Fast and Reliable Determination of Phthalic Acid Esters in the Blood of Marine Turtles by Means of Solid Phase Extraction Coupled with Gas Chromatography-Ion Trap/Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Apparatus
2.2. Sampling
2.3. GC-IT/MS Conditions
2.4. PAE Extraction of Blood from Loggerhead Sea Turtles (Caretta caretta)
2.5. Adsorption Isotherms
2.6. Breakthrough Curves
2.7. Study of the Extraction Solvent
2.8. Calibration Graphs
2.9. Analysis of PAEs in Blood Samples
3. Results and Discussion
3.1. Evaluation of the Analytical Methodology
3.2. GC-IT/MS Method Validation
3.3. Similar Studies
3.4. Application to Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Luo, Y.; Teng, Y.; Ma, M.; Christie, P.; Li, Z. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film. Environ. Pollut. 2013, 180, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Notardonato, I.; Protano, C.; Vitali, M.; Avino, P. Phthalates and Bisphenol-A determination and release from different beverage plastic containers by dispersive liquid-liquid microextraction and GC-IT/MS analysis. Food Anal. Methods 2019, 12, 2562–2571. [Google Scholar] [CrossRef]
- Xie, Q.; Liu, S.; Fan, Y.; Sun, J.; Zhang, X. Determination of phthalate esters in edible oils by use of QuEChERS coupled with ionic-liquid-based dispersive liquid–liquid microextraction before high-performance liquid chromatography. Anal Bioanal. Chem. 2014, 406, 4563–4569. [Google Scholar] [CrossRef] [PubMed]
- Arfaeinia, H.; Fazlzadeh, M.; Taghizadeh, F.; Saeedid, R.; Spitze, J.; Dobaradaran, S. Phthalate acid esters (PAEs) accumulation in coastal sediments from regions with different land use configuration along the Persian Gulf. Ecotoxicol. Environ. Saf. 2019, 169, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Salvaggio, A.; Tiralongo, F.; Krasakopoulou, E.; Marmara, D.; Giovos, I.; Crupi, R.; Messina, G.; Lombardo, B.M.; Marzullo, A.; Pecoraro, R.; et al. Biomarkers of exposure to chemical contamination in the commercial fish species Lepidopus caudatus (Euphrasen, 1788): A particular focus on plastic additives. Front. Physiol. 2019, 10, 905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fossi, M.C.; Panti, C.; Guerranti, C.; Coppola, D.; Giannetti, M.; Marsili, L.; Minutoli, R. Are baleen whales exposed to the threat of microplastics? A case study of the Mediterranean fin whale (Balaenoptera physalus). Mar. Pollut. Bull. 2012, 64, 2374–2379. [Google Scholar] [CrossRef] [PubMed]
- Hermabessiere, L.; Dehaut, A.; Paul-Pont, I.; Lacroix, C.; Jezequel, R.; Soudant, P.; Duflos, G. Occurrence and effects of plastic additives on marine environments and organisms: A review. Chemosphere 2017, 182, 781–793. [Google Scholar] [CrossRef] [Green Version]
- Saliu, F.; Montano, S.; Lasagni, M.; Galli, P. Biocompatible solid-phase microextraction coupled to liquid chromatography triple quadrupole mass spectrometry analysis for the determination of phthalates in marine invertebrate. J. Chromatogr. A 2020, 1618, 460852. [Google Scholar] [CrossRef]
