A New Approach for Indexing Honey for Its Heath/Medicinal Benefits: Visualization of the Concept by Indexing Based on Antioxidant and Antibacterial Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Honey Sample
2.2. Chemicals and Standards
2.3. Free Radical Scavenging Activity
2.4. Antibacterial and Antifungal Activities
2.5. Indexing Method
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Naef, R.; Jaquier, A.; Velluz, A.; Bachofen, B. From the linden flower to linden honey—Volatile constituents of linden nectar, the extract of bee-stomach and ripe honey. Chem. Biodivers. 2004, 1, 1870–1879. [Google Scholar] [CrossRef] [PubMed]
- Mijanur Rahman, M.; Gan, S.H.; Khalil, M.I. Neurological effects of honey: Current and future prospects. Evid. Based Complement. Altern. Med. 2014, 2014, 958721. [Google Scholar] [CrossRef] [PubMed]
- Chua, L.S.; Adnan, N.A. Biochemical and nutritional components of selected honey samples. Acta Sci. Pol. Technol. Aliment. 2014, 13, 169–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajibola, A. Novel Insights into the Health Importance of Natural Honey. Malays. J. Med. Sci. 2015, 22, 7–22. [Google Scholar] [PubMed]
- Eteraf-Oskouei, T.; Najafi, M. Traditional and modern uses of natural honey in human diseases: A review. Iran. J. Basic Med. Sci. 2013, 16, 731–742. [Google Scholar] [PubMed]
- Horn, H. Honey in medicine. Dtsch. Med. Wochenschr. 2013, 138, 2647–2652. [Google Scholar] [CrossRef] [PubMed]
- Othman, S.A. Antibacterial Activity of Bee and Yemeni Sidr Honey Against Some Pathogenic Bacterial Species. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 1015–1025. [Google Scholar]
- Abd Jalil, M.A.; Kasmuri, A.R.; Hadi, H. Stingless Bee Honey, the Natural Wound Healer: A Review. Skin Pharmacol. Physiol. 2017, 30, 66–75. [Google Scholar] [CrossRef]
- Khalil, I.; Moniruzzaman, M.; Boukraa, L.; Benhanifia, M.; Islam, A.; Islam, N.; Sulaiman, S.A.; Gan, S.H. Physicochemical and antioxidant properties of Algerian honey. Molecules 2012, 17, 11199–11215. [Google Scholar] [CrossRef]
- Almasaudi, S.B.; Abbas, A.T.; Al-Hindi, R.R.; El-Shitany, N.A.; Abdel-Dayem, U.A.; Ali, S.S.; Saleh, R.M.; Al Jaouni, S.K.; Kamal, M.A.; Harakeh, S.M. Manuka Honey Exerts Antioxidant and Anti-Inflammatory Activities That Promote Healing of Acetic Acid-Induced Gastric Ulcer in Rats. Evid. Based Complement. Alternat. Med. 2017, 2017, 5413917. [Google Scholar] [CrossRef]
- Nooh, H.Z.; Nour-Eldien, N.M. The dual anti-inflammatory and antioxidant activities of natural honey promote cell proliferation and neural regeneration in a rat model of colitis. Acta Histochem. 2016, 118, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Othman, N.H. Honey as a potential natural anticancer agent: A review of its mechanisms. Evid. Based Complement. Alternat. Med. 2013, 2013, 829070. [Google Scholar] [CrossRef] [PubMed]
- Estevinho, L.; Pereira, A.P.; Moreira, L.; Dias, L.G.; Pereira, E. Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food Chem. Toxicol. 2008, 46, 3774–3779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazir, L.; Samad, F.; Haroon, W.; Kidwai, S.S.; Siddiqi, S.; Zehravi, M. Comparison of glycaemic response to honey and glucose in type 2 diabetes. J. Pak. Med. Assoc. 2014, 64, 69–71. [Google Scholar] [PubMed]
