Biogas Cleaning via Vacuum Swing Adsorption Using a Calcium Metal–Organic Framework Adsorbent: A Multiscale Simulation Study
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Pure Species Adsorption Behaviour
3.2. Isosteric Heat of Adsorption
3.3. Mixture Sorption
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoon, S.H.; Lee, C.S. Experimental investigation on the combustion and exhaust emission characteristics of biogas–biodiesel dual-fuel combustion in a CI engine. Fuel Process. Technol. 2011, 92, 992–1000. [Google Scholar] [CrossRef]
- Ribeiro, N.d.S.; Barros, R.M.; dos Santos, I.F.S.; Filho, G.L.T.; da Silva, S.P.G. Electric energy generation from biogas derived from municipal solid waste using two systems: Landfills and anaerobic digesters in the states of São Paulo and Minas Gerais, Brazil. Sustain. Energy Technol. Assess. 2021, 48, 101552. [Google Scholar] [CrossRef]
- Legrottaglie, F.; Mattarelli, E.; Rinaldini, C.A.; Scrignoli, F. Application to micro-cogeneration of an innovative dual fuel compression ignition engine running on biogas. Int. J. Thermofluids 2021, 10, 100093. [Google Scholar] [CrossRef]
- Papurello, D.; Silvestri, S.; Biasioli, F.; Lombardi, L. Wood ash biomethane upgrading system: A case study. Renew. Energy 2021, 182, 702–712. [Google Scholar] [CrossRef]
- Caetano, B.C.; Santos, N.D.S.A.; Hanriot, V.M.; Sandoval, O.R.; Huebner, R. Energy conversion of biogas from livestock manure to electricity energy using a Stirling engine. Energy Convers. Manag. X 2022, 15, 100224. [Google Scholar] [CrossRef]
- Hammer, G.; Lübcke, T.; Kettner, R.; Pillarella, M.R.; Recknagel, H.; Commichau, A.; Neumann, H.-J.; Paczynska-Lahme, B. Natural Gas. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Kapoor, R.; Ghosh, P.; Kumar, M.; Vijay, V.K. Evaluation of biogas upgrading technologies and future perspectives: A review. Environ. Sci. Pollut. Res. 2019, 26, 11631–11661. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.U.; Lee, J.T.E.; Bashir, M.A.; Dissanayake, P.D.; Ok, Y.S.; Tong, Y.W.; Shariati, M.A.; Wu, S.; Ahring, B.K. Current status of biogas upgrading for direct biomethane use: A review. Renew. Sustain. Energy Rev. 2021, 149, 111343. [Google Scholar] [CrossRef]
- Golmakani, A.; Nabavi, S.A.; Wadi, B.; Manovic, V. Advances, challenges, and perspectives of biogas cleaning, upgrading, and utilisation. Fuel 2022, 317, 123085. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Denayer, J.F.M. Biogas upgrading by adsorption processes: Mathematical modeling, simulation and optimization approach—A review. J. Environ. Chem. Eng. 2022, 10, 107483. [Google Scholar] [CrossRef]
- Bhoyate, S.; Kahol, P.K.; Gupta, R.K. Nanostructured materials for supercapacitor applications. In Nanoscience; Thomas, P.J., Revaprasadu, N., Eds.; The Royal Society of Chemistry: London, UK, 2018; Volume 5, pp. 1–29. [Google Scholar] [CrossRef]
- Choi, J.; Ingsel, T.; Neupane, D.; Mishra, S.R.; Kumar, A.; Gupta, R.K. Metal-organic framework-derived cobalt oxide and sulfide having nanoflowers architecture for efficient energy conversion and storage. J. Energy Storage 2022, 50, 104145. [Google Scholar] [CrossRef]
