Harmful Elements (Al, Cd, Cr, Ni, and Pb) in Wild Berries and Fruits Collected in Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Glass/Plastic Ware
2.2. Samples and Sample Preparation
2.3. Apparatus and Measurements
2.4. Calculations
2.5. Characterisation of the Analytical Method
3. Results
3.1. Analytical Method
3.2. Elemental Content of Wild Berries and Fruits
4. Discussion
4.1. Analytical Method
4.2. Elemental Content of Wild Berries and Fruits
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lampe, J.W. Health effects of vegetables and fruit: Assessing mechanisms of action in human experimental studies. Am. J. Clin. Nutr. 1999, 70, 475S–490S. [Google Scholar] [CrossRef] [PubMed]
- Seeram, N.P. Berry Fruits: Compositional Elements, Biochemical Activities, and the Impact of Their Intake on Human Health, Performance, and Disease. J. Agric. Food Chem. 2008, 56, 627–629. [Google Scholar] [CrossRef] [PubMed]
- Barcan, V.S.H.; Kovnatsky, E.F.; Smetannikova, M.S. Absorption of heavy metals in wild berries and edible mushrooms in an area affected by smelter emissions. Water Air Soil Pollut. 1998, 103, 173–195. [Google Scholar] [CrossRef]
- Willkommen im Erdbeerland. Available online: www.erdbeerland.at (accessed on 18 April 2018).
- Biobeerengarten Hummel. Available online: www.biobeerengarten.at/ (accessed on 18 April 2018).
- Faria, A.; Oliveira, J.; Neves, P.; Gameiro, P.; Santos-Buelga, C.; de Freitas, V.; Mateus, N. Antioxidant Properties of Prepared Blueberry (Vaccinium myrtillus) Extracts. J. Agric. Food Chem. 2005, 53, 6896–6902. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Garcia, S.N.; Guevara-Gonzalez, R.G.; Miranda-Lopez, R.; Feregrino-Perez, A.A.; Torres-Pacheco, I.; Vazquez-Cruz, M.A. Functional properties and quality characteristics of bioactive compounds in berries: Biochemistry, biotechnology, and genomics—A review. Food Res. Int. 2013, 54, 1195–1207. [Google Scholar] [CrossRef]
- Pantelidis, G.E.; Vasilakakis, M.; Manganaris, G.A.; Diamantidis, G. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem. 2007, 102, 777–783. [Google Scholar] [CrossRef]
- Marinova, D.; Ribarova, F.; Atanassova, M. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J. Chem. Technol. Metall. 2005, 40, 255–260. [Google Scholar]
- Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health—A review. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.; Fischer, J.; Krewer, G.; Akoh, C.C. Phenolic Compounds from Blueberries Can Inhibit Colon Cancer Cell Proliferation and Induce Apoptosis. J. Agric. Food Chem. 2005, 53, 7320–7329. [Google Scholar] [CrossRef] [PubMed]
- Chandler, F.B. Composition and Uses of Blueberries; University of Maine, Maine Agricultural Experiment Station: Orono, ME, USA, 1944; Volume 428, pp. 1–39. [Google Scholar]
- Koivistoinen, P.; Ahlström, A.; Varo, P.; Nissinen, H. Mineral Element Composition of Finnish Vegetables, Fruits, and Berries. Acta Agric. Scand. 1974, 24, 131–134. [Google Scholar] [CrossRef]
- De Souza, V.R.; Pereira, P.A.P.; da Silva, T.A.T.; de Oliveira Lima, L.C.; Pio, R.; Queiroz, F. Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chem. 2014, 156, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, T.; Anwar, F.; Iqbal, T.; Bhatti, I.A.; Ashraf, M. Mineral composition of strawberry, mulberry and cherry fruits at different ripening stages as analysed by inductively coupled plasma—Optical emission spectroscopy. J. Plant Nutr. 2012, 35, 111–122. [Google Scholar] [CrossRef]