- Savoca, D.; Arculeo, M.; Barreca, S.; Buscemia, S.; Caracappa, S.; Gentile, A.; Persichetti, M.F.; Pace, A. Chasing phthalates in tissues of marine turtles from Mediterranean Sea. Mar. Pollut. Bull. 2018, 127, 165–169. [Google Scholar] [CrossRef]
- Paluselli, A.; Fauvelle, V.; Schmidt, N.; Galgani, F.; Net, S.; Sempéré, R. Distribution of phthalates in Marseille Bay (NW Mediterranean Sea). Sci. Total Environ. 2018, 621, 578–587. [Google Scholar] [CrossRef] [Green Version]
- Domènech, F.; Aznar, F.J.; Raga, J.A.; Tomas, J. Two decades of monitoring in marine debris ingestion in loggerhead sea turtle, Caretta caretta, from the western Mediterranean. Environ. Pollut. 2019, 244, 367–378. [Google Scholar] [CrossRef]
- Sinaei, M.; Zare, R. Polycyclic aromatic hydrocarbons (PAHs) and some biomarkers in the green sea turtles (Chelonia mydas). Mar. Pollut. Bull. 2019, 146, 336–342. [Google Scholar] [CrossRef]
- Smith, M.; Love, D.; Rochman, C.M.; Neff, R.A. Microplastics in seafood and the implications for human health. Curr. Environ. Health Rep. 2018, 5, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Biamis, C.; O’ Driscoll, K.; Hardiman, G. Microplastic toxicity: A review of the role of marine sentinel species in assessing the environmental and public health impacts. Case Stud. Chem. Environ. Eng. 2021, 3, 100073. [Google Scholar] [CrossRef]
- Guerranti, C.; Baini, M.; Casini, S.; Focardi, S.E.; Giannetti, M.; Mancusi, C.; Marsili, L.; Perra, G.; Fossi, M.C. Pilot study on levels of chemical contaminants and prophyrins in Caretta caretta from Mediterranean Sea. Mar. Environ. Res. 2014, 100, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Camacho, M.; Boada, L.D.; Orós, J.; Calabuig, P.; Zumbado, M.; Luzardo, O.P. Comparative study of polycyclic aromatic hydrocarbons (PAHs) in plasma of Eastern Atlantic juvenile and adult nesting loggerhead sea turtles (Caretta caretta). Mar. Pollut. Bull. 2012, 64, 1974–1980. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Eiroa, A.; Canle, M.; Leroy-Cancellieri, V.; Cerdà, V. Solid-phase extraction of organic compounds: A critical review (Part II). Trends Anal. Chem. 2016, 80, 655–667. [Google Scholar] [CrossRef]
- Ehsanpour, M.; Afkhami, M.; Khoshnood, R.; Reich, K.J. Determination and maternal transfer of heavy metals (Cd, Cu, Zn, Pb and Hg) in the Hawksbill Sea turtle (Eretmochelys imbricata) from a nesting colony of Qeshm Island, Iran. Bull. Environ. Contam. Toxicol. 2014, 92, 667–673. [Google Scholar] [CrossRef]
- D’Ilio, S.; Mattei, D.; Blasi, M.F.; Alimonti, A.; Bogialli, S. The occurrence of chemical elements and POPs in loggerhead turtles (Caretta caretta): An overview. Mar. Pollut. Bull. 2011, 62, 1606–1615. [Google Scholar] [CrossRef]
- Dogruer, G.; Weijs, L.; Tang, J.Y.; Hollert, H.; Kock, M.; Bell, I.; Madden Hof, C.A.; Gaus, C. Effect-based approach for screening of chemical mixtures in whole blood of green turtles from the Great Barrier Reef. Sci. Total Environ. 2018, 612, 321–329. [Google Scholar] [CrossRef]
