Antifungal Potential and Antioxidant Efficacy in the Shell Extract of Cocos nucifera (L.) (Arecaceae) against Pathogenic Dermal Mycosis
Abstract
:1. Introduction
2. Material and Methods
2.1. Shell Sample and Reagents
2.2. Soxhlet Extraction of Coconut Shell
2.3. Solvents Extraction for Antifungal Assays
2.4. Saponification
2.5. Collection of Dermatophytes
2.6. Preparation of Fungal Culture for Antifungal Screening
2.7. Antifungal Screening
2.8. Antioxidant Activity
2.9. Determination of Total Phenolic Content (TPC)
2.10. Statistical Analysis
3. Results and Discussion
3.1. Extract Yield Estimation
3.2. Total Phenolic Content and Antioxidant Activity
3.3. Antifungal Activities
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Reynolds, S. Preliminary studies in Western Samoa using various parts of the coconut palm (Cocos nucifera L.) as growing media. Symp. Artif. Media Hortic. 1973, 37, 1983–1991. [Google Scholar] [CrossRef]
- Rodrigues, S.; Pinto, G.A. Ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder. J. Food Eng. 2007, 80, 869–872. [Google Scholar] [CrossRef]
- DebMandal, M.; Mandal, S. Coconut (Cocos nucifera L.: Arecaceae): In health promotion and disease prevention. Asian Pac. J. Trop. Med. 2011, 4, 241–247. [Google Scholar] [CrossRef]
- Dua, K.; Sheshala, R.; Ying Ling, T.; Hui Ling, S.; Adinarayana Gorajana, A.; Gorajana, A. Anti-inflammatory, antibacterial and analgesic potential of Cocos nucifera Linn.: A review. Anti-Inflamm. Antiallergy Agents Med. Chem. 2013, 12, 158–164. [Google Scholar] [CrossRef]
- Morii, Y.; Matsushita, H.; Minami, A.; Kanazawa, H.; Suzuki, T.; Subhadhirasakul, S.; Watanabe, K.; Wakatsuki, A. Young coconut juice supplementation results in greater bone mass and bone formation indices in ovariectomized rats: A preliminary study. Phytother. Res. 2015, 29, 1950–1955. [Google Scholar] [CrossRef] [PubMed]
- Emmons, C.; Binford, C.; Utz, J.; Kwon-Chung, K. Medical Mycology, 3rd ed.; Lea & Febiger: Philadelphia, PA, USA, 1977. [Google Scholar]
- Degreef, H. Clinical forms of dermatophytosis (ringworm infection). Mycopathologia 2008, 166, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Nneli, R.; Woyike, O. Antiulcerogenic effects of coconut (Cocos nucifera) extract in rats. Phytother. Res. 2008, 22, 970–972. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A.; Vilar, V.J.; Botelho, C.M.; Boaventura, R.A. Coconut-based biosorbents for water treatment—A review of the recent literature. Adv. Colloid Interface Sci. 2010, 160, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.A.; Oliveira, I.; Sousa, A.; Valentão, P.; Andrade, P.B.; Ferreira, I.C.; Ferreres, F.; Bento, A.; Seabra, R.; Estevinho, L. Walnut (Juglans regia L.) leaves: Phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food Chem. Toxicol. 2007, 45, 2287–2295. [Google Scholar] [CrossRef] [PubMed]
- Pearson, D. The Chemical Analysis of Food, 7th ed.; Churchill Livingstone: London, UK, 1976; pp. 153–157. [Google Scholar]
- Challice, J. Chemotaxonomic studies in the family rosaceae and the evolutionary origins of the subfamily maloideae. Preslia 1981, 53, 289–304. [Google Scholar]
- Velioglu, Y.; Mazza, G.; Gao, L.; Oomah, B. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Spiller, G.A.; Jenkins, D.A.; Bosello, O.; Gates, J.E.; Cragen, L.N.; Bruce, B. Nuts and plasma lipids: An almond-based diet lowers LDL-C while preserving HDL-C. J. Am. Coll. Nutr. 1998, 17, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Harborne, J. Methods of plant analysis. In Phytochemical Methods; Champman and Hall: London, UK, 1973; pp. 1–32. [Google Scholar]
- Rios, J.; Recio, M.; Villar, A. Screening methods for natural products with antimicrobial activity: A review of the literature. J. Ethnopharmacol. 1988, 23, 127–149. [Google Scholar] [CrossRef]
