Human Biomonitoring of Glyphosate Exposures: State-of-the-Art and Future Research Challenges
Abstract
:1. Introduction
2. Methodology
3. Human Biomonitoring Studies on Glyphosate
4. HBM Based Back-Calculated Oral Intake Equivalents
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Benbrook, C.M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Guyton, K.Z.; Loomis, D.; Grosse, Y.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Scoccianti, C.; Mattock, H.; Straif, K. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet 2014. [Google Scholar] [CrossRef]
- EFSA. Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. Eur. Food Saf. Auth. J. 2015, 13. [Google Scholar] [CrossRef]
- IARC. IARC Monographs Volume 112: Evaluation of-MonographVolume112.pdf; International Agency for Research on Cancer: Lyon, France, 2015; Available online: https://monographs.iarc.fr/iarc-monographs-on-the-evaluation-of-carcinogenic-risks-to-humans-4/ (accessed on 27 June 2016).
- ECHA. Glyphosate Not Classified as a Carcinogen by ECHA-All News-ECHA. Available online: https://echa.europa.eu/-/glyphosate-not-classified-as-a-carcinogen-by-echa (accessed on 10 October 2017).
- EPA. Glyphosate Issue Paper: Evaluation of Carcinogenic Potential; United States Environmental Protection Agency: Washington, DC, USA, 2016. Available online: https://www.epa.gov/sites/production/files/2016-09/documents/glyphosate_issue_paper_evaluation_of_carcincogenic_potential.pdf (accessed on 25 June 2020).
- Zhang, L.; Rana, I.; Shaffer, R.M.; Taioli, E.; Sheppard, L. Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: A meta-analysis and supporting evidence. Mutat. Res. Rev. Mutat. Res. 2019, 781, 186–206. [Google Scholar] [CrossRef] [PubMed]
- Jazmin, S.M.; Dheni, T.S.; Heriberto, T.J.; Joel, S.F. Glyphosate Toxicity, Oxidative Stress, Carcinogenicity and Reproductive Effects:A Review. Int. J. Recent Sci. Res. 2019, 10, 32865–32869. [Google Scholar] [CrossRef]
- Andreotti, G.; Koutros, S.; Hofmann, J.N.; Sandler, D.P.; Lubin, J.H.; Lynch, C.F.; Lerro, C.C.; De Roos, A.J.; Parks, C.G.; Alavanja, M.C.; et al. Glyphosate Use and Cancer Incidence in the Agricultural Health Study. J. Natl. Cancer Inst. 2017, djx233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccoli, C.; Cremonese, C.; Koifman, R.J.; Koifman, S.; Freire, C. Pesticide exposure and thyroid function in an agricultural population in Brazil. Environ. Res. 2016, 151, 389–398. [Google Scholar] [CrossRef]
- Jayasumana, C.; Gunatilake, S.; Siribaddana, S. Simultaneous exposure to multiple heavy metals and glyphosate may contribute to Sri Lankan agricultural nephropathy. BMC Nephrol. 2015, 16, 103. [Google Scholar] [CrossRef] [Green Version]
- Lebov, J.F.; Engel, L.S.; Richardson, D.; Hogan, S.L.; Hoppin, J.A.; Sandler, D.P. Pesticide use and risk of end-stage renal disease among licensed pesticide applicators in the Agricultural Health Study. Occup. Environ. Med. 2016, 73, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Slager, R.E.; Simpson, S.L.; LeVan, T.D.; Poole, J.A.; Sandler, D.P.; Hoppin, J.A. Rhinitis Associated with Pesticide Use Among Private Pesticide Applicators in the Agricultural Health Study. J. Toxicol. Environ. Health 2010, 73, 1382–1393. [Google Scholar] [CrossRef] [Green Version]
- Chatzi, L.; Alegakis, A.; Tzanakis, N.; Siafakas, N.; Kogevinas, M.; Lionis, C. Association of allergic rhinitis with pesticide use among grape farmers in Crete, Greece. Occup. Environ. Med. 2007, 64, 417–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parvez, S.; Gerona, R.R.; Proctor, C.; Friesen, M.; Ashby, J.L.; Reiter, J.L.; Lui, Z.; Winchester, P.D. Glyphosate exposure in pregnancy and shortened gestational length: A prospective Indiana birth cohort study. Environ. Health 2018, 17, 23. [Google Scholar] [CrossRef] [PubMed]
- Arbuckle, T.E.; Lin, Z.; Mery, L.S. An exploratory analysis of the effect of pesticide exposure on the risk of spontaneous abortion in an Ontario farm population. Environ. Health Perspect. 2001, 109. [Google Scholar] [CrossRef] [PubMed]
- Valavanidis, A. Glyphosate, the Most Widely Used Herbicide. Health and Safety Issues. Why Scientists Differ in Their Evaluation of Its Adverse Health Effects. Sci. Rev. 2018. Available online: http://chem-tox-ecotox.org/glyphosate-the-most-widely-used-herbicide-health-and-safety-issues-why-scientists-differ-in-their-evaluation-of-its-adverse-health-effects/ (accessed on 27 April 2020).