- Wang, L.Y.; Gu, Y.Y.; Zhang, Z.M.; Sun, A.L.; Shi, X.Z.; Chen, J.; Lu, Y. Contaminant occurrence, mobility and ecological risk assessment of phthalate esters in the sediment-water system of the Hangzhou Bay. Sci. Total Environ. 2021, 770, 144705. [Google Scholar] [CrossRef]
- Kato, K.; Silva, M.J.; Brock, J.W.Z.; Reidy, J.A.; Malek, N.A.; Hodge, C.C.; Nakazawa, H.; Needham, L.L.; Barr, D.D. Quantitative detection of nine phthalate metabolites in human serum using reversed-phase high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. J. Anal. Toxicol. 2003, 27, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Russo, M.V.; Notardonato, I.; Cinelli, G.; Avino, P. Evaluation of an analytical method for determining phthalate esters in wine samples by solid-phase extraction and gas chromatography coupled with ion-trap mass spectrometer detector. Anal. Bioanal. Chem. 2012, 402, 1373–1381. [Google Scholar] [CrossRef]
- Russo, M.V.; Avino, P.; Notardonato, I. Fast analysis of phthalates in freeze-dried baby foods by ultrasound-vortex-assisted liquid-liquid microextraction coupled with gas chromatography-ion trap/mass spectrometry. J. Chromatogr. A 2016, 1474, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Cinelli, G.; Avino, P.; Notardonato, I.; Centola, A.; Russo, M.V. Rapid analysis of six phthalate esters in wine by ultrasound-vortex-assisted dispersive liquid–liquid micro-extraction coupled with gas chromatography-flame ionization detector or gas chromatography–ion trap mass spectrometry. Anal. Chim. Acta 2013, 769, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Blasi, M.F.; Mattei, D. Seasonal encounter rate, life stages and main threats to the loggerhead sea turtle (Caretta caretta) in the Aeolian Archipelago (southern Thyrrenian Sea). Aquat. Conserv. 2017, 27, 617–630. [Google Scholar] [CrossRef]
- Eckert, E.; Müller, J.; Göen, T. Simultaneous determination of polyvinylchloride plasticizers di(2-ethylhexyl) phthalate and tri(2-ethylhexyl) trimellitate and its degradation products in blood by liquid chromatography-tandem mass spectrometry. J Chromatogr. A 2015, 1410, 173–180. [Google Scholar] [CrossRef]
- Knoll, J.E. Estimation of the limit of detection in chromatography. J. Chromatogr. Sci. 1985, 23, 422–425. [Google Scholar] [CrossRef]
- Ebrahim, K.; Poursafa, P.; Amin, M.M. Development of a simple and valid method for the trace determination of phthalate esters in human plasma using dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry. J. Sep. Sci. 2017, 40, 4403–4410. [Google Scholar] [CrossRef]
- Natesan, U. Accumulation of organic pollutants in aquatic organisms from Ennore estuary, Chennai, India. Asian J. Chem. 2012, 25, 2392–2394. [Google Scholar] [CrossRef]
- Beltifa, A.; Feriani, A.; Machreki, M.; Ghorbel, A.; Ghazouani, L.; Di Bella, D.; Van Loco, J.; Reyns, T.; Ben Mansour, H. Plasticizers and bisphenol A, in packaged foods sold in the Tunisian markets: Study of their acute in vivo toxicity and their environmental fate. Environ. Sci. Pollut. Res. 2017, 24, 22382–22392. [Google Scholar] [CrossRef]