- Gülçin, İ. Antioxidant properties of resveratrol: A structure-activity insight. Innov. Food Sci. Emerg. Technol. 2010, 11, 210–218. [Google Scholar]
- Amarowicz, R.; Troszyńska, A.; Shahidi, F. Antioxidant activity of almond seed extract and its fractions. J. Food Lipids 2005, 12, 344–358. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Lien, E.J.; Ren, S.; Bui, H.-H.; Wang, R. Quantitative structure-activity relationship analysis of phenolic antioxidants. Free Radic. Biol. Med. 1999, 26, 285–294. [Google Scholar] [CrossRef]
- Siddhuraju, P.; Becker, K. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agric. Food Chem. 2003, 51, 2144–2155. [Google Scholar] [CrossRef] [PubMed]
- Esquenazi, D.; Wigg, M.D.; Miranda, M.M.; Rodrigues, H.M.; Tostes, J.B.; Rozental, S.; da Silva, A.J.; Alviano, C.S. Antimicrobial and antiviral activities of polyphenolics from Cocos nucifera Linn. (Palmae) husk fiber extract. Res. Microbiol. 2002, 153, 647–652. [Google Scholar] [CrossRef]
- Fukuda, T.; Ito, H.; Yoshida, T. Antioxidative polyphenols from walnuts (Juglans regia L.). Phytochemistry 2003, 63, 795–801. [Google Scholar] [CrossRef]
- Espín, J.C.; Soler-Rivas, C.; Wichers, H.J. Characterization of the total free radical scavenger capacity of vegetable oils and oil fractions using 2,2-diphenyl-1-picrylhydrazyl radical. J. Agric. Food Chem. 2000, 48, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Solar, A.; Colarič, M.; Usenik, V.; Stampar, F. Seasonal variations of selected flavonoids, phenolic acids and quinones in annual shoots of common walnut (Juglans regia L.). Plant Sci. 2006, 170, 453–461. [Google Scholar] [CrossRef]
- Tejano, E. State of the art of coconut coir dust and husk utilization (general overview). Philipp. J. Coconut Stud. (Philippines) 1985, 10, 36–41. [Google Scholar]
- Dehon, L.; Mondolot, L.; Durand, M.; Chalies, C.; Andary, C.; Macheix, J.-J. Differential compartmentation of o-diphenols and peroxidase activity in the inner sapwood of the Juglans nigra tree. Plant Physiol. Biochem. 2001, 39, 473–477. [Google Scholar] [CrossRef]
- Dahanukar, S.; Kulkarni, R.; Rege, N. Pharmacology of medicinal plants and natural products. Indian J. Pharmacol. 2000, 32, S81–S118. [Google Scholar]
- COSMULESCU, S.N.; Trandafir, I.; Achim, G.; Mihai, B.; Baciu, A.; Gruia, M. Phenolics of green husk in mature walnut fruits. Not. Bot. Horti Agrobot. Cluj Napoca 2010, 38, 53. [Google Scholar]
- Kähkönen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.-P.; Pihlaja, K.; Kujala, T.S.; Heinonen, M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. [Google Scholar] [CrossRef] [PubMed]
- Pinelo, M.; Rubilar, M.; Sineiro, J.; Nunez, M. Extraction of antioxidant phenolics from almond hulls (Prunus amygdalus) and pine sawdust (Pinus pinaster). Food Chem. 2004, 85, 267–273. [Google Scholar] [CrossRef]
S. No | Systematic Name | R.R.T | Common Name | Molecular Formula | Mol. wt | Rel.% ag |
---|---|---|---|---|---|---|
1. | n-Octanoate acid | 24.12 | Caprylate | C9H18O2 | 158 | 3.22 |
2. | Dodecanotic acid | 22.70 | Lauric acid | C12H24O2 | 200 | 0.89 |
3. | n-Hexadecanoic acid | 29.80 | Palmilate acid | C17H34O2 | 270 | 4.43 |
4. | n-Hexadecanoate | 33.79 | Margorate | C6H12O2 | 116 | 3.11 |
5. | n-Eicosanoic acid | 39.92 | Arachidic acid | C32H64O2 | 480 | 2.21 |
6. | Tetradeconic acid | 45.66 | Myristic acid | C18H36O2 | 284 | 5.33 |
7. | n-Octadecanoic acid | 57.11 | Stearic Acid | C18H36O2 | 284 | 3.84 |
8. | Tetracosanoic acid | 63.66 | Lignoceric Acid | C24H48O2 | 368 | 0.30 |
9. | n-Docosanoate | 30.49 | Behenic Acid | C21H42O2 | 326 | 4.29 |