- Zeiner, M.; Juranović Cindrić, I.; Majić, B.; Stingeder, G. Study of the Accumulation of Toxic and Essential Ultra-Trace Elements in Fruits of Sorbus domestica L. Int. J. Environ. Res. Public Health 2017, 14, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Llorent-Martíneza, E.J.; Spínola, V.; Castilho, P.C. Evaluation of the inorganic content of six underused wild berries from Portugal: Potential new sources of essential minerals. J. Food Compos. Anal. 2017, 59, 153–160. [Google Scholar] [CrossRef]
- Konieczynski, P.; Arceusz, A.; Wesolowski, M. Relationships between flavonoids and selected elements in infusions of medicinal herbs. Open Chem. 2015, 13, 68–74. [Google Scholar] [CrossRef]
- Von Hoffen, L.P.; Säumel, I. Orchards for edible cities: Cadmium and lead content in nuts, berries, pome and stone fruits harvested within the inner city neighbourhoods in Berlin, Germany. Ecotoxicol. Environ. Saf. 2014, 101, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Rodushkin, I.; Ödman, F.; Holmström, H. Multi-element analysis of wild berries from northern Sweden by ICP techniques. Sci. Total Environ. 1999, 231, 53–65. [Google Scholar] [CrossRef]
- D’Mello, J.P.F. Food Safety: Contaminants and Toxins; CABI Publishing: Wallingford, UK, 2003; ISBN 0 85199 607 8. [Google Scholar]
- World Health Organization (WHO). International Programme on Chemical Safety—Health Impacts of Chemicals, Ten Chemicals of Major Public Health Concern. 2010. Available online: http://www.who.int/ipcs/assessment/public_health/chemicals_phc/en/ (accessed on 23 April 2018).
- Haber, L.T.; Bates, H.K.; Allen, B.C.; Vincent, M.J.; Oller, A.R. Derivation of an oral toxicity reference value for nickel. Regul. Toxicol. Pharmacol. 2017, 87, S1–S18. [Google Scholar] [CrossRef] [PubMed]
- Zdrojewicz, Z.; Popowicz, E.; Winiarski, J. Nickel—Role in human organism and toxic effects. Pol. Med. J. 2016, 242, 115–118. (in Polish). [Google Scholar]
- FAO/WHO: Food Standards Programme Codex Committee on Contaminants in Foods, Fifth Session. In Proceedings of the Codex Committee on Food Additives and Contaminants, The Hague, The Netherlands, 21–25 March 2011.
- Juranović Cindrić, I.; Zeiner, M.; Mihajlov-Konanov, D.; Stingeder, G. Inorganic Macro- and Micronutrients in “Superberries” Black Chokeberries (Aronia melanocarpa) and Related Teas. Int. J. Environ. Res. Public Health 2017, 14, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Chevallier, E.; Chekri, R.; Zinck, J.; Guérin, T.; Noël, L. Simultaneous determination of 31 elements in foodstuffs by ICP-MS after closed-vessel microwave digestion: Method validation based on the accuracy profile. J. Food Compos. Anal. 2015, 41, 35–41. [Google Scholar] [CrossRef]
- Boumans, P.W.J.M. Basic concepts and characteristics of ICP-AES. In Inductively Coupled Plasma Emission Spectroscopy. Part I. Methodology, Instrumentation, and Performance; Boumans, P.W.J.M., Ed.; Wiley: New York, NY, USA, 1987; pp. 100–257. [Google Scholar]
- Pavlović, J.L.J.; Mitić, S.M.; Mitić, M.N.; Pavlović, A.N.; Micić, R.J.; Stojković, M.B. Multielement Analysis of South Serbian Strawberry Cultivars by Inductively Coupled Plasma—Optical Emission Spectrometry. Anal. Lett. 2018, 51, 1417–1432. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 488/2014 of 12 May 2014 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Cadmium in Foodstuffs. Available online: http://extwprlegs1.fao.org/docs/pdf/eur133613.pdf (accessed on 24 April 2018).
