Anti-Inflammatory, Antioxidant, Antibiotic, and Cytotoxic Activities of Tanacetum vulgare L. Essential Oil and Its Constituents
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Plant Material and Extraction of Essential Oil
2.3. GC-MS Analysis
2.4. Cell Culture
2.5. Measurement of Anti-Inflammatory Activity
2.6. Evaluation of Antioxidant Activity Using Cell-Based Assays
2.7. Evaluation of Antibacterial Activity
2.8. Cytotoxic Assays
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mitich, W.L. Tansy. Weed Technol. 1992, 6, 242–244. [Google Scholar]
- Lahlou, S.; Tangi, K.C.; Lyoussi, B.; Morel, N. Vascular effects of Tanacetum vulgare L. leaf extract: In vitro pharmacological study. J. Ethnopharmacol. 2008, 120, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Duke, J.A. Handbook of Medicinal Herbs, 2nd ed.; CRC Press: New York, NY, USA, 1985; Volume 896. [Google Scholar]
- Mordujovich-Buschiazzo, P.; Rosella, M.; Schinella, G. Anti-inflammatory activity of Tanacetum vulgare. Fitoterapia 1996, 67, 319–322. [Google Scholar]
- Schinella, G.R.; Giner, R.M.; Recio, M.C.; Buschiazzo, P.M.; Ríos, J.L.; Mañez, S. Anti-inflammatory effects of South American Tanacetum vulgare. J. Pharm. Pharmacol. 1998, 50, 1069–1074. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.A.; Harborne, J.B.; Geiger, H.; Hoult, J.R. The flavonoids of Tanacetum parthenium and T. vulgare and their anti-inflammatory properties. Phytochemistry 1999, 51, 417–423. [Google Scholar] [CrossRef]
- Stojković, M.B.; Mitić, S.S.; Pavlović, J.L.; Stojanović, B.T.; Paunović, D.D. Antioxidant potential of Tanacetum vulgare L. extracts. Biol. Nyssana 2014, 5, 47–51. [Google Scholar]
- Holetz, F.B.; Pessini, G.L.; Sanches, N.R.; Cortez, D.A.; Nakamura, C.V.; Filho, B.P. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem. Inst. Oswaldo Cruz. 2002, 97, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Mureşan, M.L. Antimicrobial effects of the ethanolic extracts and essential oils of Tanacetum vulgare L. from Romania. Food Technol. 2015, 19, 75–80. [Google Scholar]
- Keskitalo, M.; Pehu, E.; Simon, J. Variation in volatile compounds from tansy (Tanacetum vulgare L.) related to genetic and morphological differences of genotypes. Biochem. Syst. Ecol. 2001, 29, 267–285. [Google Scholar] [CrossRef]
- Mockute, D.; Judzentiene, A. Composition of the essential oils of Tanacetum vulgare L. growing wild in Vilnius district (Lithuania). J. Essent. Oil Res. 2004, 16, 550–553. [Google Scholar] [CrossRef]
- Nano, G.M.; Bicchi, C.; Frattini, C.; Gallino, M. Wild piedmontese plants-a rare chemotype of Tanacetum vulgare L., abundant in Piedmont (Italy). Planta Med. 1979, 35, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Judzentiene, A.; Mockute, D. The inflorescence and leaf essential oils of Tanacetum vulgare L. var. vulgare growing wild in Lithuania. Biochem. Syst. Ecol. 2005, 33, 487–498. [Google Scholar] [CrossRef]
- Mockute, D.; Judzentiene, A. The myrtenol chemotype of essential oil of Tanacetum vulgare L. var. vulgare (tansy) growing wild in the Vilnius region. Chemija 2003, 14, 103–107. [Google Scholar]
- Rohloff, J.; Mordal, R.; Dragland, S. Chemotypical variation of tansy (Tanacetum vulgare L.) from 40 different locations in Norway. J. Agric. Food Chem. 2004, 52, 1742–1748. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, É.Z.; Héthelyi, É.; Bernath, J. Comparison studies on Tanacetum vulgare L. chemotypes. J. Herbs. Spices Med. Plants. 1994, 2, 85–92. [Google Scholar] [CrossRef]
- Collin, G.J.; Deslauriers, H.; Pageau, N.; Gagnon, M. Essential oil of Tansy (Tanacetum vulgare L.) of Canadian origin. J. Essent. Oil Res. 1992, 5, 629–638. [Google Scholar] [CrossRef]