- Suhrhoff, T.J.; Scholz-Böttcher, B.M. Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics-A lab experiment. Mar. Pollut. Bull. 2016, 102, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, R.J.; Rubin, R.J. Extraction, localization, and metabolism of di-2-ethylhexyl phthalate from PVC plastic medical devices. Environ. Health Perspect. 1973, 3, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Donaton, J.; Durham, K.; Cerrato, R.; Schwerzmann, J.; Thorne, L.H. Long-term changes in loggerhead sea turtle diet indicate shifts in the benthic community associated with warming temperatures. Estuar. Coast. Shelf Sci. 2019, 218, 139–147. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Lim, J.-E.; Lee, S.; Moon, H.-B. Phthalates and non-phthalate plasticizers in sediment from Korean coastal waters: Occurrence, spatial distribution, and ecological risks. Mar. Environ. Pollut. 2020, 154, 111119. [Google Scholar] [CrossRef]
- Liu, Y.; He, Y.; Zhang, J.D.; Cai, C.Y.; Breider, F.; Tao, S.; Liu, W.X. Distribution, partitioning behavior, and ecological risk assessment of phthalate esters in sediment particle-pore water systems from the main stream of the Haihe River, Northern China. Sci. Total Environ. 2020, 745, 141131. [Google Scholar] [CrossRef]
- Sun, C.; Chen, L.; Zhao, S.; Guoa, W.; Lu, W.; Wang, L.; Tang, L.; Li, F.; Zhang, J. Seasonal distribution and ecological risk of phthalate esters in surface water and marine organisms of the Bohai Sea. Mar. Pollut. Bull. 2021, 169, 112449. [Google Scholar] [CrossRef] [PubMed]
- Olumayowa, J.O.; Adewuyi, G.O.; Ayede, A.I.; Olayemi, O.; Bello, F.A.; Osamor, J.O. Blood transfusion impact on levels of some phthalate esters in blood, urine and breast milk of some nursing mothers in Ibadan South-Western Nigeria. J. Environ. Anal. Chem. 2021, 101, 702–718. [Google Scholar]
Phthalate | Abbreviation | Formula | MW | Target Ion | Qualifier Ion |
---|---|---|---|---|---|
Dimethyl Phthalate | DMP | C10H10O4 | 194.18 | 163 | 194 |
Diethyl Phthalate | DEP | C12H14O4 | 222.24 | 149 | 177 |
Di-isobutyl Phthalate | DiBP | C16H22O4 | 278.34 | 149 | 205 |
n-Dibutyl Phthalate | DBP | C16H22O4 | 278.34 | 149 | 205 |
Bis-(2-Ethylhexyl) Phthalate | DEHP | C24H38O4 | 390.56 | 149 | 167 |
Di-n-octyl Phthalate | DnOP | C24H38O4 | 390.56 | 149 | 261 |
Identification Code of Turtle | Rescue Area | CCL (cm) | CCW (cm) | Weight (kg) |
---|---|---|---|---|
A | Sicily | 70.5 | 64.0 | 43.0 |
B | Sicily | 54.0 | 50.0 | 20.0 |
C | Sicily | 62.5 | 55.4 | 26.7 |
D | Sicily | 69.0 | 63.0 | 42.0 |
Solvent | Recovery (% ± s.d 1) | |||||
---|---|---|---|---|---|---|
DMP | DEP | DiBP | DBP | DEHP | DnOP | |
Acetone | 52.2 ± 5.3 | 57.0 ± 6.2 | 42.5 ± 4.6 | 31.3 ± 6.8 | 22.6 ± 8.9 | 32.4 ± 9.4 |
Methanol | 45.6 ± 6.7 | 41.4 ± 7.3 | 28.4 ± 6.8 | 25.5 ± 8.4 | 37.0 ± 9.3 | 51.9 ± 8.8 |
