Inflammatory Biomarkers Interleukin 1 Beta (IL-1β) and Tumour Necrosis Factor Alpha (TNF-α) Are Differentially Elevated in Tobacco Smoke Associated COPD and Biomass Smoke Associated COPD
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Statistical Analysis
3. Results
4. Discussion
Strengths and Weaknesses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Salvi, S.; Kumar, G.A.; Dhaliwal, R.S.; Paulson, K.; Agrawal, A.; Koul, P.A.; Mahesh, P.A.; Nair, S.; Singh, V.; Aggarwal, A.N.; et al. The burden of chronic respiratory diseases and their heterogeneity across the states of India: The Global Burden of Disease Study 1990–2016. Lancet Glob. Health 2018, 6, e1363–e1374. [Google Scholar] [CrossRef] [Green Version]
- Halbert, R.J.; Natoli, J.L.; Gano, A.; Badamgarav, E.; Buist, A.S.; Mannino, D.M. Global burden of COPD: Systematic review and meta-analysis. Eur. Respir. J. 2006, 28, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Jindal, S.K.; Aggarwal, A.N.; Chaudhry, K.; Chhabra, S.K.; D’Souza, G.A.; Gupta, D.; Katiyar, S.K.; Kumar, R.; Shah, B.; Vijayan, V.K.; et al. A multicentric study on epidemiology of chronic obstructive pulmonary disease and its relationship with tobacco smoking and environmental tobacco smoke exposure. Indian J. Chest. Dis. Allied Sci. 2006, 48, 23–29. [Google Scholar]
- McKay, A.J.; Mahesh, P.A.; Fordham, J.Z.; Majeed, A. Prevalence of COPD in India: A systematic review. Prim. Care Respir. J. 2012, 21, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Lopez, A.D.; Murray, C.C. The global burden of disease, 1990–2020. Nat. Med. 1998, 4, 1241–1243. [Google Scholar] [CrossRef]
- Fabbri, L.M.; Rabe, K.F. From COPD to chronic systemic inflammatory syndrome? Lancet 2007, 370, 797–799. [Google Scholar] [CrossRef]
- Chung, K.F. Cytokines in chronic obstructive pulmonary disease. Eur. Respir. J. 2001, 18, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Chung, K.F.; Adcock, I.M. Multifaceted mechanisms in COPD: Inflammation, immunity, and tissue repair and destruction. Eur. Respir. J. 2008, 31, 1334–1356. [Google Scholar] [CrossRef]
- Natoli, G.; Costanzo, A.; Moretti, F.; Fulco, M.; Balsano, C.; Levrero, M. Tumor necrosis factor (TNF) receptor 1 signaling downstream of TNF receptor-associated factor 2. Nuclear factor kappaB (NFkappaB)-inducing kinase requirement for activation of activating protein 1 and NFkappaB but not of c-Jun N-terminal kinase/stress-activated protein kinase. J. Biol. Chem. 1997, 272, 26079–26082. [Google Scholar]
- Fricker, M.; Deane, A.; Hansbro, P.M. Animal models of chronic obstructive pulmonary disease. Expert Opin. Drug Discov. 2014, 9, 629–645. [Google Scholar] [CrossRef]
- Ghorani, V.; Boskabady, M.H.; Khazdair, M.R.; Kianmeher, M. Experimental animal models for COPD: A methodological review. Tob. Induc. Dis. 2017, 15, 25. [Google Scholar] [CrossRef]
- Dinarello, C.A. Biologic basis for interleukin-1 in disease. Blood 1996, 87, 2095–2147. [Google Scholar] [CrossRef] [Green Version]
- Lappalainen, U.; Whitsett, J.A.; Wert, S.E.; Tichelaar, J.W.; Bry, K. Interleukin-1beta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. Am. J. Respir. Cell Mol. Biol. 2005, 32, 311–318. [Google Scholar] [CrossRef]
- Barnes, P.J. The cytokine network in chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 2009, 41, 631–638. [Google Scholar] [CrossRef]
