Streamflow Analysis in Data-Scarce Kabompo River Basin, Southern Africa, for the Potential of Small Hydropower Projects under Changing Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Site
2.2. Methodological Approach
2.3. Data for Climate Change Modelling
2.4. Hydrological Modeling Input Data
2.5. Estimation Method for Climate Change Impact
2.6. Methods for Estimation of Hydropower Generation Potential
2.7. Procedure for Derivation of Flow Duration Curves
2.8. Estimation of Hydropower Potential for Ungauged Catchment
- Deriving the Flow Duration Curve for all gauged river catchments and standardizing it by dividing the observed Flow Duration Curve by the average of monthly streamflow (the index streamflow) for all the stations with records in the study area.
- A graphical regional dimensionless Flow Duration Curve is obtained by averaging the standardized observed Flow Duration Curve of all gauged river catchments in the study region. The Flow Duration Curve for ungauged catchments located in the study area was then estimated as the product of the dimensionless regional Flow Duration Curve and an estimated index streamflow for the catchment.
3. Results
3.1. Calibration and Validation of SWAT Model
3.2. Derived Flow Duration Curves for GCM
3.3. Derived Flow Duration Curves for Gauged Sites
3.4. Derived Flow Duration Curves for Ungauged Sites
3.5. Elevation Profiles for Ungauged Sites in the Basin
3.6. Hydropower Potential Sites
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- International Energy Agency (IEA). Assessment Methods for Small-Hydro Projects. Implementing Agreement for Hydropower. 2000. Available online: https://www.ieahydro.org/media/c617f800/Assessment%20Methods%20for%20Small-Hydro%20Projects.pdf (accessed on 25 January 2020).
- Galletti, A.; Avesani, D.; Bellin, A.; Majone, B. Detailed simulation of storage hydropower systems in large Alpine watersheds. J. Hydrol. 2021, 603, 127125. [Google Scholar] [CrossRef]
- Reichl, F.; Hack, J. Derivation of flow duration curves to estimate hydropower generation potential in data-scarce regions. Water 2017, 9, 572. [Google Scholar] [CrossRef]
- Sharma, N.K.; Tiwari, P.K.; Sood, Y.R. A comprehensive analysis of strategies, policies and development of hydropower in India: Special emphasis on small hydro power. Renew. Sustain. Energy Rev. 2013, 18, 460–470. [Google Scholar] [CrossRef]
- Macaringue, D. The Potential for Micro-Hydro Power Plants in Mozambique; University of KwaZulu-Natal: Pietermaritzburg, South Africa, 2009. [Google Scholar]
- Yüksel, I. Hydropower in Turkey for a clean and sustainable energy future. Renew. Sustain. Energy Rev. 2008, 12, 1622–1640. [Google Scholar] [CrossRef]
- Korkovelos, A.; Mentis, D.; Siyal, S.H.; Arderne, C.; Rogner, H.; Bazilian, M.; Howells, M.; Beck, H.; De Roo, A. A Geospatial Assessment of Small-Scale Hydropower Potential in Sub-Saharan Africa. Energies 2018, 11, 3100. [Google Scholar] [CrossRef]
- Yin, J.; Guo, S.; Gentine, P.; Sullivan, S.C.; Gu, L.; He, S.; Chen, J.; Liu, P. Does the hook structure constrain future flood intensification under anthropogenic climate warming? Water Resour. Res. 2021, 57, e2020WR028491. [Google Scholar] [CrossRef]
- Bevacqua, E.; Maraun, D.; Vousdoukas, M.I.; Voukouvalas, E.; Vrac, M.; Mentaschi, L.; Widmann, M. Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change. Sci. Adv. 2019, 5, eaaw5531. [Google Scholar] [CrossRef] [PubMed]
- Arias, M.E.; Farinosi, F.; Hughes, D.A. Future Hydropower Operations in the Zambezi River Basin: Climate Impacts and Adaptation Capacity. In River Research and Application; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar] [CrossRef]
- Hamududu, B.H.; Killingtveit, Å. Hydropower Production in Future Climate Scenarios; the Case for the Zambezi River. Energies 2016, 9, 502. [Google Scholar] [CrossRef]
- Stevanato, N.; Rocco, M.V.; Giuliani, M.; Castelletti, A.; Colombo, E. Advancing the representation of reservoir hydropower in energy systems modelling: The case of Zambesi River Basin. PLoS ONE 2021, 16, e0259876. [Google Scholar] [CrossRef] [PubMed]
- Yamba, F.D.; Walimwipi, H.; Jain, S.; Zhou, P.; Cuamba, B.; Mzezewa, C. Climate change/variability implications on hydroelectricity generation in the Zambezi River Basin. Mitig. Adapt. Strateg. Glob. Chang. 2011, 16, 617–628. [Google Scholar] [CrossRef]
- Searcy, J.K. Flow-Duration Curves Flow-Duration Curves. Manual of Hydrology Part 2. Low-Flow Techniques. Geological Survey Water-Supply Paper. 1969. Available online: https://pubs.usgs.gov/wsp/1542a/report.pdf (accessed on 30 April 2020).