- Li, J.-R.; Sculley, J.; Zhou, H.-C. Metal–Organic Frameworks for Separations. Chem. Rev. 2012, 112, 869–932. [Google Scholar] [CrossRef]
- Lawson, H.D.; Walton, S.P.; Chan, C. Metal–Organic Frameworks for Drug Delivery: A Design Perspective. ACS Appl. Mater. Interfaces 2021, 13, 7004–7020. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Kang, J.; Wu, Y.; Pang, C.; Li, S.; Li, J.; Xiong, Y.; Luo, J.; Wang, M.; Xu, Z. Recent advances in metal/covalent organic framework-based materials for photoelectrochemical sensing applications. TrAC Trends Anal. Chem. 2022, 157, 116793. [Google Scholar] [CrossRef]
- Mageto, T.; de Souza, F.M.; Kaur, J.; Kumar, A.; Gupta, R.K. Chemistry and potential candidature of metal-organic frameworks for electrochemical energy storage devices. Fuel Process. Technol. 2023, 242, 107659. [Google Scholar] [CrossRef]
- Jiao, L.; Jiang, H.-L. Metal-organic frameworks for catalysis: Fundamentals and future prospects. Chin. J. Catal. 2023, 45, 1–5. [Google Scholar] [CrossRef]
- Gulati, S.; Vijayan, S.; Mansi; Kumar, S.; Harikumar, B.; Trivedi, M.; Varma, R.S. Recent advances in the application of metal-organic frameworks (MOFs)-based nanocatalysts for direct conversion of carbon dioxide (CO2) to value-added chemicals. Coord. Chem. Rev. 2023, 474, 214853. [Google Scholar] [CrossRef]
- Russo, V.; Hmoudah, M.; Broccoli, F.; Iesce, M.R.; Jung, O.-S.; Di Serio, M. Applications of Metal Organic Frameworks in Wastewater Treatment: A Review on Adsorption and Photodegradation. Front. Chem. Eng. 2020, 2, 581487. Available online: https://www.frontiersin.org/articles/10.3389/fceng.2020.581487 (accessed on 24 April 2024). [CrossRef]
- Hou, Y.; Liu, M.; Zhang, L.; Li, M.; Wang, D.; Liu, J.; Fu, S. Matchstick-like metal-organic framework-based superwetting materials for efficient multiphase liquid separation via filtration or adsorption. Sep. Purif. Technol. 2020, 240, 116598. [Google Scholar] [CrossRef]
- Taddei, M.; Petit, C. Engineering metal–organic frameworks for adsorption-based gas separations: From process to atomic scale. Mol. Syst. Des. Eng. 2021, 6, 841–875. [Google Scholar] [CrossRef]
- Wang, X.-J.; Li, P.-Z.; Liu, L.; Zhang, Q.; Borah, P.; Wong, J.D.; Chan, X.X.; Rakesh, G.; Li, Y.; Zhao, Y. Significant gas uptake enhancement by post-exchange of zinc(ii) with copper(ii) within a metal–organic framework. Chem. Commun. 2012, 48, 10286–10288. [Google Scholar] [CrossRef]
- Avci, G.; Erucar, I.; Keskin, S. Do New MOFs Perform Better for CO2 Capture and H2 Purification? Computational Screening of the Updated MOF Database. ACS Appl. Mater. Interfaces 2020, 12, 41567–41579. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Wang, J.; Zhang, Z.; Xing, H.; Yang, Q.; Yang, Y.; Wu, H.; Krishna, R.; Zhou, W.; Chen, B.; et al. Molecular sieving of ethane from ethylene through the molecular cross-section size differentiation in gallate-based metal–organic frameworks. Angew. Chem. 2018, 130, 16252–16257. [Google Scholar] [CrossRef]
- Du, M.; Li, C.-P.; Chen, M.; Ge, Z.-W.; Wang, X.; Wang, L.; Liu, C.-S. Divergent Kinetic and Thermodynamic Hydration of a Porous Cu(II) Coordination Polymer with Exclusive CO2 Sorption Selectivity. J. Am. Chem. Soc. 2014, 136, 10906–10909. [Google Scholar] [CrossRef] [PubMed]