- Al-Waili, N.S. Natural honey lowers plasma glucose, C-reactive protein, homocysteine, and blood lipids in healthy, diabetic, and hyperlipidemic subjects: Comparison with dextrose and sucrose. J. Med. Food 2004, 7, 100–107. [Google Scholar] [CrossRef]
- El-Aidy, W.K.; Ebeid, A.A.; Sallam Ael, R.; Muhammad, I.E.; Abbas, A.T.; Kamal, M.A.; Sohrab, S.S. Evaluation of propolis, honey, and royal jelly in amelioration of peripheral blood leukocytes and lung inflammation in mouse conalbumin-induced asthma model. Saudi J. Biol. Sci. 2015, 22, 780–788. [Google Scholar] [CrossRef]
- Lychkova, A.E.; Kasyanenko, V.I.; Puzikov, A.M. Gastroprotective effect of honey and bee pollen. Exp. Clin. Gastroenterol. 2014, 9, 72–74. [Google Scholar]
- Ghosh, S.; Playford, R.J. Bioactive natural compounds for the treatment of gastrointestinal disorders. Clin. Sci. (Lond.) 2003, 104, 547–556. [Google Scholar] [CrossRef]
- Khalil, M.I.; Tanvir, E.M.; Afroz, R.; Sulaiman, S.A.; Gan, S.H. Cardioprotective Effects of Tualang Honey: Amelioration of Cholesterol and Cardiac Enzymes Levels. BioMed Res. Int. 2015, 2015, 286051. [Google Scholar] [CrossRef]
- Hossen, M.S.; Ali, M.Y.; Jahurul, M.H.A.; Abdel-Daim, M.M.; Gan, S.H.; Khalil, M.I. Beneficial roles of honey polyphenols against some human degenerative diseases: A review. Pharmacol. Rep. 2017, 69, 1194–1205. [Google Scholar] [CrossRef]
- Alleva, R.; Manzella, N.; Gaetani, S.; Ciarapica, V.; Bracci, M.; Caboni, M.F.; Pasini, F.; Monaco, F.; Amati, M.; Borghi, B.; et al. Organic honey supplementation reverses pesticide-induced genotoxicity by modulating DNA damage response. Mol. Nutr. Food Res. 2016, 60, 2243–2255. [Google Scholar] [CrossRef] [PubMed]
- Kacergius, T.; Abu-Lafi, S.; Kirkliauskiene, A.; Gabe, V.; Adawi, A.; Rayan, M.; Qutob, M.; Stukas, R.; Utkus, A.; Zeidan, M.; et al. Inhibitory capacity of Rhus coriaria L. extract and its major component methyl gallate on Streptococcus mutans biofilm formation by optical profilometry: Potential applications for oral health. Mol. Med. Rep. 2017, 16, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Rayan, A.; Raiyn, J.; Falah, M. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity. PLoS ONE 2017, 12, e0187925. [Google Scholar] [CrossRef] [PubMed]
- Aswad, M.; Rayan, M.; Abu-Lafi, S.; Falah, M.; Raiyn, J.; Abdallah, Z.; Rayan, A. Nature is the best source of anti-inflammatory drugs: Indexing natural products for their anti-inflammatory bioactivity. Inflamm. Res. 2017, 67, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, M.; Rayan, M.; Zeidan, N.; Falah, M.; Rayan, A. Indexing Natural Products for Their Potential Anti-Diabetic Activity: Filtering and Mapping Discriminative Physicochemical Properties. Molecules 2017, 22, 1563. [Google Scholar] [CrossRef] [PubMed]
- Frank, A.; Abu-Lafi, S.; Adawi, A.; Schwed, J.S.; Stark, H.; Rayan, A. From medicinal plant extracts to defined chemical compounds targeting the histamine H4 receptor: Curcuma longa in the treatment of inflammation. Inflamm. Res. 2017, 66, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Lay-flurrie, K. Honey in wound care: Effects, clinical application and patient benefit. Br J Nurs 2008, 17, S30, S32–S36. [Google Scholar] [CrossRef]
- Wilkins, A.L.; Lu, Y. Extractives from New Zealand Honeys. 5. Aliphatic Dicarboxylic Acids in New Zealand Rewarewa (Knightea excelsa) Honey. J. Agric. Food Chem. 1995, 43, 3021–3025. [Google Scholar] [CrossRef]