- Karamouz, M.; Szidarovszky, F.; Zahraie, B. Water Resources Systems Analysis with Emphasis on Conflict Resolution; Lewis Publishers: New York, NY, USA; Washington, DC, USA, 2003; 608p. [Google Scholar]
- Mousavi, R.S.; Ahmadizadeh, M.; Marofi, S. A Multi-GCM assessment of the climate change impact on the hydrology and hydropower potential of a semi-arid basin (A Case Study of the Dez Dam Basin, Iran). Water 2018, 10, 1458. [Google Scholar] [CrossRef]
- Botai, C.M.; Botai, J.O.; Muchuru, S.; Ngwana, I. Hydrometeorological Research in South Africa: A Review. Water 2015, 7, 1580–1594. [Google Scholar] [CrossRef]
- Euroconsult, M.M. Integrated Water Resources Management Strategy and Implementation Plan for the Zambezi River Basin. 2008. Available online: http://zambezicommission.org/sites/default/files/clusters_pdfs/Zambezi%20River_Basin_IWRM_Strategy_ZAMSTRAT.pdf (accessed on 20 January 2021).
- Hughes, D.A. Comparison of satellite rainfall data with observations from gauging station networks. J. Hydrol. 2006, 327, 399–410. [Google Scholar] [CrossRef]
- Gómez-Llanos, E.; Arias-Trujillo, J.; Durán-Barroso, P.; Ceballos-Martínez, J.M.; Torrecilla-Pinero, J.A.; Urueña-Fernández, C.; Candel-Pérez, M. Department, Hydropower Potential Assessment in Water Supply Systems. Proceedings 2018, 2, 1299. [Google Scholar] [CrossRef]
- International Finance Corporation (IFC). Hydroelectric Power, A Guide for Developers and Investors; World Bank: Washington, DC, USA, 2012; pp. 145–152. [Google Scholar] [CrossRef]
- Samora, I.; Manso, P.; Franca, M.J.; Schleiss, A.J.; Ramos, H.M. Energy Recovery Using Micro-Hydropower Technology in Water Supply Systems: The Case Study of the City of Fribourg. Water 2016, 8, 344. [Google Scholar] [CrossRef]
- Van Dijk, M.; van Vuuren, S.J.; Bhagwan, J.N. Conduit Hydropower Potential In A City’s Water Distribution System, Imesa papers. 2012, Volume 12, pp. 1–16. Available online: https://imesa.org.za/wp-content/uploads/2015/08/Conduit-hydropower-potential-in-a-citys-water-distribution-system-Prof-Marco-van-Dyk-University-of-Pta.pdf (accessed on 14 April 2022).
- Jung, S.; Bae, Y.; Kim, J.; Joo, H.; Kim, H.; Jung, J. Analysis of Small Hydropower Generation Potential: (1) Estimation of the Potential in Ungaged Basins. Energies 2021, 14, 2977. [Google Scholar] [CrossRef]
- Ndhlovu, G.; Woyessa, Y. Use of gridded climate data for hydrological modelling in the Zambezi River Basin, Southern Africa. J. Hydrol. 2021, 602, 126749. [Google Scholar] [CrossRef]
- World Bank. The Zambezi River Basin–A multi-sector investment opportunity analysis. Modeling Anal. Input Data 2010, 4, 158. [Google Scholar]
- Kapangaziwiri, E.; Mokoena, M.P.; Kahinda, J.M.; Hughes, D.A. ECOMAG: An Evaluation for Use in South Africa. 2013. Available online: http://www.wrc.org.za/wp-content/uploads/mdocs/TT%20555-13.pdf (accessed on 12 February 2021).