- Benbrook, C.M. How did the US EPA and IARC reach diametrically opposed conclusions on the genotoxicity of glyphosate-based herbicides? Environ. Sci. Eur. 2019, 31, 2. [Google Scholar] [CrossRef]
- Kogevinas, M. Probable carcinogenicity of glyphosate. BMJ 2019, 365, l1613. [Google Scholar] [CrossRef]
- Tosun, J.; Lelieveldt, H.; Wing, T.S. A Case of ‘Muddling Through’? The Politics of Renewing Glyphosate Authorization in the European Union. Sustainability 2019, 11, 440. [Google Scholar] [CrossRef] [Green Version]
- Storck, V.; Karpouzas, D.G.; Martin-Laurent, F. Towards a better pesticide policy for the European Union. Sci. Total Environ. 2017, 575, 1027–1033. [Google Scholar] [CrossRef]
- Gillezeau, C.; van Gerwen, M.; Shaffer, R.M.; Rana, I.; Zhang, L.; Sheppard, L.; Taioli, E. The evidence of human exposure to glyphosate: A review. Environ. Health 2019, 18, 2. [Google Scholar] [CrossRef] [Green Version]
- Knudsen, L.E.; Hansen, P.W.; Mizrak, S.; Hansen, H.K.; Mørck, T.A.; Nielsen, F.; Siersma, V.; Mathiesen, L. Biomonitoring of Danish school children and mothers including biomarkers of PBDE and glyphosate. Rev. Environ. Health 2017, 32, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Curwin, B.D.; Hein, M.J.; Sanderson, W.T.; Striley, C.; Heederik, D.; Kromhout, H.; Reynolds, S.J.; Alavanja, M.C. Urinary pesticide concentrations among children, mothers and fathers living in farm and non-farm households in Iowa. Ann. Occup. Hyg. 2007, 51, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Sexton, K.; Needham, L.L.; Pirkle, J.L. Human Biomonitoring of Environmental Chemicals. Am. Sci. 2004, 38–45. [Google Scholar] [CrossRef]
- Angerer, J.; Ewers, U.; Wilhelm, M. Human biomonitoring: State of the art. Int. J. Hyg. Environ. Health 2007, 210, 201–228. [Google Scholar] [CrossRef] [PubMed]
- Bahadori, T.; Phillips, R.D.; Money, C.D.; Quackenboss, J.J.; Clewell, H.J.; Bus, J.S.; Robison, S.H.; Humphris, C.J.; Parekh, A.A.; Osborn, K.; et al. Making sense of human biomonitoring data: Findings and recommendations of a workshop. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 308–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US EPA. Human-Health Assessment Scoping Document in Support of Registration Review: Glyphosate; Environmental Protection Agency: Washington, DC, USA, 2009.