- Mahesh, P.A.; Jayaraj, B.S.; Chaya, S.K.; Lokesh, K.S.; McKay, A.J.; Prabhakar, A.K.; Pape, U.J. Variation in the prevalence of chronic bronchitis among smokers: A cross-sectional study. Int. J. Tuberc. Lung Dis. 2014, 18, 862–869. [Google Scholar] [CrossRef]
- Mahesh, P.A.; Jayaraj, B.S.; Prabhakar, A.K.; Chaya, S.K.; Vijaysimha, R. Identification of a threshold for biomass exposure index for chronic bronchitis in rural women of Mysore district, Karnataka, India. Indian J. Med. Res. 2013, 137, 87–94. [Google Scholar]
- Mahesh, P.A.; Lokesh, K.S.; Madhivanan, P.; Chaya, S.K.; Jayaraj, B.S.; Ganguly, K.; Krishna, M. The Mysuru stUdies of Determinants of Health in Rural Adults (MUDHRA), India. Epidemiol. Health 2018, 40, e2018027. [Google Scholar] [CrossRef]
- Singh, D.; Agusti, A.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Criner, G.J.; Frith, P.; Halpin, D.M.G.; Han, M.; et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease: The GOLD science committee report 2019. Eur. Respir. J. 2019, 53, 1900164. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; Van Der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [Green Version]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef]
- Celli, B.R.; Cote, C.G.; Marin, J.M.; Casanova, C.; Montes de Oca, M.; Mendez, R.A.; Plata, V.P.; Cabral, H.J. The Body-Mass Index, Airflow Obstruction, Dyspnea, and Exercise Capacity Index in Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2004, 350, 1005–1012. [Google Scholar] [CrossRef] [Green Version]
- Halpin, D.M.G.; Criner, G.J.; Papi, A.; Singh, D.; Anzueto, A.; Martinez, F.J.; Agusti, A.A.; Vogelmeier, C.F. Global Initiative for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease. The 2020 GOLD Science Committee Report on COVID-19 and Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2021, 203, 24–36. [Google Scholar] [CrossRef]
- Cosio, M.G.; Saetta, M.; Agusti, A. Immunologic Aspects of Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2009, 360, 2445–2454. [Google Scholar] [CrossRef]
- Eickmeier, O.; Huebner, M.; Herrmann, E.; Zissler, U.; Rosewich, M.; Baer, P.C.; Buhl, R.; Schmitt-Grohé, S.; Zielen, S.; Schubert, R. Sputum biomarker profiles in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) and association between pulmonary function. Cytokine 2010, 50, 152–157. [Google Scholar] [CrossRef]
- Mitra, A.; Vishweswaraiah, S.; Thimraj, T.A.; Maheswarappa, M.; Krishnarao, C.S.; Sundararaja Lokesh, K.; Siddaiah, J.B.; Ganguly, K.; Anand, M.P. Association of Elevated Serum GM-CSF, IFN-γ, IL-4, and TNF-α Concentration with Tobacco Smoke Induced Chronic Obstructive Pulmonary Disease in a South Indian Population. Int. J. Inflamm. 2018, 2018, 2027856. [Google Scholar] [CrossRef] [Green Version]
- Sapey, E.; Bayley, D.; Ahmad, A.; Newbold, P.; Snell, N.; Stockley, R.A. Inter-relationships between inflammatory markers in patients with stable COPD with bronchitis: Intra-patient and inter-patient variability. Thorax 2008, 63, 493–499. [Google Scholar] [CrossRef] [Green Version]
- Botelho, F.M.; Gaschler, G.J.; Kianpour, S.; Zavitz, C.C.J.; Trimble, N.J.; Nikota, J.K.; Bauer, C.M.T.; Stampfli, M.R. Innate Immune Processes Are Sufficient for Driving Cigarette Smoke–Induced Inflammation in Mice. Am. J. Respir. Cell Mol. Biol. 2010, 42, 394–403. [Google Scholar] [CrossRef]