- Young, T.; Tucker, T.; Galloway, M.; Manyike, P. Climate Change and Health in SADC. September 2010. Available online: https://open.umich.edu/sites/default/files/downloads/uct-ccandhealth220910.pdf (accessed on 5 October 2020).
- Senent-Aparicio, J.; Jimeno-Sáez, P.; López-Ballesteros, A.; Giménez, J.G.; Pérez-Sánchez, J.; Cecilia, J.M.; Srinivasan, R. Impacts of swat weather generator statistics from high-resolution datasets on monthly streamflow simulation over Peninsular Spain. J. Hydrol. Reg. Stud. 2021, 35, 2021. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Gassman, P.P.W.; Reyes, M.M.R.; Green, C.C.H.; Arnold, J.J.G. The Soil and Water Assessment Tool: Historical development, applications, and future research directions. Trans. ASAE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines For Systematic Quantification of Accuracy in Watershed Simulations. Am. Soc. Agric. Biol. Eng. 2007, 50, 885–900. [Google Scholar]
- Odusanya, A.E.; Mehdi, B.; Schürz, C.; Oke, A.O.; Awokola, O.S.; Awomeso, J.A.; Adejuwon, J.O.; Schulz, K. Multi-site calibration and validation of SWAT with satellite-based evapotranspiration in a data-sparse catchment in southwestern Nigeria. Hydrol. Earth Syst. Sci. 2019, 23, 1113–1144. [Google Scholar] [CrossRef]
- Trzaska, S.; Schnarr, E. A Review of Downscaling Methods for Climate Change Projections. African and Latin American Resilience to Climate Change (ARCC); United States Agency for International Development by Tetra Tech ARD: Arlington, VA, USA, 2014; pp. 1–42. [Google Scholar] [CrossRef]
- Anandhi, A.; Frei, A.; Pierson, D.C.; Schneiderman, E.M.; Zion, M.S.; Lounsbury, D.; Matonse, A.H. Examination of change factor methodologies for climate change impact assessment. Water Resour. Res. 2011, 47, W03501. [Google Scholar] [CrossRef]
- Vogel, R.M.; Fennessey, N.M. Flow Duration Curves II: A Review of Applications in Water Resources Planning1. JAWRA J. Am. Water Resour. Assoc. 1996, 31, 1029–1039. [Google Scholar] [CrossRef]
- Yildiz, V.; Vrugt, J.A. A toolbox for the optimal design of run-of-river hydropower plants. Environ. Model. Softw. 2018, 111, 134–152. [Google Scholar] [CrossRef]
- Wali, U.G. Estimating hydropower potential of an ungaged stream. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 592–600. Available online: www.ijetae.com (accessed on 20 June 2022).
- Mülle, M.F.; Thompson, S.E. Stochastic or statistic? Comparing flow duration curve models in ungauged basins and changing climates. Hydrol. Earth Syst. Sci. Discuss. 2015, 12, 9765–9811. [Google Scholar] [CrossRef]
- Ngongondo, C.; Li, L.; Gong, L.; Xu, C.-Y.; Alemaw, B.F. Flood frequency under changing climate in the upper Kafue River basin, Southern Africa: A large scale hydrological model application. Stoch. Environ. Res. Risk Assess. 2013, 27, 1883–1898. [Google Scholar] [CrossRef]
- Verma, R.K.; Murthy, S.; Verma, S.; Mishra, S.K. Design flow duration curves for environmental flows estimation in Damodar River Basin, India. Appl. Water Sci. 2017, 7, 1283–1293. [Google Scholar] [CrossRef]
- Smakhtin, V.U. Low Flow Hydrology: A review. J. Hydrol. 2001, 240, 147–186. Available online: http://researchspace.csir.co.za/dspace/bitstream/id/1386/smakhtin_2001.pdf/;jsessionid=9F469DEA00D334B3E35271529B391A38 (accessed on 19 April 2022). [CrossRef]
- Smakhtin, V.Y. Simple Methods Hydrological Data Provision, Integrated and Application of Daily Flow Analysis and Simulation Approaches Within Southern Africa; Water Research Commission (WRC); WRC Report No. 867/1/00. 2000. Available online: http://www.wrc.org.za/wp-content/uploads/mdocs/867-1-00.pdf (accessed on 14 April 2022).