- European Commission. Review Report for the Active Substance Glyphosate; European Commission: Brussels, Belgium, 2002. [Google Scholar]
- Zoller, O.; Rhyn, P.; Zarn, J.A.; Dudler, V. Urine glyphosate level as a quantitative biomarker of oral exposure. Int. J. Hyg. Environ. Health 2020, 228, 113526. [Google Scholar] [CrossRef]
- Faniband, M. Human Exposure Biomarkers of Some Commonly Used Pesticides. Ph.D. Thesis, Lund University, Faculty of Medicine, Lund, Skaner, Sweden, 2020. Available online: https://lup.lub.lu.se/search/publication/492a1c9b-c9af-40d9-8160-1a1400eebd42 (accessed on 29 July 2020).
- Niemann, L.; Sieke, C.; Pfeil, R.; Solecki, R. A critical review of glyphosate findings in human urine samples and comparison with the exposure of operators and consumers. J. Verbrauch. Lebensm. 2015, 10, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Hoppe, H.W. Determination of Glyphosate Residues in Human Urine Samples from 18 European Countries; Medical Laboratory: Bremen, Germany, 2013. [Google Scholar]
- BfR. Glyphosate in Urine-Concentrations Are Far below the Range Indicating a Potential Health Hazard; MLHB-2013-06-06; Bundesinstitut für Risikobewertung BfR: Berlin, Germany, 2013; Available online: https://www.bfr.bund.de/cm/349/glyphosate-in-urine-concentrations-are-far-below-the-range-indicating-a-potential-health-hazard.pdf (accessed on 1 June 2020).
- Kongtip, P.; Nankongnab, N.; Phupancharoensuk, R.; Palarach, C.; Sujirarat, D.; Sangprasert, S.; Sermsuk, M.; Sawattrakool, N.; Woskie, S.R. Glyphosate and Paraquat in Maternal and Fetal Serums in Thai Women. J. Agromed. 2017, 22, 282–289. [Google Scholar] [CrossRef]
- McGuire, M.K.; McGuire, M.A.; Price, W.J.; Shafii, B.; Carrothers, J.M.; Lackey, K.A.; Goldstein, D.A.; Jensen, P.K.; Vicini, J.L. Glyphosate and aminomethylphosphonic acid are not detectable in human milk. Am. J. Clin. Nutr. 2016, 103, 1285–1290. [Google Scholar] [CrossRef] [Green Version]
- Barr, D.B.; Thomas, K.; Curwin, B.; Landsittel, D.; Raymer, J.; Lu, C.; Donnelly, K.C.; Acquavella, J. Biomonitoring of Exposure in Farmworker Studies. Environ. Health Perspect. 2006, 114, 936–942. Available online: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC148048 (accessed on 6 October 2016). [CrossRef] [Green Version]
- Conrad, A.; Schroter-Kermani, C.; Hoppe, H.W.; Ruther, M.; Pieper, S.; Kolossa-Gehring, M. Glyphosate in German adults-time trend (2001 to 2015) of human exposure to a widely used herbicide. Int. J. Hyg. Environ. Health 2017, 220. [Google Scholar] [CrossRef] [Green Version]
- Mesnage, R.; Moesch, C.; Grand, R.; Lauthier, G.; Vendômois, J.; Gress, S.; Séralini, G. Glyphosate Exposure in a Farmer’s Family. J. Environ. Prot. 2012, 3, 1001–1003. [Google Scholar] [CrossRef] [Green Version]
- Acquavella, J.F.; Alexander, B.H.; Mandel, J.S.; Gustin, C.; Baker, B.; Chapman, P.; Bleeke, M. Glyphosate biomonitoring for farmers and their families: Results from the farm family exposure study. Environ. Health Perspect. 2004, 112, 321–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soukup, S.T.; Merz, B.; Bub, A.; Hoffmann, I.; Watzl, B.; Steinberg, P.; Kulling, S.E. Glyphosate and AMPA levels in human urine samples and their correlation with food consumption: Results of the cross-sectional KarMeN study in Germany. Arch. Toxicol. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connolly, A.; Basinas, I.; Jones, K.; Galea, K.S.; Kenny, L.; McGowan, P.; Coggins, M.A. Characterising glyphosate exposures among amenity horticulturists using multiple spot urine samples. Int. J. Hyg. Environ. Health 2018, 221, 1012–1022. [Google Scholar] [CrossRef] [PubMed]
