Deep Learning in Barrett’s Esophagus Diagnosis: Current Status and Future Directions
Abstract
:1. Introduction
2. Application of Deep Learning to Assist Endoscopic Diagnosis
3. Applications of Deep Learning to Assist Pathological Diagnosis
4. Applications of Deep Learning to Assist Other Diagnostic Methods
5. Public Databases and Model Evaluation Metrics
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dent, J. Barrett’s Esophagus: A Historical Perspective, an Update on Core Practicalities and Predictions on Future Evolutions of Management. J. Gastroenterol. Hepatol. 2011, 26, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Lagergren, J.; Lagergren, P. Oesophageal Cancer. BMJ 2010, 341, c6280. [Google Scholar] [CrossRef] [PubMed]
- Hvid-Jensen, F.; Pedersen, L.; Drewes, A.M.; Sørensen, H.T.; Funch-Jensen, P. Incidence of Adenocarcinoma among Patients with Barrett’s Esophagus. N. Engl. J. Med. 2011, 365, 1375–1383. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.; Coleman, H.G.; Yousef, F.; Johnston, B.T.; McManus, D.T.; Gavin, A.T.; Murray, L.J. Risk of Malignant Progression in Barrett’s Esophagus Patients: Results from a Large Population-Based Study. J. Natl. Cancer Inst. 2011, 103, 1049–1057. [Google Scholar] [CrossRef]
- Pohl, H.; Sirovich, B.; Welch, H.G. Esophageal Adenocarcinoma Incidence: Are We Reaching the Peak? Cancer Epidemiol. Biomark. Prev. 2010, 19, 1468–1470. [Google Scholar] [CrossRef] [PubMed]
- Rice, T.W.; Ishwaran, H.; Hofstetter, W.L.; Kelsen, D.P.; Apperson-Hansen, C.; Blackstone, E.H.; Worldwide Esophageal Cancer Collaboration Investigators. Recommendations for Pathologic Staging (pTNM) of Cancer of the Esophagus and Esophagogastric Junction for the 8th Edition AJCC/UICC Staging Manuals. Dis. Esophagus 2016, 29, 897–905. [Google Scholar] [CrossRef]
- Ishihara, R.; Takeuchi, Y.; Chatani, R.; Kidu, T.; Inoue, T.; Hanaoka, N.; Yamamoto, S.; Higashino, K.; Uedo, N.; Iishi, H.; et al. Prospective Evaluation of Narrow-Band Imaging Endoscopy for Screening of Esophageal Squamous Mucosal High-Grade Neoplasia in Experienced and Less Experienced Endoscopists. Dis. Esophagus 2010, 23, 480–486. [Google Scholar] [CrossRef]
- di Pietro, M.; Canto, M.I.; Fitzgerald, R.C. Endoscopic Management of Early Adenocarcinoma and Squamous Cell Carcinoma of the Esophagus: Screening, Diagnosis, and Therapy. Gastroenterology 2018, 154, 421–436. [Google Scholar] [CrossRef]
- Abrams, J.A.; Kapel, R.C.; Lindberg, G.M.; Saboorian, M.H.; Genta, R.M.; Neugut, A.I.; Lightdale, C.J. Adherence to Biopsy Guidelines for Barrett’s Esophagus Surveillance in the Community Setting in the United States. Clin. Gastroenterol. Hepatol. 2009, 7, 736–742, quiz 710. [Google Scholar] [CrossRef]