- Assen, A.H.; Belmabkhout, Y.; Adil, K.; Bhatt, P.M.; Xue, D.-X.; Jiang, H.; Eddaoudi, M. Ultra-tuning of the rare-earth fcu-MOF aperture size for selective molecular exclusion of branched paraffins. Angew. Chem. Int. Ed. 2015, 54, 14353–14358. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.-B.; Xiang, S.; Zhou, W.; Chen, B. Microporous metal-organic framework materials for gas separation. Chem 2020, 6, 337–363. [Google Scholar] [CrossRef]
- Vivo-Vilches, J.F.; Pérez-Cadenas, A.F.; Maldonado-Hódar, F.J.; Carrasco-Marín, F.; Faria, R.P.; Ribeiro, A.M.; Ferreira, A.F.; Rodrigues, A.E. Biogas upgrading by selective adsorption onto CO2 activated carbon from wood pellets. J. Environ. Chem. Eng. 2017, 5, 1386–1393. [Google Scholar] [CrossRef]
- Chaemchuen, S.; Kabir, N.A.; Zhou, K.; Verpoort, F. Metal–organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy. Chem. Soc. Rev. 2013, 42, 9304–9332. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.-D.; Li, Y.-Z.; Zhang, W.-F.; Hou, L.; Wang, Y.-Y.; Zhu, Z. Acetylene Separation by a Ca-MOF Containing Accessible Sites of Open Metal Centers and Organic Groups. ACS Appl. Mater Interfaces 2021, 13, 58862–58870. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Morrison, C.A.; Düren, T. Improving Predictions of Gas Adsorption in Metal–Organic Frameworks with Coordinatively Unsaturated Metal Sites: Model Potentials, ab initio Parameterization, and GCMC Simulations. J. Phys. Chem. C 2012, 116, 18899–18909. [Google Scholar] [CrossRef]
- Wong-Foy, A.G.; Matzger, A.J.; Yaghi, O.M. Exceptional H2 Saturation Uptake in Microporous Metal−Organic Frameworks. J. Am. Chem. Soc. 2006, 128, 3494–3495. [Google Scholar] [CrossRef]
- Zhou, W.; Wu, H.; Yildirim, T. Enhanced H2 Adsorption in Isostructural Metal−Organic Frameworks with Open Metal Sites: Strong Dependence of the Binding Strength on Metal Ions. J. Am. Chem. Soc. 2008, 130, 15268–15269. [Google Scholar] [CrossRef] [PubMed]
- Yazaydın, A.; Snurr, R.Q.; Park, T.-H.; Koh, K.; Liu, J.; LeVan, M.D.; Benin, A.I.; Jakubczak, P.; Lanuza, M.; Galloway, D.B.; et al. Screening of Metal−Organic Frameworks for Carbon Dioxide Capture from Flue Gas Using a Combined Experimental and Modeling Approach. J. Am. Chem. Soc. 2009, 131, 18198–18199. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, P.; Bikkina, C.; Meister, D.; Dreisbach, F.; Gumma, S. Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes. Microporous Mesoporous Mater. 2009, 117, 406–413. [Google Scholar] [CrossRef]
- Wuttke, S.; Bazin, P.; Vimont, A.; Serre, C.; Seo, Y.; Hwang, Y.K.; Chang, J.; Férey, G.; Daturi, M. Discovering the Active Sites for C3 Separation in MIL-100(Fe) by Using Operando IR Spectroscopy. Chem.—A Eur. J. 2012, 18, 11959–11967. [Google Scholar] [CrossRef] [PubMed]
- Britt, D.; Furukawa, H.; Wang, B.; Glover, T.G.; Yaghi, O.M. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proc. Natl. Acad. Sci. USA 2009, 106, 20637–20640. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.M.; Shen, D.; Bülow, M.; Lau, M.L.; Deng, S.; Fitch, F.R.; Lemcoff, N.O.; Semanscin, J. Metallo-organic molecular sieve for gas separation and purification. Microporous Mesoporous Mater. 2002, 55, 217–230. [Google Scholar] [CrossRef]