n-Heptane | 69.2 ± 4.2 | 76.3 ± 3.7 | 63.2 ± 5.1 | 67.2 ± 5.7 | 71.2 ± 4.8 | 63.9 ± 6.4 |
Methylene chloride | 96.5 ± 4.9 | 97.8 ± 5.1 | 89.5 ± 9.2 | 103.1 ± 8.3 | 99.4 ± 7.4 | 92.2 ± 5.3 |
PAE | R2 | LOD | LOQ | Recovery | Inter-Day |
---|---|---|---|---|---|
(ng mL−1) | (ng mL−1) | Low conc. 1 | High conc. 2 | ||
DMP | 0.9989 | 0.6 | 0.8 | 91.4 ± 4.9 | 94.8 ± 5.1 |
DEP | 0.9985 | 0.3 | 0.8 | 94.1 ± 6.0 | 92.5 ± 5.8 |
DiBP | 0.9971 | 0.1 | 0.7 | 96.8 ± 7.3 | 99.5 ± 9.3 |
DBP | 0.9965 | 0.08 | 0.7 | 99.7 ± 9.2 | 102.5 ± 7.4 |
DEHP | 0.9933 | 0.08 | 0.4 | 96.3 ± 7.6 | 93.9 ± 8.1 |
DnOP | 0.9958 | 0.1 | 0.4 | 93.1 ± 5.4 | 90.1 ± 6.2 |
PAE | Intra-Day 1 | RSD 1 (%) | Intra-Day 2 | RSD (%) | Inter-Day | RSD (%) |
---|---|---|---|---|---|---|
DMP | 91.3 ± 3.1 | 3.4 | 95.7 ± 4.0 | 4.2 | 93.5 ± 5.1 | 5.5 |
DEP | 98.8 ± 4.0 | 4.0 | 85.6 ± 3.4 | 4.0 | 92.2 ± 5.2 | 5.6 |
DiBP | 100.6 ± 7.4 | 7.4 | 95.7 ± 8.3 | 8.7 | 98.2 ± 11.1 | 11.3 |
DBP | 96.9 ± 8.3 | 8.6 | 104.3 ± 9.5 | 9.1 | 100.6 ± 12.6 | 12.5 |
DEHP | 99.6 ± 5.2 | 5.2 | 90.1 ± 6.1 | 6.8 | 94.9 ± 8.0 | 8.4 |
DnOP | 86.3 ± 3.6 | 4.2 | 96.3 ± 4.3 | 4.5 | 91.3 ± 5.6 | 6.1 |
Turtle Code | DMP | DEP | DiBP | DBP | DEHP | DnOP |
---|---|---|---|---|---|---|
A | <LOD | <LOD | <LOD | 6 | <LOD | <LOD |
B | <LOD | <LOD | 22 | 25 | 40 | 37 |
C | 14 | 74 | 41 | 57 | 53 | 21 |
D | <LOD | <LOD | 19 | 26 | 40 | 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Notardonato, I.; Di Fiore, C.; Iannone, A.; Russo, M.V.; Blasi, M.F.; Favero, G.; Mattei, D.; Protano, C.; Vitali, M.; Avino, P. Fast and Reliable Determination of Phthalic Acid Esters in the Blood of Marine Turtles by Means of Solid Phase Extraction Coupled with Gas Chromatography-Ion Trap/Mass Spectrometry. Toxics 2021, 9, 279. https://doi.org/10.3390/toxics9110279
Notardonato I, Di Fiore C, Iannone A, Russo MV, Blasi MF, Favero G, Mattei D, Protano C, Vitali M, Avino P. Fast and Reliable Determination of Phthalic Acid Esters in the Blood of Marine Turtles by Means of Solid Phase Extraction Coupled with Gas Chromatography-Ion Trap/Mass Spectrometry. Toxics. 2021; 9(11):279. https://doi.org/10.3390/toxics9110279
Chicago/Turabian StyleNotardonato, Ivan, Cristina Di Fiore, Alessia Iannone, Mario Vincenzo Russo, Monica Francesca Blasi, Gabriele Favero, Daniela Mattei, Carmela Protano, Matteo Vitali, and Pasquale Avino. 2021. "Fast and Reliable Determination of Phthalic Acid Esters in the Blood of Marine Turtles by Means of Solid Phase Extraction Coupled with Gas Chromatography-Ion Trap/Mass Spectrometry" Toxics 9, no. 11: 279. https://doi.org/10.3390/toxics9110279
APA StyleNotardonato, I., Di Fiore, C., Iannone, A., Russo, M. V., Blasi, M. F., Favero, G., Mattei, D., Protano, C., Vitali, M., & Avino, P. (2021). Fast and Reliable Determination of Phthalic Acid Esters in the Blood of Marine Turtles by Means of Solid Phase Extraction Coupled with Gas Chromatography-Ion Trap/Mass Spectrometry. Toxics, 9(11), 279. https://doi.org/10.3390/toxics9110279