- Schearer, W.R. Components of oil of Tansy (Tanacetum vulgare) that repel Colorado potato beetles (Leptinotarsa Decemlineata). J. Nat. Prod. 1984, 47, 964–969. [Google Scholar] [CrossRef]
- Ekundayo, O. Essential oils II. Terpene composition of the leaf oil of Tanacetum vulgare L. J. Plant Physiol. 1979, 92, 215–219. [Google Scholar] [CrossRef]
- Gallino, M. Essential oil from Tanacetum vulgare growing spontaneously in “Tierra del Fuego” (Argentina). Planta Med. 1988, 54, 182. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, H.; Elst, D.J.D.; Putten, F.M.S.; Bos, R. The essential oil of Dutch Tansy (Tanacetum vulgare L.). J. Essent. Oil Res. 2011, 2, 155–162. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, Y. Chemical composition and antibacterial activity of essential oils of Tanacetum longifolium. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 836–841. [Google Scholar] [CrossRef]
- Legault, J.; Girard-Lalancette, K.; Grenon, C.; Dussault, C.; Pichette, A. Antioxidant activity, inhibition of nitric oxide overproduction, and in vitro antiproliferative effect of maple sap and syrup from Acer saccharum. J. Med. Food 2010, 13, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Girard-Lalancette, K.; Pichette, A.; Legault, J. Sensitive cell-based assay using DCFH oxidation for the determination of pro- and antioxidant properties of compounds and mixtures: Analysis of fruit and vegetable juices. Food Chem. 2009, 115, 720–726. [Google Scholar] [CrossRef]
- Coté, H.; Boucher, M.; Pichette, A.; Roger, B.; Legault, J. New antibacterial hydrophobic assay reveals Abies balsamea oleoresin activity against Staphylococcus aureus and MRSA. J. Ethnopharmacol. 2016, 194, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Brien, J.O.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [Google Scholar] [CrossRef]
- Fernandes, E.S.; Passos, G.F.; Medeiros, R.; Cunhaa, F.M.; Ferreirab, J.; Camposc, M.M.; Pianowskid, L.F.; Calixtoa, J.B. Anti-inflammatory effects of compounds alpha-humulene and (-)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur. J. Pharmacol. 2007, 569, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Rufino, A.T.; Ribeiro, M.; Judas, F.; Salgueiro, L.; Lopes, M.C.; Cavaleiro, C.; Mendes, A.F. Anti-inflammatory and chondroprotective activity of (+)-α-pinene: Structural and enantiomeric selectivity. J. Nat. Prod. 2014, 77, 264–269. [Google Scholar] [CrossRef] [PubMed]
- De Cássia da Silveira E Sá, R.; Andrade, L.N.; De Sousa, D.P. A review on anti-inflammatory activity of monoterpenes. Molecules 2013, 18, 1227–1254. [Google Scholar] [CrossRef] [PubMed]
- Schepetkin, I.A.; Kushnarenko, S.V.; Özek, G.; Kirpotina, L.N.; Utegenova, G.A.; Kotukhov, Y.A.; Danilova, A.N.; Özek, T.; Başer, K.H.; Quinn, M.T. Inhibition of human neutrophil responses by essential oil of Artemisia kotuchovii and its constituents. J. Agric. Food Chem. 2016, 63, 4999–5007. [Google Scholar] [CrossRef] [PubMed]
- Chavan, M.J.; Wakte, P.S.; Shinde, D.B. Analgesic and anti-inflammatory activity of Caryophyllene oxide from Annona squamosa L. bark. Phytomedicine 2010, 17, 149–151. [Google Scholar] [CrossRef] [PubMed]
- Sharopov, F.; Braun, M.S.; Gulmurodov, I.; Khalifaev, D.; Isupov, S.; Wink, M. Antimicrobial, antioxidant, and anti-inflammatory activities of essential oils of selected aromatic plants from Tajikistan. Foods 2015, 4, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Zhu, L.; Yang, L.; Qiu, J. Chemical composition, antioxidant and antimicrobial activities of essential oil from Wedelia prostrata. Excli J. 2013, 12, 479–490. [Google Scholar] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Malekpoor, F.; Pirbalouti, A.G.; Salimi, A.; Shabani, L.; Sharifi, M.; Hamedi, B. Antimicrobial and antioxidant activities and total phenolic content of Tanacetum polycephalum Schutz. Bip. as a folkloric herb in South western Iran. Indian J. Tradit. Knowl. 2015, 14, 370–375. [Google Scholar]