- Bae, Y.-S.; Farha, O.K.; Spokoyny, A.M.; Mirkin, C.A.; Hupp, J.T.; Snurr, R.Q. Carborane-based metal–organic frameworks as highly selective sorbents for CO2 over methane. Chem. Commun. 2008, 35, 4135–4137. [Google Scholar] [CrossRef] [PubMed]
- Xamena, F.X.L.I.; Corma, A.; Garcia, H. Applications for Metal−Organic Frameworks (MOFs) as Quantum Dot Semiconductors. J. Phys. Chem. C 2007, 111, 80–85. [Google Scholar] [CrossRef]
- Vitillo, J.G.; Regli, L.; Chavan, S.; Ricchiardi, G.; Spoto, G.; Dietzel, P.D.C.; Bordiga, S.; Zecchina, A. Role of Exposed Metal Sites in Hydrogen Storage in MOFs. J. Am. Chem. Soc. 2008, 130, 8386–8396. [Google Scholar] [CrossRef]
- Canivet, J.; Vandichel, M.; Farrusseng, D. Origin of highly active metal–organic framework catalysts: Defects? Defects! Dalton Trans. 2016, 45, 4090–4099. [Google Scholar] [CrossRef]
- Kim, H.K.; Yun, W.S.; Kim, M.-B.; Kim, J.Y.; Bae, Y.-S.; Lee, J.; Jeong, N.C. A Chemical Route to Activation of Open Metal Sites in the Copper-Based Metal–Organic Framework Materials HKUST-1 and Cu-MOF-2. J. Am. Chem. Soc. 2015, 137, 10009–10015. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, L.; Gonzalez-Santiago, B.; Mowat, J.P.S.; Gunn, M.E.; Williamson, P.; Acerbi, N.; Clarke, M.L.; Wright, P.A. Remarkable Lewis acid catalytic performance of the scandium trimesate metal organic framework MIL-100(Sc) for C–C and C=N bond-forming reactions. Catal. Sci. Technol. 2013, 3, 606–617. [Google Scholar] [CrossRef]
- Chui, S.S.-Y.; Lo, S.M.-F.; Charmant, J.P.H.; Orpen, A.G.; Williams, I.D. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148–1150. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.W.; Seo, Y.; Hwang, Y.K.; Chang, J.; Leclerc, H.; Wuttke, S.; Bazin, P.; Vimont, A.; Daturi, M.; Bloch, E.; et al. Controlled Reducibility of a Metal–Organic Framework with Coordinatively Unsaturated Sites for Preferential Gas Sorption. Angew. Chem. Int. Ed. 2010, 49, 5949–5952. [Google Scholar] [CrossRef] [PubMed]
- Férey, G.; Serre, C.; Mellot-Draznieks, C.; Millange, F.; Surblé, S.; Dutour, J.; Margiolaki, I. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angew. Chem. 2004, 116, 6456–6461. [Google Scholar] [CrossRef]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef]
- Dietzel, P.D.C.; Panella, B.; Hirscher, M.; Blom, R.; Fjellvåg, H. Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chem. Commun. 2006, 9, 959–961. [Google Scholar] [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef]
- Peng, D.-Y.; Robinson, D.B. A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam. 1976, 15, 59–64. [Google Scholar] [CrossRef]
- Lopez-Echeverry, J.S.; Reif-Acherman, S.; Araujo-Lopez, E. Peng-Robinson equation of state: 40 years through cubics. Fluid Phase Equilibria 2017, 447, 39–71. [Google Scholar] [CrossRef]
- Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms to Applications; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- BIOVIA, Dassault Systèmes, Materials Studio 2020, Biovia, San Diego: Dassault Systèmes.|Mendeley. 2019. Available online: https://www.caecis.com/wp-content/uploads/2020/05/BIOVIA_MaterialsStudio_2019_SystemRequirements.pdf (accessed on 24 April 2024).