- United States, Environmental Protection Agency, Integrated Risk Information System (US-EPA, IRIS). Cadmium. Available online: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=141 (accessed on 24 April 2018).
- United States, Environmental Protection Agency, Integrated Risk Information System (US-EPA, IRIS). Chromium(III), Insoluble Salts. Available online: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=28 (accessed on 24 April 2018).
- United States, Environmental Protection Agency, Integrated Risk Information System (US-EPA, IRIS). Chromium(VI). Available online: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=144 (accessed on 24 April 2018).
- United States, Environmental Protection Agency, Integrated Risk Information System (US-EPA, IRIS). Nickel, Soluble Salts. Available online: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=271 (accessed on 24 April 2018).
- Commission Regulation (EU) No 2015/1005 of 25 June 2015 Amending Regulation (EC) No. 1881/2006 as Regards Maximum Levels of Lead in Certain Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R1005&from=EN (accessed on 24 April 2018).
- Nayak, P. Aluminum: Impacts and Disease—Review. Environ. Res. 2002, 89, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Exley, C. What is the risk of aluminium as a neurotoxin? Expert Rev. Neurother. 2014, 14, 589–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Exley, C. The toxicity of aluminium in humans. Morphologie 2016, 100, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Exley, C. Human exposure to aluminium. Environ. Sci. Process. Impacts. 2013, 15, 1807–1816. [Google Scholar] [CrossRef] [PubMed]
- Başgel, S.; Erdemoglu, S.B. Determination of mineral and trace elements in some medicinal herbs and their infusions consumed in Turkey. Sci. Total Environ. 2006, 359, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Hua, Z.; Zhen-Yu, W.; Xin, Y.; Hai-Tian, Z.; Ying-Chun, Z.; Ai-Jun, D.; Jing, J.; Jing, W. Determination of free amino acids and 18 elements in freeze-dried strawberry and blueberry fruit using an Amino Acid Analyzer and ICP-MS with micro-wave digestion. Food Chem. 2014, 147, 189–194. [Google Scholar]
- Patel, S. Rose hip as an underutilized functional food: Evidence-based review. Trends Food Sci. Technol. 2017, 63, 29–38. [Google Scholar] [CrossRef]
- Alam, M.G.M.; Snow, E.T.; Tanaka, A. Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh. Sci. Total Environ. 2003, 308, 83–96. [Google Scholar] [CrossRef]
- Duran, A.; Tuzen, M.; Soylak, M. Trace element levels in some dried fruit samples from Turkey. Int. J. Food Sci. Nutr. 2008, 59, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Mutuma, S.; Amuna, P.; Shukla, H.; Sumar, S. Chromium in food, nutrition and health—An introduction. Nutr. Food Sci. 1999, 2, 81–88. [Google Scholar] [CrossRef]
- Lim, T.H.; Sargent, T.; Kusubov, N. Kinetics of trace element chromium(III) in the human body. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1983, 244, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.A.; Bryden, N.A.; Polansky, M.M. Chromium content of selected breakfast cereals. J. Food Compos. Anal. 1988, 1, 303–308. [Google Scholar] [CrossRef]
- Anderson, R.A.; Bryden, N.A.; Polansky, M.M. Dietary chromium intake: Freely chosen diets, institutional diets, and individual diets. Biol. Trace Elem. Res. 1992, 32, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Nickel. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp15.pdf (accessed on 24 April 2018).