- Leroy, F.; Heitz, P.E.; Khosrowpanah, P.E.S. Prediction of Flow Duration Curves for Use in Hydropower Analysis at Ungaged Sites in Kosrae, FSM; Technical Report No. 137; University of Guam Water and Environmental Research Institute of the Western Pacific UOG Station: Mangilao, GU, USA, 2012. [Google Scholar]
- Nruthya, K.; Srinivas, V.V. Evaluating Methods to Predict Streamflow at Ungauged Sites Using Regional Flow Duration Curves: A Case Study. Aquat. Procedia 2015, 4, 641–648. [Google Scholar] [CrossRef]
- USDA. Estimating Design Stream Flows at Road-Stream Crossings. In Stream Simulation: An Ecological Approach to Providing Passage for Aquatic Organisms at Road-Stream Crossings; U.S. Department of Agriculture: Washington, DC, USA, 2008. [Google Scholar]
- Mohamoud, Y.M. Prediction of daily flow duration curves and streamflow for ungauged catchments using regional flow duration curves. Hydrol. Sci. J. 2008, 53, 706–724. [Google Scholar] [CrossRef]
- Joel, N.; Ndayizeye, J.; Mkhandi, S. Regional Flow Duration Curve Estimation and its Application in Assessing Low Flow Characteristics for Ungauged Catchment. A Case Study of Rwegura Catchment-Burundi. Nile Basin Water Sci. Eng. J. 2011, 4, 14–23. Available online: https://nbcbn.net/ctrl/images/img/uploads/1209_06113847.pdf (accessed on 14 April 2022).
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting Through Conceptual Models Part I-a Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gunathilake, M.B.; Amaratunga, Y.V.; Perera, A.; Chathuranika, I.M.; Gunathilake, A.S.; Rathnayake, U. Evaluation of Future Climate and Potential Impact on Streamflow in the Upper Nan River Basin of Northern Thailand Miyuru. Adv. Meteorol. 2020, 2020, 8881118. [Google Scholar] [CrossRef]
- Mello, C.; Vieira, N.; Guzman, J.; Viola, M.; Beskow, S.; Alvarenga, L. Climate Change Impacts on Water Resources of the Largest Hydropower Plant Reservoir in Southeast Brazil. Water 2021, 13, 1560. [Google Scholar] [CrossRef]
- Novara, D.; McNabola, A. Design and Year-Long Performance Evaluation of a Pump as Turbine (PAT) Pico-Hydropower Energy Recovery Device in a Water Network. Water 2021, 13, 3014. [Google Scholar] [CrossRef]
- Hamududu, B.H. Impacts of Climate Change on Water Resources and Hydropower Systems in Central and Southern Africa; Norwegian University of Science and Technology: Trondheim, Norway, 2012. [Google Scholar]
- Ndhlovu, G.Z.; Woyessa, Y.E. Evaluation of Streamflow under Climate Change in the Zambezi River Basin of Southern Africa. Water 2021, 13, 3114. [Google Scholar] [CrossRef]
- Hughes, D.A.; Farinosi, F. Assessing development and climate variability impacts on water resources in the Zambezi River basin. Simulating future scenarios of climate and development. J. Hydrol. Reg. Stud. 2020, 32, 100763. [Google Scholar] [CrossRef] [PubMed]
- Fant, C.; Gebretsadik, Y.; McCluskey, A.; Strzepek, K. An uncertainty approach to assessment of climate change impacts on the Zambezi River Basin. Clim. Chang. 2015, 130, 35–48. [Google Scholar] [CrossRef]
- Sainz, S.G. The Zambezi River Basin: Water Resources Management Energy-Food-Water Nexus Approach. Master’s Thesis, Department of Physical Geography, Stockholm University, Stockholm, Sweden, 2018. [Google Scholar]
Country | Research Center | GCM | Resolution Lat Long Degrees |
---|---|---|---|
France | Centre National de Recherches Météorologiques | CNRM-CM5 | 1.4 × 1.4 |
France | Institute Pierre Simon Laplace | IPCL-CM5A-LR | 3.7 × 1.9 |