- Ulukanli, Z.; Demirci, S.; Yilmaztekin, M. Essential oil constituents of Tanacetum cilicicum: Antimicrobial and phytotoxic activities. J. Food Qual. 2017. [Google Scholar] [CrossRef]
- Mikulášová, M.; Vaverková, Š. Antimicrobial effects of essential oils from Tanacatum vulgare L. and Salvia officinalis L., growing in Slovakia. Nov. Biotechnol. 2009, 9, 161–166. [Google Scholar]
- Gupta, N.; Saxena, G. Antimicrobial activity of constituents identified in essential oils from Mentha and Cinnamomum through GC-MS. Int. J. Pharma Bio Sci. 2010, 1, 715–720. [Google Scholar]
- Hsouna, A.B.; Halima, N.B.; Abdelkafi, S.; Hamdi, N. Essential oil from Artemisia phaeolepis: Chemical composition and antimicrobial activities. J. Oleo Sci. 2013, 980, 973–980. [Google Scholar] [CrossRef]
- Kotan, R.; Kordali, S.; Cakir, A. Screening of antibacterial activities of twenty-one oxygenated monoterpenes. Z. Naturforsch. C 2007, 62, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Fidyt, K.; Fiedorowicz, A.; Strzadala, L.; Szumny, A. β-caryophyllene and β-caryophyllene oxide—natural compounds of anticancer and analgesic properties. Cancer Med. 2016, 5, 3007–3017. [Google Scholar] [CrossRef] [PubMed]
- Girola, N.; Figueiredo, C.R.; Farias, C.F.; Azevedo, R.A.; Ferreira, A.K.; Teixeira, S.F.; Capello, T.M.; Martins, E.G.; Matsuo, A.L.; Travassos, L.R.; et al. Camphene isolated from essential oil of Piper cernuum (Piperaceae) induces intrinsic apoptosis in melanoma cells and displays antitumor activity in vivo. Biochem. Biophys. Res. Commun. 2015, 467, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Legault, J.; Dahl, W.; Debiton, E.; Pichette, A.; Madelmont, J.C. Antitumor activity of balsam fir oil: Production of reactive oxygen species induced by alpha-humulene as possible mechanism of action. Planta Med. 2003, 69, 402–407. [Google Scholar] [PubMed]
- Park, K.; Nam, D.; Yun, H.; Lee, S.G.; Jang, H.J.; Sethi, G.; Cho, S.K.; Ahn, K.S. β-caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/mTOR/S6K1 pathways and ROS-mediated MAPKs activation. Cancer Lett. 2011, 312, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Sobral, M.V.; Xavier, A.L.; Lima, T.C.; de Sousa, D.P. Antitumor activity of monoterpenes found in essential oils. Sci. World J. 2014. [Google Scholar] [CrossRef] [PubMed]
RI DB-5 1 | RI S-Wax 2 | Identified Compounds | Relative CONCENTRATION (%) |
---|---|---|---|
903 | 991 | Tricyclene | 0.11 |
911 | 1010 | α-Thujene | 0.58 |
917 | 1006 | α-Pinene | 4.43 |
933 | 1035 | Camphene | 7.29 |
962 | 1085 | Sabinene | 2.02 |
965 | 1069 | β-Pinene | 2.51 |
982 | 1160 | dehydro-1,8-Cineole | 0.23 |
1011 | 1148 | α-Terpinene | 0.09 |
1019 | 1242 | ρ-Cymene | 1.20 |
1023 | 1172 | Limonene | 0.16 2 |
1025 | 1181 | 1,8-Cineole | 10.80 2 |
1053 | 1222 | γ-Terpinene | 0.29 |
1061 | 1443 | cis-Sabinene hydrate | 0.11 |
1082 | 1254 | Terpinolene | 0.09 |
1096 | 1405 | Filifolone | 0.15 |
1100 | 1531 | Linalol | 0.38 |
1102 | 1386 | α-Thujone | 0.08 |
1109 | 1405 | β-Thujone | 3.66 |
1117 | 1468 | Chrysanthenone | 3.76 |
1132 | 1614 | trans-Pinocarveol | 0.64 |
1136 | 1471 | Camphor | 30.48 |
1153 | 1522 | Pinocarvone | 0.27 |
1160 | 1664 | Borneol | 14.80 |
1171 | 1570 | Terpinen-4-ol | 0.81 |
1176 | 1601 | Thuj-3-en-10-al | 0.45 |
1185 | 1667 | α-Terpineol | 0.69 |
1187 | 1579 | Myrtenal | 0.11 |