- Sun, H. COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B 1998, 102, 7338–7364. [Google Scholar] [CrossRef]
- Martin, M.G. MCCCS Towhee: A tool for Monte Carlo molecular simulation. Mol. Simul. 2013, 39, 1212–1222. [Google Scholar] [CrossRef]
- Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 1905, 4, 549–560. [Google Scholar] [CrossRef]
- Warshel, A.; Lifson, S. Consistent Force Field Calculations. II. Crystal Structures, Sublimation Energies, Molecular and Lattice Vibrations, Molecular Conformations, and Enthalpies of Alkanes. J. Chem. Phys. 1970, 53, 582–594. [Google Scholar] [CrossRef]
- Waldman, M.; Hagler, A.T. New combining rules for rare gas van der waals parameters. J. Comput. Chem. 1993, 14, 1077–1084. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, M.; Zhang, W.; Bai, J. Stable Amide-Functionalized Metal–Organic Framework with Highly Selective CO2 Adsorption. Inorg. Chem. 2019, 58, 2729–2735. [Google Scholar] [CrossRef] [PubMed]
- Firouzjaei, M.D.; Afkhami, F.A.; Esfahani, M.R.; Turner, C.H.; Nejati, S. Experimental and molecular dynamics study on dye removal from water by a graphene oxide-copper-metal organic framework nanocomposite. J. Water Process Eng. 2020, 34, 101180. [Google Scholar] [CrossRef]
- Yan, F.; Wang, Q.; Wang, F.; Huang, Z. Study on energy storage properties of Metal-organic frameworks nanofluids (UIO-67/Water and UIO-67/Methanol) by an experimental and theoretical method. J. Mater. Sci. 2021, 56, 10008–10017. [Google Scholar] [CrossRef]
- Han, X.; Sun, H.; Liu, L.; Wang, Y.; He, G.; Li, J. Improved desulfurization performance of polydimethylsiloxane membrane by incorporating metal organic framework CPO-27-Ni. Sep. Purif. Technol. 2019, 217, 86–94. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Y.; Chen, Y.; Yang, J.; Wang, X.; Li, L.; Li, J. Construction of saturated coordination titanium-based metal–organic framework for one-step C2H2/C2H6/C2H4 separation. Sep. Purif. Technol. 2021, 276, 119284. [Google Scholar] [CrossRef]
- Chen, J.-J.; Li, W.-W.; Li, X.-L.; Yu, H.-Q. Improving Biogas Separation and Methane Storage with Multilayer Graphene Nanostructure via Layer Spacing Optimization and Lithium Doping: A Molecular Simulation Investigation. Environ. Sci. Technol. 2012, 46, 10341–10348. [Google Scholar] [CrossRef]
- Lasich, M. Sorption of natural gas in cement hydrate by Monte Carlo simulation. Eur. Phys. J. B 2018, 91, 299. [Google Scholar] [CrossRef]
- Moradi, M.; Azizpour, H.; Yavari, M.; Khoshnevisan, N. Estimation of Diffusion Coefficient of Benzene/Hexane Mixtures by Molecular Dynamics Simulation. J. Chem. Pet. Eng. 2023, 52, 199–207. [Google Scholar]
- Chen, G.; An, Y.; Shen, Y.; Wang, Y.; Tang, Z.; Lu, B.; Zhang, D. Effect of pore size on CH4/N2 separation using activated carbon. Chin. J. Chem. Eng. 2020, 28, 1062–1068. [Google Scholar] [CrossRef]
- Allen, M.P.; Tildesley, D.J. Computer simulation of liquids. Clarendon-0.12 1987. [Google Scholar]
- Papadimitriou, N.I.; Tsimpanogiannis, I.N.; Papaioannou, A.T.; Stubos, A.K. Evaluation of the Hydrogen-Storage Capacity of Pure H2 and Binary H2-THF Hydrates with Monte Carlo Simulations. J. Phys. Chem. C 2008, 112, 10294–10302. [Google Scholar] [CrossRef]