Japan | Center for Climate Research System (The University of Tokyo), National Institute for Environmental Studies and Frontier Research Center for Global Change (JAMSTEC) | MIROC5 | 1.4 × 1.4 |
Germany | Max Planck Institute for Meteorology | MPI-ESM-MR | 1.9 × 1.9 |
Japan | Meteorological Research Institute | MRI-CGCM3 | 1.4 × 1.4 |
Parameter Name | Description | t-Stat | p-Value |
---|---|---|---|
R__SOL_AWC (.).sol | Available water capacity of the soil layer (mm H2O/mm soil) | −7.615 | 0.000 |
R__HRU_SLP.hru | Average slope steepness (fraction) | −2.171 | 0.030 |
R__SOL_BD (.).sol | Soil bulk density | −2.126 | 0.033 |
R__SOL_K (.).sol | Saturated hydraulic conductivity (mm/hour) | −2.032 | 0.042 |
V__GW_DELAY.gw | Groundwater delay (days) | −1.812 | 0.071 |
V__CH_K2.rte | Manning’s n value for the main channel | −1.239 | 0.215 |
R__SLSUBBSN.hru | Average slope length (m) | 1.057 | 0.291 |
R__OV_N.hru | Manning’s n value for overland flow | −1.031 | 0.303 |
V__ALPHA_BNK.rte | Base flow alpha factor for bank storage (days) | −0.822 | 0.411 |
V__ALPHA_BF.gw | Base flow alpha factor (days) | −0.777 | 0.437 |
V__GWQMN.gw | Threshold depth of water in the shallow aquifer required for return flow to occur (mm) | 0.5636 | 0.573 |
R__CN2.mgt | SCS runoff curve number | 0.525 | 0.599 |
V__CH_N2.rte | Manning’s n value for the main channel | −0.382 | 0.703 |
V__SURLAG.bsn | Surface runoff lag time (days) | −0.340 | 0.734 |
V__REVAPMN.gw | Threshold depth of water in the shallow aquifer for “revap” to occur (mm) | −0.314 | 0.753 |
R__SOL_ZMX.sol | Max depth from soil surface to rooting depth (mm) | −0.182 | 0.856 |
V__ESCO.hru | Plant uptake compensation factor | 0.122 | 0.903 |
V__GW_REVAP.gw | Groundwater “revap” coefficient | 0.036 | 0.971 |
Parameter | Data Period | R2 | NS | P-Factor | R-Factor |
---|---|---|---|---|---|
Calibration | 1982–1997 | 0.73 | 0.73 | 0.75 | 0.75 |
Validation | 1998–2005 | 0.70 | 0.64 | 0.73 | 0.55 |
Hydropower Potential Site (Ungauged) | Area (km2) | Potential Height(m) | Estimated Design Flow (m3/s) | RCP 8.5 Design Flow (m3/s) | Estimated Potential Gen Capacity (KW) | Future Potential Gen Capacity RCP 8.5 (KW) |
---|---|---|---|---|---|---|
Mujila falls lower site | 501.04 | 40 | 16.32 | 16.97 | 5123 | 5327 |
Mujila falls upper site | 1275.98 | 30 | 17.09 | 17.77 | 4024 | 4184 |
Kasanjiku falls site | 1625.11 | 40 | 17.44 | 18.14 | 5475 | 5695 |
Chauka Matambu fall site | 555.03 | 40 | 16.37 | 17.02 | 5139 | 5343 |
Satelenge Falls | 3598.22 | 15 | 19.41 | 20.19 | 2285 | 2377 |
Kangongo Falls | 0.3 | 4 | 15.81 | 16.45 | 496 | 516 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndhlovu, G.Z.; Woyessa, Y.E. Streamflow Analysis in Data-Scarce Kabompo River Basin, Southern Africa, for the Potential of Small Hydropower Projects under Changing Climate. Hydrology 2022, 9, 149. https://doi.org/10.3390/hydrology9080149
Ndhlovu GZ, Woyessa YE. Streamflow Analysis in Data-Scarce Kabompo River Basin, Southern Africa, for the Potential of Small Hydropower Projects under Changing Climate. Hydrology. 2022; 9(8):149. https://doi.org/10.3390/hydrology9080149
Chicago/Turabian StyleNdhlovu, George Z., and Yali E. Woyessa. 2022. "Streamflow Analysis in Data-Scarce Kabompo River Basin, Southern Africa, for the Potential of Small Hydropower Projects under Changing Climate" Hydrology 9, no. 8: 149. https://doi.org/10.3390/hydrology9080149
APA StyleNdhlovu, G. Z., & Woyessa, Y. E. (2022). Streamflow Analysis in Data-Scarce Kabompo River Basin, Southern Africa, for the Potential of Small Hydropower Projects under Changing Climate. Hydrology, 9(8), 149. https://doi.org/10.3390/hydrology9080149