 to 38.89 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-Y.; Jang, H.; Kwon, J.; Park, C.-M.; Lee, C.-M.; Song, D.-J. Personal PM2.5 Exposure and Associated Factors Among Adults with Allergic Diseases in an Urban Environment: A Panel Study. Toxics 2025, 13, 317. https://doi.org/10.3390/toxics13040317
Park S-Y, Jang H, Kwon J, Park C-M, Lee C-M, Song D-J. Personal PM2.5 Exposure and Associated Factors Among Adults with Allergic Diseases in an Urban Environment: A Panel Study. Toxics. 2025; 13(4):317. https://doi.org/10.3390/toxics13040317
Chicago/Turabian StylePark, Shin-Young, Hyeok Jang, Jaymin Kwon, Chan-Mi Park, Cheol-Min Lee, and Dae-Jin Song. 2025. "Personal PM2.5 Exposure and Associated Factors Among Adults with Allergic Diseases in an Urban Environment: A Panel Study" Toxics 13, no. 4: 317. https://doi.org/10.3390/toxics13040317
APA StylePark, S.-Y., Jang, H., Kwon, J., Park, C.-M., Lee, C.-M., & Song, D.-J. (2025). Personal PM2.5 Exposure and Associated Factors Among Adults with Allergic Diseases in an Urban Environment: A Panel Study. Toxics, 13(4), 317. https://doi.org/10.3390/toxics13040317