- Perry, M.J.; Mandrioli, D.; Belpoggi, F.; Manservisi, F.; Panzacchi, S.; Irwin, C. Historical evidence of glyphosate exposure from a US agricultural cohort. Environ. Health 2019, 18, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connolly, A.; Jones, K.; Galea, K.S.; Basinas, I.; Kenny, L.; McGowan, P.; Coggins, M. Exposure assessment using human biomonitoring for glyphosate and fluroxypyr users in amenity horticulture. Int. J. Hyg. Environ. Health 2017, 220, 1064–1073. [Google Scholar] [CrossRef]
- Lavy, T.L.; Cowell, J.E.; Steinmetz, J.R.; Massey, J.H. Conifer seedling nursery worker exposure to glyphosate. Arch. Environ. Contam. Toxicol. 1992, 22, 6–13. [Google Scholar] [CrossRef]
- Jauhiainen, A.; Räsänen, K.; Sarantila, R.; Nuutinen, J.; Kangas, J. Occupational exposure of forest wrokers to glyphosate during brush saw spraying work. Am. Ind. Hyg. Assoc. J. 1991, 52, 61–64. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, Y.; Liu, X.; Pan, L.; Ding, E.; Dou, J.; Zhu, B. Concentration Distribution and Analysis of Urinary Glyphosate and Its Metabolites in Occupationally Exposed Workers in Eastern China. Int. J. Environ. Res. Public Health 2020, 17, 2943. [Google Scholar] [CrossRef]
- Connolly, A.; Jones, K.; Basinas, I.; Galea, K.S.; Kenny, L.; McGowan, P.; Coggins, M.A. Exploring the half-life of glyphosate in human urine samples. Int. J. Hyg. Environ. Health 2019, 222, 205–210. [Google Scholar] [CrossRef]
- Curwin, B.D. Bringing Work Home: Take-Home Pesticide Exposure among Farm Families; Utrecht University: Utrecht, The Netherlands, 2006. [Google Scholar]
- Connolly, A.; Coggins, M.A.; Galea, K.S.; Jones, K.; Kenny, L.; McGowan, P.; Basinas, I. Evaluating Glyphosate Exposure Routes and Their Contribution to Total Body Burden: A Study Among Amenity Horticulturalists. Ann. Work Expo. Health 2019, 63, 133–147. [Google Scholar] [CrossRef] [Green Version]
- Krüger, M.; Schledorn, P.; Schrödl, W.; Hoppe, H.W.; Lutz, W.; Shehata, A.A. Detection of Glyphosate Residues in Animals and Humans. J. Environ. Anal. Toxicol. 2014, 4. [Google Scholar] [CrossRef]
- Connolly, A.; Leahy, M.; Jones, K.; Kenny, L.; Coggins, M.A. Glyphosate in Irish adults—A pilot study in 2017. Environ. Res. 2018, 165, 235–236. [Google Scholar] [CrossRef] [PubMed]
- Varona, M.; Henao, G.L.; Diaz, S.; Lancheros, A.; Murcia, A.; Rodriguez, N.; Alvarez, V.H. Effects of aerial applications of the herbicide glyphosate and insecticides on human health. Biomedica 2009, 29, 456–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rendon-von Osten, J.; Dzul-Caamal, R. Glyphosate Residues in Groundwater, Drinking Water and Urine of Subsistence Farmers from Intensive Agriculture Localities: A Survey in Hopelchén, Campeche, Mexico. Int. J. Environ. Res. Public Health 2017, 14, 595. [Google Scholar] [CrossRef]
- Mills, P.J.; Kania-Korwel, I.; Fagan, J.; McEvoy, L.K.; Laughlin, G.A.; Barrett-Connor, E. Excretion of the herbicide glyphosate in older adults between 1993 and 2016. JAMA 2017, 318, 1610–1611. [Google Scholar] [CrossRef]