- Lasich, M.; Narasigadu, C.; Moodley, S. Adsorption of humid air in compacted montmorillonite: A Monte Carlo simulation study. Fluid Phase Equilibria 2019, 487, 52–57. [Google Scholar] [CrossRef]
- Zhao, Y.; Seredych, M.; Jagiello, J.; Zhong, Q.; Bandosz, T.J. Insight into the mechanism of CO2 adsorption on Cu–BTC and its composites with graphite oxide or aminated graphite oxide. Chem. Eng. J. 2014, 239, 399–407. [Google Scholar] [CrossRef]
- Chanajaree, R.; Sailuam, W.; Seehamart, K. Molecular self-diffusivity and separation of CH4/H2S in metal organic framework MIL-47(V). Microporous Mesoporous Mater. 2022, 335, 111783. [Google Scholar] [CrossRef]
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef] [PubMed]
- Verlet, L. Computer ‘Experiments’ on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 1967, 159, 98–103. [Google Scholar] [CrossRef]
- Ewald, P.P. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 1921, 369, 253–287. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 1100–1107. [Google Scholar]
- Temkin, M.I. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochim. URSS 1940, 12, 327–356. [Google Scholar]
- Redlich, O.; Peterson, D.L. A Useful Adsorption Isotherm. J. Phys. Chem. 1959, 63, 1024. [Google Scholar] [CrossRef]
- Sips, R. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Eaton, J.W.; Bateman, D.; Hauberg, S. GNU Octave Version 3.0. 1 Manual: A High-Level Interactive Language for Numerical Computations; SoHo Books: New York, NY, USA, 2007. [Google Scholar]
- Chung, Y.; Na, B.-K.; Song, H.K. Short-cut evaluation of pressure swing adsorption systems. Comput. Chem. Eng. 1998, 22, S637–S640. [Google Scholar] [CrossRef]
- Lasich, M. Upgrading Wood Gas Using Bentonite Clay: A Multiscale Modeling and Simulation Study. ACS Omega 2020, 5, 11068–11074. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Cavanaugh, J.E. Unifying the derivations for the Akaike and corrected Akaike information criteria. Stat. Probab. Lett. 1997, 33, 201–208. [Google Scholar] [CrossRef]
- Vivo-Vilches, J.F.; Pérez-Cadenas, A.F.; Maldonado-Hódar, F.J.; Carrasco-Marín, F.; Regufe, M.J.; Ribeiro, A.M.; Ferreira, A.F.P.; Rodrigues, A.E. Resorcinol–formaldehyde carbon xerogel as selective adsorbent of carbon dioxide present on biogas. Adsorption 2018, 24, 169–177. [Google Scholar] [CrossRef]
- Liu, G.; Cadiau, A.; Liu, Y.; Adil, K.; Chernikova, V.; Carja, I.-D.; Belmabkhout, Y.; Karunakaran, M.; Shekhah, O.; Zhang, C.; et al. Enabling fluorinated MOF-based membranes for simultaneous removal of H2S and CO2 from natural gas. Angew. Chem. 2018, 130, 15027–15032. [Google Scholar] [CrossRef]
- Cavenati, S.; Grande, C.A.; Rodrigues, A.E.; Kiener, C.; Müller, U. Metal Organic Framework Adsorbent for Biogas Upgrading. Ind. Eng. Chem. Res. 2008, 47, 6333–6335. [Google Scholar] [CrossRef]
- Himeno, S.; Komatsu, T.; Fujita, S. High-Pressure Adsorption Equilibria of Methane and Carbon Dioxide on Several Activated Carbons. J. Chem. Eng. Data 2005, 50, 369–376. [Google Scholar] [CrossRef]