10. | Hexadecanoic acid | 35.7 | Palmitic acid | C19H38O2 | 298 | 3.89 |
11. | n-Hexocosanoate acid | 27.19 | Cerotate | C23H46O2 | 354 | 0.48 |
12. | 10-Octadecenoate | 40.88 | Oleate acid | C20H40O2 | 312 | 0.05 |
13. | Nonanoate | 37.28 | Laurate acid | C21H42O2 | 326 | 0.04 |
Total | 32.08 | |||||
1. | n-Heptaecenoate | 25.35 | n-Heptaecenoate | C17H32O2 | 268 | 4.55 |
2. | Tridecatrienoate | 26.8 | Tridecatriecnoate | C18H32O2 | 280 | 7.30 |
3. | Methyl-2-Tridecynote | 28.76 | Decylacrylate | C22H42O2 | 338 | 5.34 |
4. | Methyl tricosenoate | 33.76 | Decylacrylate | C14H26O2 | 226 | 5.2 |
5. | 2,4,5-Tetra decatriecnoate | 34.39 | Tetradecatrienoate | C24H42O2 | 362 | 4.48 |
6. | 7-Ethyl-3-Methyl-2,6-undecadienoate | 36.23 | Undecadienoate | C16H26O2 | 250 | 4.37 |
7. | Pentadecatrienoate | 38.27 | Pentadecatrienoate | C18H34O2 | 282 | 3.89 |
8. | Hexadecadienoate | 41.33 | Hexadecadienoate | C17H26O2 | 262 | 5.50 |
9. | n-hexadecanoate | 39.22 | Plmitoleate | C17H28O2 | 264 | 5.27 |
10. | Heptadectrienoate | 38.78 | Heptadectrienoate | C18H28O2 | 276 | 3.22 |
11. | 9,12,15,Octa decatrienoate | 45.35 | Octadecatrienoate | C19H34O2 | 294 | 3.13 |
12. | 10-Octadecenoate | 46.67 | Oleate | C19H36O2 | 296 | 3.02 |
13. | n-Octadecanoate | 48.49 | Stearate | C19H32O2 | 292 | 4.6 |
14. | Eicosatrienoate | 53.69 | Eicosatrienoate | C20H34O2 | 306 | 4.83 |
15. | Methyl-17,18-hexacosenate | 54.89 | Hexacosenate | C27H52O2 | 408 | 3.21 |
Total | 67.91 | |||||
13 Saturated, 15 Unsaturated = Total compounds 28 Total % of Saturated + Unsaturated Fatty Acid = 99.99% |
Controlled reading in 72 h at 30 °C (mm) | M. canis 35 mm | M. gypseum 40 mm | T. verrucosum 40 mm | A. fumigatus 35 mm |
Methanol inhibited reading at 30 °C after 72 h (mm). Inhibited (%) | 10 mm 81 | 4 mm 88 | 4 mm 90 | 7 mm 80 |
Chloroform inhibited reading at 30 °C after 72 h (mm). Inhibited (%) | 13 mm 62 | 11 mm 72.5 | 14 mm 65 | 10 mm 71 |
Ethyl acetate inhibited reading At 30 °C after 72 h (mm). Inhibited (%) | 7 mm 80 | 6 mm 85 | 4 mm 90 | 8 mm 82 |
Aqueous inhibited reading at 30 °C after 72 h (mm). Inhibited (%) | 4 mm 74 | 5 mm 74 | 14 mm 65 | 13 mm 65 |
Controlled reading in 72 h at 30 °C (mm) | A. niger 35 mm | A. flavus 40 mm | T. mentagrophyte 40 mm | T. rubrum 45 mm |
Methanol inhibited reading at 30 °C after 72 h (mm). Inhibited (%) | 4 mm 88 | 8 mm 80 | 9 mm 77 | 5 mm 84 |
Chloroform inhibited reading at 30 °C after 72 h (mm). Inhibited (%) | 11 mm 68 | 11 mm 72.5 | 11 mm 72 | 11 mm 71 |
Ethyl acetate inhibited reading at 30 °C after 72 h (mm). Inhibited (%) | 8 mm 88 | 11 mm 72 | 7 mm 82 | 6 mm 88 |
Aqueous inhibited reading At 30 °C after 72 h (mm). Inhibited (%) | 4 mm 74 | 5 mm 74 | 14 mm 65 | 13 mm 65 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalid Thebo, N.; Ahmed Simair, A.; Sughra Mangrio, G.; Ansari, K.A.; Ali Bhutto, A.; Lu, C.; Ali Sheikh, W. Antifungal Potential and Antioxidant Efficacy in the Shell Extract of Cocos nucifera (L.) (Arecaceae) against Pathogenic Dermal Mycosis. Medicines 2016, 3, 12. https://doi.org/10.3390/medicines3020012
Khalid Thebo N, Ahmed Simair A, Sughra Mangrio G, Ansari KA, Ali Bhutto A, Lu C, Ali Sheikh W. Antifungal Potential and Antioxidant Efficacy in the Shell Extract of Cocos nucifera (L.) (Arecaceae) against Pathogenic Dermal Mycosis. Medicines. 2016; 3(2):12. https://doi.org/10.3390/medicines3020012
Chicago/Turabian StyleKhalid Thebo, Nasreen, Altaf Ahmed Simair, Ghulam Sughra Mangrio, Khalil Ahmed Ansari, Aijaz Ali Bhutto, Changrui Lu, and Wazir Ali Sheikh. 2016. "Antifungal Potential and Antioxidant Efficacy in the Shell Extract of Cocos nucifera (L.) (Arecaceae) against Pathogenic Dermal Mycosis" Medicines 3, no. 2: 12. https://doi.org/10.3390/medicines3020012