- Kuschner, W.; D’Alessandro, A.; Wong, H.; Blanc, P. Dose-dependent cigarette smoking-related inflammatory responses in healthy adults. Eur. Respir. J. 1996, 9, 1989–1994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bafadhel, M.; McKenna, S.; Terry, S.; Mistry, V.; Reid, C.; Haldar, P.; McCormick, M.; Haldar, K.; Kebadze, T.; Duvoix, A.; et al. Acute exacerbations of chronic obstructive pulmonary disease: Identification of biologic clusters and their biomarkers. Am. J. Respir. Crit. Care Med. 2011, 184, 662–671. [Google Scholar] [CrossRef]
- Dinarello, C.A. Interleukin-1. Cytokine Growth Factor Rev. 1997, 8, 253–265. [Google Scholar] [CrossRef]
- Selvarajah, S.; Todd, I.; Tighe, P.J.; John, M.; Bolton, C.E.; Harrison, T.; Fairclough, L.C. Multiple Circulating Cytokines Are Coelevated in Chronic Obstructive Pulmonary Disease. Mediat. Inflamm. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xu, F.; Chen, Y. Detection and significance of interleukin-8,6, tumor necrosis factor-alpha in sputa from patients with chronic obstructive pulmonary disease. Zhonghua Jie He He Hu Xi Za Zhi 2000, 23, 465–467. [Google Scholar] [PubMed]
- Schols, A.M.; Buurman, W.A.; Van den Brekel, A.S.; Dentener, M.A.; Wouters, E.F. Evidence for a relation between metabolic derangements and increased levels of inflammatory mediators in a subgroup of patients with chronic obstructive pulmonary disease. Thorax 1996, 51, 819–824. [Google Scholar] [CrossRef] [Green Version]
- Mathanraj, S.; Kumar, V.; Yuvarajan, S.; Reddy, V. Correlation of serum TNF alpha level with severity of chronic obstructive pulmonary disease. Int. J. Res. Med. Sci. 2017, 5, 3309. [Google Scholar]
- El-Dib, A.; Nagy, H.; Sabry, W.; El-Shimy, W. A study of IL-6, IL-8, and TNF-α as inflammatory markers in COPD patients. Egypt. J. Bronchol. 2014, 8, 91. [Google Scholar] [CrossRef]
- Pinto-Plata, V.; Toso, J.; Lee, K.; Park, D.; Bilello, J.; Mullerova, H.; De Souza, M.M.; Vessey, R.; Celli, B. Profiling serum biomarkers in patients with COPD: Associations with clinical parameters. Thorax 2007, 62, 595–601. [Google Scholar] [CrossRef] [Green Version]
- Eagan, T.M.L.; Gabazza, E.C.; D’Alessandro-Gabazza, C.; Gil-Bernabe, P.; Aoki, S.; Hardie, J.A.; Bakke, P.S.; Wagner, P.D. TNF-α is associated with loss of lean body mass only in already cachectic COPD patients. Respir. Res. 2012, 13, 48. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Verma, S.K.; Kumar, S.; Ahmad, M.K.; Nischal, A.; Singh, S.K.; Dixit, R. Correlation of severity of chronic obstructive pulmonary disease with potential biomarkers. Immunol. Lett. 2018, 196, 1–10. [Google Scholar] [CrossRef]
- Singh, S.; George, K.; Kaleem, M.; King, A.; Kumar, S.; King, S. Association between serum cytokine levels and severity of chronic obstructive pulmonary disease in Northern India. Int. J. Innov. Sci. Res. 2015, 18, 357–361. [Google Scholar]
- Fernandes, L.; Gulati, N.; Fernandes, Y.; Mesquita, A.M.; Sardessai, M.; Lammers, J.-W.J.; Hoesein, F.A.M.; Hacken, N.H.T.; Berge, M.V.D.; Galbán, C.J.; et al. Small airway imaging phenotypes in biomass- and tobacco smoke-exposed patients with COPD. ERJ Open Res. 2017, 3, 00124–02016. [Google Scholar] [CrossRef]