- Apel, P.; Angerer, J.; Wilhelm, M.; Kolossa-Gehring, M. New HBM values for emerging substances, inventory of reference and HBM values in force, and working principles of the German Human Biomonitoring Commission. Int. J. Hyg. Environ. Health 2017, 220, 152–166. [Google Scholar] [CrossRef] [Green Version]
- Angerer, J.; Aylward, L.L.; Hays, S.M.; Heinzow, B.; Wilhelm, M. Human biomonitoring assessment values: Approaches and data requirements. Int. J. Hyg. Environ. Health 2011, 214, 348–360. [Google Scholar] [CrossRef]
- Faure, S.; Noisel, N.; Werry, K.; Karthikeyan, S.; Aylward, L.L.; St-Amand, A. Evaluation of human biomonitoring data in a health risk based context: An updated analysis of population level data from the Canadian Health Measures Survey. Int. J. Hyg. Environ. Health 2020, 223, 267–280. [Google Scholar] [CrossRef]
- Kohn, M.C.; Parham, F.; Masten, S.A.; Portier, C.J.; Shelby, M.D.; Brock, J.W.; Needham, L.L. Human exposure estimates for phthalates. Environ. Health Perspect. 2000, 108, A440–A442. [Google Scholar] [CrossRef]
- David, R.M. Exposure to phthalate esters. Environ. Health Perspect. 2000, 108, A440. [Google Scholar] [CrossRef]
- ATSDR Toxicological Profile for Glyphosates; 2019-05-03T05:19:00Z/. 2019. Available online: https://www.atsdr.cdc.gov/sites/peer_review/tox_profile_Glyphosates.html (accessed on 27 April 2020).
- Helsel, D. Much Ado About Next to Nothing: Incorporating Nondetects in Science. Ann. Occup. Hyg. 2010, 54, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Hewett, P.; Ganser, G.H. A comparison of several methods for analyzing censored data. Ann. Occup. Hyg. 2007, 51, 611–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogden, T.L. Handling results below the level of detection. Ann. Occup. Hyg. 2010, 54, 255–256. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Data Quality Assessment: Statistical Methods for Practitioners; EPA QA/G-9S; Environmental Protection Agency: Washington, DC, USA, 2006. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/900B0D00.PDF?Dockey=900B0D00.PDF (accessed on 26 June 2020).
- Solomon, K.R. Estimated exposure to glyphosate in humans via environmental, occupational, and dietary pathways: An updated review of the scientific literature. Pest Manag. Sci. 2019. [Google Scholar] [CrossRef] [PubMed]
- JMPR. Pesticide Residues in Food 2019-Evaluations 2019 Part I-Residues EXTRA Joint FAO/WHO Meeting; JMPR: Ottawa, ON, Canada, 2019; Available online: http://www.fao.org/publications/card/en/c/CA6010EN/ (accessed on 26 June 2020).
- Chan, P.; Mahler, J. NTP technical report on the toxicity studies of Glyphosate (CAS No. 1071-83-6) Administered in Dosed Feed to F344/N Rats and B6C3F1 Mice. Toxic. Rep. Ser. 1992, 16, d1–d3. Available online: https://pubmed.ncbi.nlm.nih.gov/12209170/ (accessed on 25 June 2020).
- JMPR. Joint FAO/WHO Meeting on Pesticide Residues; World Health Organisation (WHO): Geneva, Switzerland, 2016. [Google Scholar]
- Grandcoin, A.; Piel, S.; Baurès, E. AminoMethylPhosphonic acid (AMPA) in natural waters: Its sources, behavior and environmental fate. Water Res. 2017, 117, 187–197. [Google Scholar]
- HBM4EU. HBM4EU Priority Substances. Human Biomonitoirng for Europe. Available online: https://www.hbm4eu.eu/the-substances/ (accessed on 24 April 2020).