- Sharma, P.; Brill, J.; Canto, M.; DeMarco, D.; Fennerty, B.; Gupta, N.; Laine, L.; Lieberman, D.; Lightdale, C.; Montgomery, E.; et al. White Paper AGA: Advanced Imaging in Barrett’s Esophagus. Clin. Gastroenterol. Hepatol. 2015, 13, 2209–2218. [Google Scholar] [CrossRef]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Hop, P.; Allgood, B.; Yu, J. Geometric Deep Learning Autonomously Learns Chemical Features That Outperform Those Engineered by Domain Experts. Mol. Pharm. 2018, 15, 4371–4377. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.-P.; Samala, R.K.; Hadjiiski, L.M.; Zhou, C. Deep Learning in Medical Image Analysis. Adv. Exp. Med. Biol. 2020, 1213, 3–21. [Google Scholar] [CrossRef]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A Guide to Deep Learning in Healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef]
- Hong, J.; Park, B.-Y.; Park, H. Convolutional Neural Network Classifier for Distinguishing Barrett’s Esophagus and Neoplasia Endomicroscopy Images. In Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017; Volume 2017, pp. 2892–2895. [Google Scholar] [CrossRef]
- de Groof, J.; van der Putten, J.; van der Sommen, F.; Zinger, S.; Curvers, W.; Bisschops, R.; Pech, O.; Meining, A.; Neuhaus, H.; Schoon, E.J.; et al. The argos project: Evaluation of results of a clinically-inspired algorithm vs. A deep learning algorithm for the detection and delineation of barrett’s neoplasia. Gastroenterology 2018, 154, S-1368. [Google Scholar] [CrossRef]
- Ebigbo, A.; Mendel, R.; Probst, A.; Manzeneder, J.; De Souza, L.A.; Papa, J.P.; Palm, C.; Messmann, H. Computer-Aided Diagnosis Using Deep Learning in the Evaluation of Early Oesophageal Adenocarcinoma. Gut 2019, 68, 1143–1145. [Google Scholar] [CrossRef]
- Passos, L.A.; de Souza, L.A.; Mendel, R.; Ebigbo, A.; Probst, A.; Messmann, H.; Palm, C.; Papa, J.P. Barrett’s Esophagus Analysis Using Infinity Restricted Boltzmann Machines. J. Vis. Commun. Image Represent. 2019, 59, 475–485. [Google Scholar] [CrossRef]
- van der Putten, J.; de Groof, J.; van der Sommen, F.; Struyvenberg, M.; Zinger, S.; Curvers, W.; Schoon, E.; Bergman, J.; de With, P.H.N. Informative Frame Classification of Endoscopic Videos Using Convolutional Neural Networks and Hidden Markov Models. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2017; IEEE: New York, NY, USA, 2019; pp. 380–384. [Google Scholar]
- Putten, J.V.D.; Bergman, J.; De With, P.H.N.; Wildeboer, R.; Groof, J.D.; Sloun, R.V.; Struyvenberg, M.; Sommen, F.V.D.; Zinger, S.; Curvers, W.; et al. Deep Learning Biopsy Marking of Early Neoplasia in Barrett’s Esophagus by Combining WLE and BLI Modalities. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1127–1131. [Google Scholar]
- Ghatwary, N.; Zolgharni, M.; Ye, X. Early Esophageal Adenocarcinoma Detection Using Deep Learning Methods. Int. J. CARS 2019, 14, 611–621. [Google Scholar] [CrossRef]
- Van Der Putten, J.; Struyvenberg, M.; De Groof, J.; Curvers, W.; Schoon, E.; Baldaque-Silva, F.; Bergman, J.; Van Der Sommen, F.; De With, P.H.N. Endoscopy-Driven Pretraining for Classification of Dysplasia in Barrett’s Esophagus with Endoscopic Narrow-Band Imaging Zoom Videos. Appl. Sci. 2020, 10, 3407. [Google Scholar] [CrossRef]