- Aaron, S.D.; Angel, J.B.; Lunau, M.; Wright, K.; Fex, C.; Le Saux, N.; Dales, R.E. Granulocyte Inflammatory Markers and Airway Infection during Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2001, 163, 349–355. [Google Scholar] [CrossRef]
- Lundblad, L.K.A.; Thompson-Figueroa, J.; Leclair, T.; Sullivan, M.J.; Poynter, M.E.; Irvin, C.G.; Bates, J.H.T. Tumor necrosis factor-alpha overexpression in lung disease: A single cause behind a complex phenotype. Am. J. Respir. Crit. Care Med. 2005, 171, 1363–1370. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.; Mondal, N.K.; Das, D.; Ray, M.R. Neutrophilic Inflammatory Response and Oxidative Stress in Premenopausal Women Chronically Exposed to Indoor Air Pollution from Biomass Burning. Inflammation 2011, 35, 671–683. [Google Scholar] [CrossRef]
- Ramírez-Venegas, A.; Torres-Duque, C.A.; Guzmán-Bouilloud, N.E.; González-García, M.; Sansores, R.H. Smalla airway disease in copd associated to biomass exposure. Rev. Investig. Clin. 2019, 71, 70–78. [Google Scholar]
- Camp, P.G.; Ramirez-Venegas, A.; Sansores, R.H.; Alva, L.F.; McDougall, J.E.; Sin, D.D.; Paré, P.D.; Müller, N.L.; Silva, C.I.S.; Rojas, C.E.; et al. COPD phenotypes in biomass smoke- versus tobacco smoke-exposed Mexican women. Eur. Respir. J. 2014, 43, 725–734. [Google Scholar] [CrossRef] [Green Version]
- Ocakli, B.; Acarturk, E.; Aksoy, E.; Gungor, S.; Ciyiltepe, F.; Oztas, S.; Ozmen, I.; Agca, M.C.; Salturk, C.; Adiguzel, N.; et al. The impact of exposure to biomass smoke versus cigarette smoke on inflammatory markers and pulmonary function parameters in patients with chronic respiratory failure. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 1261–1267. [Google Scholar] [CrossRef] [Green Version]
- Tonne, C.; Ranzani, O.T. Is occupational biomass smoke exposure an overlooked driver of respiratory health? Occup. Environ. Med. 2018, 75, 687–688. [Google Scholar] [CrossRef]
- de Godoy, I.; Donahoe, M.; Calhoun, W.J.; Mancino, J.; Rogers, R.M. Elevated TNF-alpha production by peripheral blood monocytes of weight-losing COPD patients. Am. J. Respir. Crit. Care Med. 1996, 153, 633–637. [Google Scholar] [CrossRef]
Variable | Cases (n = 80) | Controls (n = 80) | p Value |
---|---|---|---|
Age in years, mean (SD) | 59.38 (8.63) | 57.02 (10.68) | 0.12616 |
Body Mass Index | 22.42 (4.26) | 24.49 (5.02) | 0.00559 |
Smoking Pack years, mean (SD) (males, n = 40) | 35.55 (9.95) | 0.28 (1.26) | 0.0000 |
Biomass exposure index, mean (SD) (females, n = 40) | 78.9 (13.99) | 18.63 (5.63) | 0.0000 |
FEV1 in L, mean (SD) | 1.10 (0.43) | 2.28 (0.76) | 0.0000 |
FEV1 %(pred), mean (SD) | 48.77 (13.57) | 98.25 (14.30) | 0.0000 |
FEV1/FVC ratio, mean (SD) | 57.6 (7.99) | 81.65 (4.8) | 0.0000 |
Six-minute walk distance in metres, mean (SD) | 305.53 (55.4) | 550.53 (58.4) | 0.0000 |
IL1-β in pg/mL, mean (SD) | 27.12 (29.84) | 8.30 (1.98) | 0.0000 |
TNF-α in pg/mL, mean (SD) | 19.71 (18.89) | 15.02 (3.53) | 0.03077 |
SGRQ score, mean (SD) | 23.35 (2.92) | - | - |
BODE Index, mean (SD) | 3.53 (1.92) | - | - |
pH, mean (SD) | 7.38 (0.03) | - | - |
PO2, mean (SD) | 82.17 (7.76) | - | - |
PCO2, mean (SD) | 40.40 (4.12) | - | - |
Variable | Cases | Control | ||||
---|---|---|---|---|---|---|
BMS COPD (n = 40, Females) | TS COPD (n = 40, Males) | p Value | Females (n = 40) | Males (n = 40) | p Value | |