- Ghanbari, R.; Marandi, A.; Zare, E.N. Development of melamine-based covalent organic framework-MOF pearl-like heterostructure integrated poly(ether-block-amide) for CO2/CH4 separation. J. Environ. Chem. Eng. 2023, 11, 109269. [Google Scholar] [CrossRef]
- Chen, Z.; Xiang, S.; Arman, H.D.; Li, P.; Zhao, D.; Chen, B. Significantly Enhanced CO2/CH4 Separation Selectivity within a 3D Prototype Metal–Organic Framework Functionalized with OH Groups on Pore Surfaces at Room Temperature. Eur. J. Inorg. Chem. 2011, 2011, 2227–2231. [Google Scholar] [CrossRef]
- Hamon, L.; Jolimaître, E.; Pirngruber, G.D. CO2 and CH4 Separation by Adsorption Using Cu-BTC Metal−Organic Framework. Ind. Eng. Chem. Res. 2010, 49, 7497–7503. [Google Scholar] [CrossRef]
- Luyben, W.L. Optimum vacuum distillation pressure. Chem. Eng. Process.—Process Intensif. 2022, 171, 108630. [Google Scholar] [CrossRef]
- Su, B.; Han, W.; He, H.; Jin, H.; Chen, Z.; Zheng, J.; Yang, S.; Zhang, X. Using moderate carbon dioxide separation to improve the performance of solar-driven biogas reforming process. Appl. Energy 2020, 279, 115693. [Google Scholar] [CrossRef]
Component | Volume % |
---|---|
Methane | 30–73 |
Carbon dioxide | 20–40 |
Nitrogen | 5–40 |
Oxygen | 0–5 |
Hydrogen | 1–3 |
Hydrogen sulphide | 0–0.1 |
Component | bLangmuir (1/kPa) | Q (mmol/g) | R2 |
---|---|---|---|
Methane | 1.291 × 10−4 ± 2.016 × 10−6 | 6.362 ± 6.411 × 10−2 | 1.000 |
Carbon dioxide | 3.972 × 10−2 ± 7.483 × 10−3 | 9.634 ± 0.357 | 0.992 |
Nitrogen | 1.870 × 10−4 ± 7.687 × 10−7 | 4.492 ± 0.0136 | 1.000 |
Oxygen | 2.249 × 10−3 ± 2.664 × 10−4 | 1.487 ± 8.796 × 10−2 | 1.000 |
Hydrogen | 1.018 × 10−3 ± 6.503 × 10−4 | 0.126 ± 6.721 × 10−2 | 0.999 |
Hydrogen sulphide | 9.254 ± 4.321 | 8.022 ± 0.545 | 0.807 |
Component | K (mmol/g) | n | R2 |
---|---|---|---|
Methane | 2.331 × 10−3 ± 3.141 × 10−4 | 1.217 ± 2.391 × 10−2 | 1.000 |
Carbon dioxide | 2.057 ± 0.793 | 4.528 ± 1.224 | 0.893 |
Nitrogen | 1.651 × 10−3 ± 1.315 × 10−4 | 1.150 ± 1.400 × 10−2 | 1.000 |
Oxygen | 9.353 × 10−3 ± 1.060 × 10−4 | 1.402 ± 3.638 × 10−3 | 1.000 |
Hydrogen | 1.064 × 10−4 ± 3.094 × 10−7 | 0.998 ± 5.512 × 10−4 | 1.000 |
Hydrogen sulphide | 6.029 ± 0.202 | 10.608 ± 1.183 | 0.968 |
Component | k (mmol/g·kPa) | a (1/kPab’) | b’ | R2 |
---|---|---|---|---|
Methane | 1.443 × 10−4 ± 2.726 × 10−4 | −1.075 ± 0.189 | −4.718 × 10−2 ± 0.107 | 0.999 |
Carbon dioxide | 2.465 × 10−3 ± 2.887 × 10−2 | −1.601 ± 11.468 | −0.129 ± 1.950 | 0.681 |
Nitrogen | 1.980 × 10−4 ± 3.693 × 10−4 | −0.962 ± 4.608 × 10−2 | −4.613 × 10−2 ± 0.116 | 1.000 |
Oxygen | 1.148 × 10−2 ± 5.926 × 10−3 | 0.674 ± 0.599 | 0.360 ± 4.746 × 10−2 | 1.000 |
Hydrogen | 1.058 × 10−4 ± 1.113 × 10−5 | −7.491 × 10−3 ± 8.895 × 10−2 | 0.159 ± 1.120 | 1.000 |
Hydrogen sulphide | 214.420 ± 39.366 | 32.878 ± 6.465 | 0.928 ± 5.007 × 10−3 | 0.998 |
Component | b (mmol/g) | A (1/kPa) | R2 |
---|---|---|---|
Methane | 2.331 × 10−3 ± 3.141 × 10−4 | 1.217 ± 2.391 × 10−2 | 0.698 |
Carbon dioxide | 1.350 ± 0.098 | 1.264 ± 0.440 | 0.985 |
Nitrogen | 0.141 ± 0.059 | 0.187 ± 0.269 | 0.653 |
Oxygen | 8.140 × 10−2 ± 3.281 × 10−2 | 1.669 ± 2.618 | 0.672 |