- HBM4EU THE PROJECT|HBM4EU-Science and Policy for a Healthy Future. Available online: https://www.hbm4eu.eu/the-project/ (accessed on 24 April 2020).
- Louro, H.; Heinälä, M.; Bessems, J.; Buekers, J.; Vermeire, T.; Woutersen, M.; van Engelen, J.; Borges, T.; Rousselle, C.; Ougier, E.; et al. Human biomonitoring in health risk assessment in Europe: Current practices and recommendations for the future. Int. J. Hyg. Environ. Health 2019, 222, 727–737. [Google Scholar] [CrossRef]
- Buekers, J.; David, M.; Koppen, G.; Bessems, J.; Scheringer, M.; Lebret, E.; Sarigiannis, D.; Kolossa-Gehring, M.; Berglund, M.; Schoeters, G.; et al. Development of Policy Relevant Human Biomonitoring Indicators for Chemical Exposure in the European Population. Int. J. Environ. Res. Public Health 2018, 15, 2085. [Google Scholar] [CrossRef] [Green Version]
- Cocker, J.; Mason, H.J.; Garfitt, S.J.; Jones, K. Biological monitoring of exposure to organophosphate pesticides. Toxicol. Lett. 2002, 134, 97–103. [Google Scholar] [CrossRef]
- Hays, S.M.; Becker, R.A.; Leung, H.W.; Aylward, L.L.; Pyatt, D.W. Biomonitoring equivalents: A screening approach for interpreting biomonitoring results from a public health risk perspective. Regul. Toxicol. Pharmacol. 2007, 47, 96–109. [Google Scholar] [CrossRef]
- EFSA Glyphosate. Available online: https://www.efsa.europa.eu/en/topics/topic/glyphosate (accessed on 24 June 2020).
Ref: | Country | Type of Study | Sampling Population | Urine Sample Type | Analytical Method | GLY Conc. (µg/L) | AMPA Conc. (µg/L) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LOD/LOQ | % above LOQ/LOD | Average | Max | LOD/LOQ | % above LOQ/LOD | Average | Max | ||||||
Zhang, F. et al., 2020 [47] | China | Pesticide production plants | Workers across 4 production plants | End of work shift samples. n = 134 | GC-MS 2 | LOD 20 | ~87% | Mean 292 | 17,200 | 10 | ~81% | Median 68 | 2730 |
Perry, M.J. et al., 2019 [43] 3 | US | US agricultural cohort study | 18 farmers—8 hrs after application and 17 non-applicators | Spot urine samples 4 | LC-MS/MS 5 | LOD 0.4 | 39% | Median < LOD | 12.0 | 1 | 6% | Median < LOD | NR 6 |
Connolly, A. et al., 2018 [42] | Ireland | Horticulture amenity gardening | 20 workers for 29 tasks. A total of 125 individual samples | Individual full void samples 7 | LC-MS/MS | LOQ 0.5 | 93% | Peak values GM 1.90 AM 2.53 | 7.36 | N/A | N/A | N/A | N/A |
Connolly, A. et al., 2017 [44] | Ireland | Horticulture amenity gardening | 17 workers—31 paired samples | Spot samples 8 | LC-MS/MS | LOQ 0.5 | 55% | GM 0.66 AM 1.35 | 10.66 | N/A | N/A | N/A | N/A |
Mesnage, R. et al., 2012 [39] | France | Farm family exposure study | 1 farmer, spouse and 3 children | 24-h urine over three days | HPLC-ESI-MS 9 | LOD 1 LOQ 2 | NR2 | Overall results not given | 9.5 | NR | 0 | Non detect | Non detect |