1190 | 1752 | Myrtenol | 0.09 |
1216 | 1799 | trans-Carveol | 0.10 |
1257 | 1539 | cis-Chrysanthenyl acetate | 0.10 |
1282 | 1545 | Bornyl acetate | 5.53 |
1352 | 2113 | Eugenol | 0.16 |
1370 | 1648 | Isobornyl propionate | 0.75 |
1391 | 1880 | cis-Jasmone | 0.08 |
1411 | 1556 | β-Caryophyllene | 0.09 |
1446 | 1629 | α-Humulene | 0.21 |
1475 | 1667 | Germacrene D | 1.13 |
1482 | 1674 | β-Selinene | 0.12 |
1491 | 1690 | Bicyclogermacrene | 0.16 |
1496 | 1698 | α-Muurolene | ˂−Muuro |
1505 | 1701 | β-Bisabolene | 0.09 |
1499 | 1735 | Germacrene A | 0.09 |
1503 | 1721 | δ-Amorphene | 0.17 |
1509 | 1719 | γ-Cadinene (1513) | 0.15 |
1519 | 1742 | β-Sesquiphellandrene | 0.17 |
1522 | 1728 | δ-Cadinene | 0.63 |
1536 | 1865 | α-Calacorene | 0.19 |
1573 | 1922 | Caryophyllene oxide | 1.13 |
1593 | 1976 | Ledol | 0.65 |
1597 | 1970 | Rosifoliol | 0.07 |
1622 | 2015 | 1-epi-Cubenol | 0.05 |
1624 | 2124 | γ-Eudesmol | 0.11 |
1631 | 2138 | τ-Muurolol | 0.66 |
1635 | 2131 | τ-Cadinol | 0.19 |
1641 | 2171 | β-Eudesmol | ˂−Eudes |
1647 | 2178 | α-Cadinol | 0.05 |
1663 | 2044 | Valeranone | 0.07 |
1713 | 1880 | Pentadecanal | ˂entade |
Total | 99.23 |
Compounds | Anti-Inflammation IC50 (µg·mL−1) | Antioxidant IC50 (µg·mL−1) | Antibacterial IC50 (µg·mL−1) | Cytotoxicity IC50 (µg·mL−1) | |||
---|---|---|---|---|---|---|---|
E. coli | S. aureus | A549 | DLD1 | WS1 | |||
Essential oil | 72 ± 9 | 51 ± 11 | 241 ± 13 | 59 ± 5 | 232 ± 51 | 105 ± 18 | 292 ± 17 |
1,8-Cineole | >200 | >200 | >200 | >200 | >200 | >200 | >200 |
α-Humulene | 15 ± 2 | >200 | >200 | >200 | 28 ± 1 | 43 ± 3 | 24 ± 3 |
α-Pinene | 30 ± 4 | 3.4 ± 0.2 | nd | nd | 35 ± 6 | 58 ±18 | 57 ± 4 |
α-Terpinene | 46 ± 4 | >200 | >200 | >200 | 63 ± 10 | 73 ± 7 | 53 ± 12 |
β-Caryophyllene | >200 | >200 | >200 | >200 | 55 ± 5 | 97 ± 6 | 59 ± 7 |
β-Pinene | 46 ± 9 | >200 | >200 | >200 | 43 ± 4 | 49.4 ± 0.3 | 29 ± 14 |
γ-Terpinene | >200 | >200 | >200 | 50 ± 9 | 112 ± 15 | >200 | 82 ± 15 |
p-Cymene | >200 | >200 | >200 | >200 | >200 | >200 | >200 |
Borneol | >200 | >200 | >200 | >200 | >200 | >200 | >200 |
Bornyl acetate | >200 | >200 | >200 | >200 | >200 | >200 | >200 |
Camphene | >200 | >200 | >200 | >200 | 72 ± 2 | 75 ± 5 | 49 ± 1 |
Camphor | >200 | >200 | 22 ± 1 | 26 ± 3 | >200 | >200 | >200 |
Caryophyllene oxide | 183 ± 15 | 6.2 ± 0.5 | 97 ± 2 | 10.4 ± 0.9 | 36 ± 2 | 43 ± 3 | 50 ± 4 |
Limonene | >200 | >200 | >200 | >200 | 71 ± 6 | 31 ± 3 | 53 ± 12 |
Terpinen-4-ol | >200 | >200 | >200 | >200 | >200 | >200 | >200 |
Terpinolene | >200 | >200 | >200 | >200 | >200 | >200 | >200 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coté, H.; Boucher, M.-A.; Pichette, A.; Legault, J. Anti-Inflammatory, Antioxidant, Antibiotic, and Cytotoxic Activities of Tanacetum vulgare L. Essential Oil and Its Constituents. Medicines 2017, 4, 34. https://doi.org/10.3390/medicines4020034
Coté H, Boucher M-A, Pichette A, Legault J. Anti-Inflammatory, Antioxidant, Antibiotic, and Cytotoxic Activities of Tanacetum vulgare L. Essential Oil and Its Constituents. Medicines. 2017; 4(2):34. https://doi.org/10.3390/medicines4020034
Chicago/Turabian StyleCoté, Héloïse, Marie-Anne Boucher, André Pichette, and Jean Legault. 2017. "Anti-Inflammatory, Antioxidant, Antibiotic, and Cytotoxic Activities of Tanacetum vulgare L. Essential Oil and Its Constituents" Medicines 4, no. 2: 34. https://doi.org/10.3390/medicines4020034
APA StyleCoté, H., Boucher, M. -A., Pichette, A., & Legault, J. (2017). Anti-Inflammatory, Antioxidant, Antibiotic, and Cytotoxic Activities of Tanacetum vulgare L. Essential Oil and Its Constituents. Medicines, 4(2), 34. https://doi.org/10.3390/medicines4020034