- Iglesias, M.T.; De Lorenzo, C.; Del Carmen Polo, M.; Martin-Alvarez, P.J.; Pueyo, E. Usefulness of amino acid composition to discriminate between honeydew and floral honeys. Application to honeys from a small geographic area. J. Agric. Food Chem. 2004, 52, 84–89. [Google Scholar] [CrossRef]
- Zhou, J.; Suo, Z.; Zhao, P.; Cheng, N.; Gao, H.; Zhao, J.; Cao, W. Jujube honey from China: Physicochemical characteristics and mineral contents. J. Food Sci. 2013, 78, C387–C394. [Google Scholar] [CrossRef]
- Daniele, G.; Maitre, D.; Casabianca, H. Identification, quantification and carbon stable isotopes determinations of organic acids in monofloral honeys. A powerful tool for botanical and authenticity control. Rapid Commun. Mass Spectrom. 2012, 26, 1993–1998. [Google Scholar] [CrossRef] [PubMed]
- Betts, J. The clinical application of honey in wound care. Nurs. Times 2008, 104, 43–44. [Google Scholar] [PubMed]
- White, J.W., Jr. Detection of honey adulteration by carbohydrage analysis. J. Assoc. Off. Anal. Chem. 1980, 63, 11–18. [Google Scholar] [PubMed]
- Jerkovic, I.; Tuberoso, C.I.; Gugic, M.; Bubalo, D. Composition of sulla (Hedysarum coronarium L.) honey solvent extractives determined by GC/MS: Norisoprenoids and other volatile organic compounds. Molecules 2010, 15, 6375–6385. [Google Scholar] [CrossRef]
- Jerkovic, I.; Marijanovic, Z.; Tuberoso, C.I.; Bubalo, D.; Kezic, N. Molecular diversity of volatile compounds in rare willow (Salix spp.) honeydew honey: Identification of chemical biomarkers. Mol. Divers. 2010, 14, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Wintersteen, C.L.; Cadwallader, K.R. Identification and quantification of aroma-active components that contribute to the distinct malty flavor of buckwheat honey. J. Agric. Food Chem. 2002, 50, 2016–2021. [Google Scholar] [CrossRef] [PubMed]
- Ajibola, A.; Chamunorwa, J.P.; Erlwanger, K.H. Nutraceutical values of natural honey and its contribution to human health and wealth. Nutr. Metab. (Lond.) 2012, 9, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manyi-Loh, C.E.; Ndip, R.N.; Clarke, A.M. Volatile compounds in honey: A review on their involvement in aroma, botanical origin determination and potential biomedical activities. Int. J. Mol. Sci. 2011, 12, 9514–9532. [Google Scholar] [CrossRef] [PubMed]
- Petrus, K.; Schwartz, H.; Sontag, G. Analysis of flavonoids in honey by HPLC coupled with coulometric electrode array detection and electrospray ionization mass spectrometry. Anal. Bioanal. Chem. 2011, 400, 2555–2563. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.I.; Alam, N.; Moniruzzaman, M.; Sulaiman, S.A.; Gan, S.H. Phenolic acid composition and antioxidant properties of Malaysian honeys. J. Food Sci. 2011, 76, C921–C928. [Google Scholar] [CrossRef] [PubMed]
- Samarghandian, S.; Farkhondeh, T.; Samini, F. Honey and Health: A Review of Recent Clinical Research. Pharmacogn. Res. 2017, 9, 121–127. [Google Scholar] [CrossRef]
- Kassim, M.; Achoui, M.; Mustafa, M.R.; Mohd, M.A.; Yusoff, K.M. Ellagic acid, phenolic acids, and flavonoids in Malaysian honey extracts demonstrate in vitro anti-inflammatory activity. Nutr. Res. 2010, 30, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Kenjeric, D.; Mandic, M.L.; Primorac, L.; Cacic, F. Flavonoid pattern of sage (Salvia officinalis L.) unifloral honey. Food Chem. 2008, 110, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Martos, I.; Ferreres, F.; Yao, L.; D’Arcy, B.; Caffin, N.; Tomas-Barberan, F.A. Flavonoids in monospecific eucalyptus honeys from Australia. J. Agric. Food Chem. 2000, 48, 4744–4748. [Google Scholar] [CrossRef] [PubMed]