Age in years, mean (SD) | 54.90 (7.22) | 60.20 (12.02) | 0.00000 | 53.85 (8. 14) | 60.2 (12.03) | 0.00707 |
Body Mass Index | 24.04 (4.09) | 20.82 (3.84) | 0.00038 | 25.91 (5.11) | 23.09 (4.59) | 0.01101 |
FEV1 in L, mean (SD) | 0.91 (0.26) | 1.29 (0.47) | 0.00002 | 1.70 (0.45) | 2.85 (0.53) | 0.0000 |
FEV1 % (pred), mean (SD) | 50.80 (13.12) | 46.75 (13.89) | 0.18 | 92.1 (10.19) | 104.4 (15.27) | 0.00006 |
FEV1/FVC ratio, mean (SD) | 61.18 (6.33) | 54.03 (8.65) | 0.0001 | 82.63 (4.6) | 80.68 (4.9) | 0.0632 |
IL1-β in pg/mL, mean (SD) | 19.16 (22.04) | 35.08 (34.48) | 0.01500 | 7.76 (1.73) | 8.85 (2.09) | 0.01304 |
TNF-α in pg/mL, mean (SD) | 15.13 (7.83) | 24.28 (24.88) | 0.02795 | 14.54 (3.40) | 15.5 (3.64) | 0.23226 |
Six-minute walk distance in metres, mean (SD) | 316.3 (42.21) | 294.95 (64.86) | 0.08748 | 493.6 (29.4) | 589.3 (64.2) | 0.0000 |
SGRQ score, mean (SD) | 23.64 (3.04) | 23.08 (2.81) | 0.38986 | - | - | - |
BODE Index, mean (SD) | 2.93 (1.56) | 4.15 (2.08) | 0.00386 | - | - | - |
pH, mean (SD) | 7.39 (0.02) | 7.39 (0.03) | 0.28739 | - | - | - |
PO2, mean (SD) | 82.86 (8.47) | 81.5 (7.02) | 0.43678 | - | - | - |
PCO2, mean (SD) | 40.89 (2.65) | 39.93 (5.20) | 0.30516 | - | - | - |
Groups | Other Variables | TNF-α | IL-1β | ||
---|---|---|---|---|---|
Coefficient | p-Value | Coefficient | p-Value | ||
TS-COPD/Controls (M) | 8.79 | 0.0301 | 26.23 | 0.000007 | |
TS-COPD/Controls (M) | BMI | 8.48 | 0.0442 | 27.65 | 0.000006 |
BMS-COPD/Controls (F) | 0.59 | 0.67 | 11.4 | 0.0017 | |
BMS-COPD/Controls (F) | BMI | 0.56 | 0.69 | 11.6 | 0.0018 |
TS-COPD/BMS-COPD | 9.15 | 0.03 | 15.9 | 0.0162 | |
TS-COPD/BMS-COPD | BMI | 9.2 | 0.044 | 19.03 | 0.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shyam Prasad Shetty, B.; Chaya, S.K.; Kumar V, S.; Mahendra, M.; Jayaraj, B.S.; Lokesh, K.S.; Ganguly, K.; Mahesh, P.A. Inflammatory Biomarkers Interleukin 1 Beta (IL-1β) and Tumour Necrosis Factor Alpha (TNF-α) Are Differentially Elevated in Tobacco Smoke Associated COPD and Biomass Smoke Associated COPD. Toxics 2021, 9, 72. https://doi.org/10.3390/toxics9040072
Shyam Prasad Shetty B, Chaya SK, Kumar V S, Mahendra M, Jayaraj BS, Lokesh KS, Ganguly K, Mahesh PA. Inflammatory Biomarkers Interleukin 1 Beta (IL-1β) and Tumour Necrosis Factor Alpha (TNF-α) Are Differentially Elevated in Tobacco Smoke Associated COPD and Biomass Smoke Associated COPD. Toxics. 2021; 9(4):72. https://doi.org/10.3390/toxics9040072
Chicago/Turabian StyleShyam Prasad Shetty, Bellipady, Sindaghatta Krishnarao Chaya, Sravan Kumar V, Maheswarappa Mahendra, Biligere Siddaiah Jayaraj, Komarla Sundararaja Lokesh, Koustav Ganguly, and Padukudru Anand Mahesh. 2021. "Inflammatory Biomarkers Interleukin 1 Beta (IL-1β) and Tumour Necrosis Factor Alpha (TNF-α) Are Differentially Elevated in Tobacco Smoke Associated COPD and Biomass Smoke Associated COPD" Toxics 9, no. 4: 72. https://doi.org/10.3390/toxics9040072
APA StyleShyam Prasad Shetty, B., Chaya, S. K., Kumar V, S., Mahendra, M., Jayaraj, B. S., Lokesh, K. S., Ganguly, K., & Mahesh, P. A. (2021). Inflammatory Biomarkers Interleukin 1 Beta (IL-1β) and Tumour Necrosis Factor Alpha (TNF-α) Are Differentially Elevated in Tobacco Smoke Associated COPD and Biomass Smoke Associated COPD. Toxics, 9(4), 72. https://doi.org/10.3390/toxics9040072