Hydrogen | 2.707 × 10−3 ± 1.176 × 10−3 | 1.094 ± 1.481 | 0.639 |
Hydrogen sulphide | 0.665 ± 2.230 × 10−2 | 9971.3 ± 5324.8 | 0.993 |
Component | k (mmol/g·kPab) | b | a (1/kPab) | R2 |
---|---|---|---|---|
Methane | 3.514 × 10−2 ± 3.842 × 10−2 | 0.260 ± 0.347 | −9.770 × 10−2 ± 0.313 | 0.996 |
Carbon dioxide | 0.682 ± 0.180 | 0.793 ± 8.732 × 10−2 | 6.730 × 10−2 ± 1.652 × 10−2 | 0.998 |
Nitrogen | 2.412 × 10−2 ± 1.303 × 10−2 | 0.202 ± 0.370 | −0.196 ± 0.597 | 0.996 |
Oxygen | 1.900 × 10−2 ± 8.334 × 10−3 | 0.477 ± 0.162 | −2.738 × 10−2 ± 4.182 × 10−2 | 0.999 |
Hydrogen | 5.356 × 10−4 ± 2.041 × 10−4 | 0.316 ± 0.341 | −0.162 ± 0.331 | 0.998 |
Hydrogen sulphide | 14.856 ± 1.095 | 0.290 ± 2.553 × 10−2 | 1.387 ± 0.160 | 0.999 |
Adsorbent | SH2S/CH4 | SCO2/CH4 | Conditions | Feed Gas Composition | Reference |
---|---|---|---|---|---|
CaMOF | 3.4 × 105 | 35 | 298 K, 10 kPa | 30 mol-% CO2, 14.99 mol-% N2, 50 mol-% CH4, 3 mol-% O2, 0.001 mol-% H2S, 2 mol-% H2 | This study |
4.2 × 105 | 30 | 298 K, 10 kPa | 30 mol-% CO2, 14.9 mol-% N2, 50 mol-% CH4, 3 mol-% O2, 0.01 mol-% H2S, 2 mol-% H2 | This study | |
CaMOF | - | 16.5 | 298 K, 100 kPa | 50 mol-% CH4, 50 mol-% CO2 | [30] |
Resorcinol–formaldehyde carbon xerogel | - | 2.38 | 303 K, 100 kPa | 50 mol-% CH4, 50 mol-% CO2 | [88] |
6FDA-DAM polyimide | 11 | 5.4 | 308 K, 690 kPa | 60 mol-% CH4, 20 mol-% CO2, 20 mol-% H2S | [89] |
Fluorinated MOF NbOFFIVE-1-Na/6FDA-DAM polyimide mixed matrix | 10 | 5.3 | 308 K, 690 kPa | 60 mol-% CH4, 20 mol-% CO2, 20 mol-% H2S | [89] |
Fluorinated MOF AlOFFIVE-1-Na/6FDA-DAM polyimide mixed matrix | 10 | 4.5 | 308 K, 690 kPa | 60 mol-% CH4, 20 mol-% CO2, 20 mol-% H2S | [89] |
CuMOF | - | 5.9 * | 303 K, 10 kPa | - | [90] |
Zeolite 13X | - | 8.4 * | 303 K, 110 kPa | - | [91] |
Melamine-based covalent organic framework/MOF heterostructure | - | 44.2 | 298 K 200 kPa | 70 vol-% CH4, 30 vol-% CO2 | [92] |
OH-functionalised MOF | - | 17.2 | 273 K, 101.3 kPa | Henry’s law (i.e., pi → 0) | [93] |
Cu-BTC MOF | - | 11.5 | 303 K, 103 kPa | 75 mol-% CO2, 25 mol-% CH4 | [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasich, M.; Adeleke, V.T.; Tumba, K. Biogas Cleaning via Vacuum Swing Adsorption Using a Calcium Metal–Organic Framework Adsorbent: A Multiscale Simulation Study. ChemEngineering 2024, 8, 62. https://doi.org/10.3390/chemengineering8030062
Lasich M, Adeleke VT, Tumba K. Biogas Cleaning via Vacuum Swing Adsorption Using a Calcium Metal–Organic Framework Adsorbent: A Multiscale Simulation Study. ChemEngineering. 2024; 8(3):62. https://doi.org/10.3390/chemengineering8030062
Chicago/Turabian StyleLasich, Madison, Victoria T. Adeleke, and Kaniki Tumba. 2024. "Biogas Cleaning via Vacuum Swing Adsorption Using a Calcium Metal–Organic Framework Adsorbent: A Multiscale Simulation Study" ChemEngineering 8, no. 3: 62. https://doi.org/10.3390/chemengineering8030062
APA StyleLasich, M., Adeleke, V. T., & Tumba, K. (2024). Biogas Cleaning via Vacuum Swing Adsorption Using a Calcium Metal–Organic Framework Adsorbent: A Multiscale Simulation Study. ChemEngineering, 8(3), 62. https://doi.org/10.3390/chemengineering8030062