- Zeiner, M.; Juranović Cindrić, I.; Lovrenčić Mikelić, I.; Medunić, G.; Kampić, Š.; Tomašić, N.; Stingeder, G. The determination of the extractability of selected elements from agricultural soil. Environ. Monit. Assess. 2013, 185, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Pöykiö, R.; Mäenpää, A.; Perämäki, P.; Niemelä, M.; Välimäki, I. Heavy Metals (Cr, Zn, Ni, V, Pb, Cd) in Lingonberries (Vaccinium vitis-idaea L.) and Assessment of Human Exposure in Two Industrial Areas in the Kemi-Tornio Region, Northern Finland. Arch. Environ. Contam. Toxicol. 2005, 48, 338–343. [Google Scholar] [CrossRef] [PubMed]
Parameter | Settings |
---|---|
Spectrometer | High resolution Echelle polychromatorLarge format programmable array detector (L-PAD) |
RF-Generator | 40 MHz “free-running” |
Output power | 1.1 kW |
Argon flows | Coolant: 18 L min−1 Auxiliary: 0.8 L min−1 Nebuliser: 1.0 L min−1 |
Peristaltic pump | 1.0 mL min−1 |
Nebuliser | Pneumatic (glass concentric) |
Spray chamber | Glass cyclonic |
Plasma viewing | Axial |
Sample uptake delay | 30 s |
Analyte | Wavelength (nm) | LOD in Digest Solution (mg/L) | LOD in Dried Fruits (mg/kg) | Recovery (%) |
---|---|---|---|---|
Aluminum | 308.215 | 0.074 | 2.9 | 110 |
Cadmium | 214.441 | 0.00071 | 0.028 | 113 |
Chromium | 206.149 | 0.00045 | 0.018 | 101 |
Nickel | 231.604 | 0.0038 | 0.15 | 85 |
Lead | 220.353 | 0.0070 | 0.28 | 101 |
Metal | Lingonberries | Rose Hip | Blueberries |
---|---|---|---|
Aluminum | 34.9–42.5–63.9 | 7527–8242–8836 | 1093–1248–1463 |
Cadmium | <0.028 | <0.028 | <0.028 |
Chromium | <0.018 | <0.018 | <0.018 |
Nickel | 1.81–2.49–12.9 | 10.6–11.3–23.5 | 21.0–24.8–56.2 |
Lead | 0.542–0.601–9.28 | 3.00–3.34–15.3 | 1.19–1.66–2.42 |
Metal | Limit in Food | Intake Limit 1 | Lit. | ||
---|---|---|---|---|---|
Aluminum | 1.00 mg/kg bw/week (PTWI) | [25] | |||
Cadmium | Fruits and vegetables | 0.050 mg/kg f.w. | [30] | ||
0.025 mg/kg bw/month (PTMI) | [22] | ||||
0.001 mg/kg bw/day (Rfd) | [31] | ||||
Chromium | insoluble Cr(III)-salts | 1.500 mg/kg bw/day (Rfd) | [32] | ||
Cr(VI) | 0.003 mg/kg bw/day (Rfd) | [33] | |||
Nickel | soluble salts | 0.020 mg/kg bw/day (Rfd) | [34] | ||
0.020 mg/kg bw/day (Trv) | [23] | ||||
Lead | Fruit, excluding cranberries, currants, elderberries and strawberry tree fruit | 0.10 mg/kg f.w. | [35] | ||
cranberries, currants, elderberries and strawberry tree fruit | 0.20 mg/kg f.w. | [35] | |||
PTI value withdrawn 2010 | [22] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeiner, M.; Juranović Cindrić, I. Harmful Elements (Al, Cd, Cr, Ni, and Pb) in Wild Berries and Fruits Collected in Croatia. Toxics 2018, 6, 31. https://doi.org/10.3390/toxics6020031
Zeiner M, Juranović Cindrić I. Harmful Elements (Al, Cd, Cr, Ni, and Pb) in Wild Berries and Fruits Collected in Croatia. Toxics. 2018; 6(2):31. https://doi.org/10.3390/toxics6020031
Chicago/Turabian StyleZeiner, Michaela, and Iva Juranović Cindrić. 2018. "Harmful Elements (Al, Cd, Cr, Ni, and Pb) in Wild Berries and Fruits Collected in Croatia" Toxics 6, no. 2: 31. https://doi.org/10.3390/toxics6020031
APA StyleZeiner, M., & Juranović Cindrić, I. (2018). Harmful Elements (Al, Cd, Cr, Ni, and Pb) in Wild Berries and Fruits Collected in Croatia. Toxics, 6(2), 31. https://doi.org/10.3390/toxics6020031