- De Souza, L.A.; Passos, L.A.; Mendel, R.; Ebigbo, A.; Probst, A.; Messmann, H.; Palm, C.; Papa, J.P. Assisting Barrett’s Esophagus Identification Using Endoscopic Data Augmentation Based on Generative Adversarial Networks. Comput. Biol. Med. 2020, 126, 104029. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Hua, J.; Wu, Z.; Meng, T.; Sun, M.; Huang, P.; He, X.; Sun, W.; Li, X.; Chen, Y. Automatic Classification of Esophageal Lesions in Endoscopic Images Using a Convolutional Neural Network. Ann. Transl. Med. 2020, 8, 486. [Google Scholar] [CrossRef] [PubMed]
- De Groof, A.J.; Struyvenberg, M.R.; Fockens, K.N.; Van Der Putten, J.; Van Der Sommen, F.; Boers, T.G.; Zinger, S.; Bisschops, R.; De With, P.H.; Pouw, R.E.; et al. Deep Learning Algorithm Detection of Barrett’s Neoplasia with High Accuracy during Live Endoscopic Procedures: A Pilot Study (with Video). Gastrointest. Endosc. 2020, 91, 1242–1250. [Google Scholar] [CrossRef] [PubMed]
- Van Der Putten, J.; De Groof, J.; Struyvenberg, M.; Boers, T.; Fockens, K.; Curvers, W.; Schoon, E.; Bergman, J.; Van Der Sommen, F.; De With, P.H.N. Multi-Stage Domain-Specific Pretraining for Improved Detection and Localization of Barrett’s Neoplasia: A Comprehensive Clinically Validated Study. Artif. Intell. Med. 2020, 107, 101914. [Google Scholar] [CrossRef] [PubMed]
- Pulido, J.V.; Guleriai, S.; Ehsan, L.; Shah, T.; Syed, S.; Brown, D.E. Screening for Barrett’s Esophagus with Probe-Based Confocal Laser Endomicroscopy Videos. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1659–1663. [Google Scholar]
- Struyvenberg, M.R.; De Groof, A.J.; Van Der Putten, J.; Van Der Sommen, F.; Baldaque-Silva, F.; Omae, M.; Pouw, R.; Bisschops, R.; Vieth, M.; Schoon, E.J.; et al. A Computer-Assisted Algorithm for Narrow-Band Imaging-Based Tissue Characterization in Barrett’s Esophagus. Gastrointest. Endosc. 2021, 93, 89–98. [Google Scholar] [CrossRef]
- Pan, W.; Li, X.; Wang, W.; Zhou, L.; Wu, J.; Ren, T.; Liu, C.; Lv, M.; Su, S.; Tang, Y. Identification of Barrett’s Esophagus in Endoscopic Images Using Deep Learning. BMC Gastroenterol. 2021, 21, 479. [Google Scholar] [CrossRef]
- Hou, W.; Wang, L.; Cai, S.; Lin, Z.; Yu, R.; Qin, J. Early Neoplasia Identification in Barrett’s Esophagus via Attentive Hierarchical Aggregation and Self-Distillation. Med. Image Anal. 2021, 72, 102092. [Google Scholar] [CrossRef]
- Ali, S.; Bailey, A.; Ash, S.; Haghighat, M.; Leedham, S.J.; Lu, X.; East, J.E.; Rittscher, J.; Braden, B.; Allan, P.; et al. A Pilot Study on Automatic Three-Dimensional Quantification of Barrett’s Esophagus for Risk Stratification and Therapy Monitoring. Gastroenterology 2021, 161, 865–878.e8. [Google Scholar] [CrossRef]
- De Souza, L.A.; Mendel, R.; Strasser, S.; Ebigbo, A.; Probst, A.; Messmann, H.; Papa, J.P.; Palm, C. Convolutional Neural Networks for the Evaluation of Cancer in Barrett’s Esophagus: Explainable AI to Lighten up the Black-Box. Comput. Biol. Med. 2021, 135, 104578. [Google Scholar] [CrossRef]
- Kusters, C.H.J.; Boers, T.G.W.; Jukema, J.B.; Jong, M.R.; Fockens, K.N.; De Groof, A.J.; Bergman, J.J.; Der Sommen, F.V.; De With, P.H.N. A CAD System for Real-Time Characterization of Neoplasia in Barrett’s Esophagus NBI Videos. In Cancer Prevention Through Early Detection; Lecture Notes in Computer, Science; Ali, S., Van Der Sommen, F., Papież, B.W., Van Eijnatten, M., Jin, Y., Kolenbrander, I., Eds.; Springer Nature: Cham, Switzerland, 2022; Volume 13581, pp. 89–98. ISBN 978-3-031-17978-5. [Google Scholar]