Curwin, B. et al., 2007 [24] 10 | USA—Iowa | Farm and ‘non-farm’ familiesinvestigating take-home pesticide exposure | Farm Father (n = 24) Mother (n = 24) Child (n = 25) | Two full void spot urine samples. 11 | Immunoassay (fluorescent microbeads) | LOD 0.9 | Overall ~77% | GM Farm: Father 1.9 Mother 1.5 Child 2.0 | 18 | N/A | N/A | N/A | N/A |
Acquavella, J.F. et al., 2004 [40] 12 | USA—South Carolina, Minnesota | Occupational and residential exposures in an agricultural setting | 48 farmers, 48 spouses and 79 children | 24-hr composite urine samples 13 | HPLC following ion exchange | LOD 1 | Farmer 60% Spouse 4% Child 12% | Farmer GM 3.2 | Farmer 233 Spouse 3 Child 29 | N/A | N/A | N/A | N/A |
Lavy, T.L et al., 1992 [45] | United States | Conifer Seedling Nursery | 14 workers | 24-h urine 14 | Not specified | LOQ 10 | 0 | 0 | 0 | N/A | N/A | N/A | N/A |
Jauhiainen, A. et al., 1991 [46] | Finland 1988 | Forest workers | 5 Forest workers and 5 control group | Post work shift samples 15 | GC with a 63Ni-electron capture detector | LOD 100 | 0 | N/A | <LOD 16 | LOD 50 | 0 | N/A | N/A |
Ref: | Country | Type of Study | Sampling Population | Urine Sample Type | Analytical Method | GLY Conc. (µg/L) | AMPA Conc. (µg/L) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LOD/LOQ | % above LOQ/LOD | Average | Max | LOD/LOQ | % above LOQ/LOD | Average | Max | ||||||
Soukup, S.T. et al., 2020 [41] | Germany | KarMeN study | Cross-sectional study of 301 adults | 24 h full void samples | LC-MS/MS | LOD/LOQ 0.05/0.20 | 8% ≥ LOQ 2 | Median < LOQ | 1.37 | LOD/LOQ 0.09/0.20 | 8% ≥ LOQ | Median < LOQ | 1.53 |
Connolly, A. et al., 2018 [52] | Ireland | Pilot study | 50 adults | One spot sample | LC-MS/MS | LOQ 0.5 | 20% | Median < LOQ | 1.35 | N/A | N/A | N/A | N/A |
Parvez, S. et al., 2018 [15] | USA—Indiana | Environmental study | 71 pregnant women | NR | LC-MS/MS | LOQ 0.5 LOD 0.1 | 93% > LOD | Mean 3.40 | 7.20 | N/A | N/A | N/A | N/A |
Conrad, A. et al., 2017 [38] | Germany | General population | 399 samples (20–29 years old) | 24-h urine samples 3 | GC-MS/MS 4 | LOQ 0.1 | ~32% | Median < LOQ | 2.80 | LOQ 0.1 | ~40% | Median < LOQ | 1.88 |
Knudsen, L.E. et al., 2017 [23] | Denmark | Mother and child study | Mother (n = 13) Children 6–11 (n = 14) | Spot samples 5 | ELISA 6 | LOD 0.0751 | 100% | Mean Mothers 1.28 Children 1.96 | 3.31 | N/A | N/A | N/A | N/A |
Mills, P.J. et al., 2017 [55] 7 | USA—California | Older Adults between 1993 and 2016 | Adults more than 50 years old | Morning spot urine samples (n = 100) | HPLC-MS 8 | LOD 0.03 | 70% | Mean 0.314 | NR 9 | LOD 0.04 | 71% | 0.285 | NR |
Rendon-von Osten, L. and Dzul-Caamal, R. 2017 | Mexico | Farmers and Fishermen 10 | Men between 30–50 years old | Morning spot urine samples | ELISA | LOQ 1.0 | NR | Mean of 1 group (n = 15) 0.47 | NR | N/A | N/A | N/A | N/A |
McGuire, M.K. et al., 2016 [36] | USA—Washington and Idaho | Lactating women | Analysing glyphosate in milk and urine | Midstream urine spot sample (n = 40) | LC-MS/MS | LOD/LOQ 0.02/0.10 | ~93% > LOD | Mean 0.28 | 1.93 | LOD/LOQ 0.03/0.10 | 95% > LOD | 0.30 | 1.33 |