Pathogenic Microorganisms | Antimicrobial Agent | MIC, μg/mL |
---|---|---|
Staphylococcus aureus | Tetracycline | 0.09 |
Escherichia coli | Tetracycline | 3.12 |
Salmonella typhimurium | Kanamycin | 10.0 |
Candida albicans | Nystatin | 1.55 |
Kind of Honey (Origin) | Price ($) | EC50, (w/w%) | MIC (E. coli) | MIC (Salmonella) | HBI |
---|---|---|---|---|---|
Rhamnus (Yemen, termed sidr) | 270 | 4.8 | 0.52 | 0.52 | 1.00 |
Tamarix (Yemen, termed saal-haar) | 189 | 7.7 | 1.04 | 0.52 | 1.55 |
Acacia tortilis (Yemen, termed somar) | 162 | 5.0 | 0.52 | 0.52 | 1.02 |
Rhamnus (Jericho, Palestine) | 65 | 7.8 | 0.52 | 0.52 | 1.27 |
Citrus (Jericho, Palestine) | 38 | 17.0 | 0.52 | 0.52 | 1.88 |
Wild flowers (Jericho, Palestine) | 38 | 0.116 | 0.52 | 0.52 | 1.55 |
Kind of Honey | Price ($) | EC50, (w/w%) | MIC (E. coli) | MIC (Salmonella) | HBI |
---|---|---|---|---|---|
Silybum (milk thistle) | 6.8 | 10.05 | 0.26 | 0.52 | 1.18 |
multicolored herbal honey | 6.8 | 12.1 | 0.52 | 0.52 | 1.59 |
Linden honey | 6.8 | 12.66 | - | 0.52 | 1.62 |
Wildflower | 6.8 | 20.1 | 0.26 | 0.26 | 1.45 |
Acacia | 6.8 | 10.1 | 0.52 | 0.52 | 1.45 |
Kind of Honey | Price ($) | EC50, (w/w%) | MIC (E. coli) | MIC (Salmonella) | HBI |
---|---|---|---|---|---|
Wildflower (vendor 1) | 13.5 | 9.4 | 0.52 | 0.52 | 1.40 |
Wildflower (vendor 2) | 27 | 16.34 | 1.04 | 1.04 | 2.61 |
Wildflower (vendor 3) | 13.5 | 6.8 | 0.52 | 0.52 | 1.19 |
Wildflower (vendor 4) | 13.5 | 9.2 | 0.52 | 0.52 | 1.38 |
Kind of Honey | Price ($) | EC50, (w/w%) |
---|---|---|
Wildflower | 12 | 6.78 |
Wildflower | 12 | 4.8 |
Wildflower | 12 | 5.8 |
Wildflower | 12 | 17.5 |
Average | 8.7 | |
STDEV | 5.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masalha, M.; Abu-Lafi, S.; Abu-Farich, B.; Rayan, M.; Issa, N.; Zeidan, M.; Rayan, A. A New Approach for Indexing Honey for Its Heath/Medicinal Benefits: Visualization of the Concept by Indexing Based on Antioxidant and Antibacterial Activities. Medicines 2018, 5, 135. https://doi.org/10.3390/medicines5040135
Masalha M, Abu-Lafi S, Abu-Farich B, Rayan M, Issa N, Zeidan M, Rayan A. A New Approach for Indexing Honey for Its Heath/Medicinal Benefits: Visualization of the Concept by Indexing Based on Antioxidant and Antibacterial Activities. Medicines. 2018; 5(4):135. https://doi.org/10.3390/medicines5040135
Chicago/Turabian StyleMasalha, Mahmud, Saleh Abu-Lafi, Basheer Abu-Farich, Mahmoud Rayan, Nael Issa, Mouhammad Zeidan, and Anwar Rayan. 2018. "A New Approach for Indexing Honey for Its Heath/Medicinal Benefits: Visualization of the Concept by Indexing Based on Antioxidant and Antibacterial Activities" Medicines 5, no. 4: 135. https://doi.org/10.3390/medicines5040135
APA StyleMasalha, M., Abu-Lafi, S., Abu-Farich, B., Rayan, M., Issa, N., Zeidan, M., & Rayan, A. (2018). A New Approach for Indexing Honey for Its Heath/Medicinal Benefits: Visualization of the Concept by Indexing Based on Antioxidant and Antibacterial Activities. Medicines, 5(4), 135. https://doi.org/10.3390/medicines5040135