Jayasumana, C. et al., 2015 [11] 11 | Sri Lanka | Investigate Sri Lankan Agricultural Nephropathy (SAN) patients | Patients with SAN, healthy group from the area and a different area | Morning spot urine samples. 10 samples per group | ELISA validation compared with GC-MS | LOD 0.6 | 100% | Medians SAN endemic area 73.5 Non endemic area 3.3 | Peak ≥ 80 | N/A | N/A | N/A | N/A |
Krüger, M. et al., 2014 [51] | Europe | Human and animal exposure study | conventional diet n = 99 and organic diet n = 41. Healthy n = 102 and chronically diseased n = 199 | NR | ELISA partly validated against GC-MS | LOD/LOQ unknown | NR | NR | ~5 | N/A | N/A | N/A | N/A |
Hoppe, H.W. 2013 [33] 12 | Europe | Environmental exposures | 18 EU countries | Not specified, urine samples n = 182 | GC-MSMS | LOQ 0.15 | 44% | Median < LOQ | 1.82 | LOQ 0.15 | 36% | Median < LOQ | 2.6 |
Varona, M. et al., 2009 [53] 13 | Columbia | Aerial spraying | 106 samples analysed 14 | Spot urine samples | G.C. with electron micro-capture detector | LOD 0.5 LOQ 2 | ~40% | Median < LOQ | 130 | LOD 1.0 LOQ 15 | 3.8% | Median < LOQ | 56 |
Curwin, B. et al., 2007 [23] 15 | USA—Iowa | Farm and ‘non-farm’ families investigating take-home pesticide exposure | Non-farm Father (n = 23) Mother (n = 24) Child (n = 25) | Two full void spot urine samples 16 | Immunoassay (fluorescent microbeads) | LOD 0.9 | 77% | GM Non-farm Father 1.4 Mother 1.2 Child 2.7 | 9.4 | N/A | N/A | N/A | N/A |
Study | Percentage of EFSA ADI [%] | |
---|---|---|
Average | Max | |
Soukup et al., 2020 [41] | <LOQ (median) | 1% |
Connolly et al., 2018 [52] | <LOQ (median) | 1% |
Parvez et al., 2018 [14] | 2% (mean) | 5% |
Conrad et al., 2017 [38] | <LOQ (median) | 2% |
Knudsen et al., 2017 [23] | 1% (mothers, mean) 1% (children, mean) | 2% |
Mills et al., 2017 [55] | 0.2% (mean) | NR 3 |
Rendon-von Osten. et al., 2017 [54] | 0.3% (mean) | NR |
McGuire et al., 2016 [36] | 0.2% (mean) | 1% |
Jayasumana et al., 2015 [11] | 53% 4 | |
(control populations) | ||
SAN endemic areas | 49% (median) | |
non-endemic area | 6% (median) | |
Krüger et al., 2014 [51] | NR | 3% |
Hoppe, 2013 [33] | <LOQ (median) | 1% |
Varona et al., 2009 [53] | <LOQ (median) | 87% 4 |
Curwin et al., 2007 [24] (Non-farm family) | 1% (father, GM) 1% (mother, GM) 2% (child, GM) | 6% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Connolly, A.; Coggins, M.A.; Koch, H.M. Human Biomonitoring of Glyphosate Exposures: State-of-the-Art and Future Research Challenges. Toxics 2020, 8, 60. https://doi.org/10.3390/toxics8030060
Connolly A, Coggins MA, Koch HM. Human Biomonitoring of Glyphosate Exposures: State-of-the-Art and Future Research Challenges. Toxics. 2020; 8(3):60. https://doi.org/10.3390/toxics8030060
Chicago/Turabian StyleConnolly, Alison, Marie A. Coggins, and Holger M. Koch. 2020. "Human Biomonitoring of Glyphosate Exposures: State-of-the-Art and Future Research Challenges" Toxics 8, no. 3: 60. https://doi.org/10.3390/toxics8030060