- Kumar, A.C.; Mubarak, D.M.N. Classification of Early Stages of Esophageal Cancer Using Transfer Learning. IRBM 2022, 43, 251–258. [Google Scholar] [CrossRef]
- Villagrana-Bañuelos, K.E.; Alcalá-Rmz, V.; Celaya-Padilla, J.M.; Galván-Tejada, J.I.; Gamboa-Rosales, H.; Galván-Tejada, C.E. towards Esophagitis and Barret’s Esophagus Endoscopic Images Classification: An Approach with Deep Learning Techniques. In Proceedings of the International Conference on Ubiquitous Computing & Ambient. Intelligence (UCAmI 2022); Lecture Notes in Networks and Systems; Bravo, J., Ochoa, S., Favela, J., Eds.; Springer International Publishing: Cham, Switzerland, 2023; Volume 594, pp. 169–180. ISBN 978-3-031-21332-8. [Google Scholar]
- Herrero, L.A.; Curvers, W.L.; Bansal, A.; Wani, S.; Kara, M.; Schenk, E.; Schoon, E.J.; Lynch, C.R.; Rastogi, A.; Pondugula, K.; et al. Zooming in on Barrett Oesophagus Using Narrow-Band Imaging: An International Observer Agreement Study. Eur. J. Gastroenterol. Hepatol. 2009, 21, 1068. [Google Scholar] [CrossRef] [PubMed]
- Baldaque-Silva, F.; Marques, M.; Lunet, N.; Themudo, G.; Goda, K.; Toth, E.; Soares, J.; Bastos, P.; Ramalho, R.; Pereira, P.; et al. Endoscopic Assessment and Grading of Barrett’s Esophagus Using Magnification Endoscopy and Narrow Band Imaging: Impact of Structured Learning and Experience on the Accuracy of the Amsterdam Classification System. Scand. J. Gastroenterol. 2013, 48, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Nogales, O.; Caballero-Marcos, A.; Clemente-Sánchez, A.; García-Lledó, J.; Pérez-Carazo, L.; Merino, B.; Carbonell, C.; López-Ibáñez, M.; González-Asanza, C. Usefulness of Non-Magnifying Narrow Band Imaging in EVIS EXERA III Video Systems and High-Definition Endoscopes to Diagnose Dysplasia in Barrett’s Esophagus Using the Barrett International NBI Group (BING) Classification. Dig. Dis. Sci. 2017, 62, 2840–2846. [Google Scholar] [CrossRef] [PubMed]
- Kara, M.A.; Ennahachi, M.; Fockens, P.; ten Kate, F.J.W.; Bergman, J.J.G.H.M. Detection and Classification of the Mucosal and Vascular Patterns (Mucosal Morphology) in Barrett’s Esophagus by Using Narrow Band Imaging. Gastrointest. Endosc. 2006, 64, 155–166. [Google Scholar] [CrossRef]
- Shaheen, N.J.; Falk, G.W.; Iyer, P.G.; Gerson, L.B. ACG Clinical Guideline: Diagnosis and Management of Barrett’s Esophagus. Off. J. Am. Coll. Gastroenterol. ACG 2016, 111, 30. [Google Scholar] [CrossRef]
- Belghazi, K.; Bergman, J.; Pouw, R.E. Endoscopic Resection and Radiofrequency Ablation for Early Esophageal Neoplasia. Dig. Dis. 2016, 34, 469–475. [Google Scholar] [CrossRef]
- Bera, K.; Schalper, K.A.; Rimm, D.L.; Velcheti, V.; Madabhushi, A. Artificial Intelligence in Digital Pathology—New Tools for Diagnosis and Precision Oncology. Nat. Rev. Clin. Oncol. 2019, 16, 703–715. [Google Scholar] [CrossRef]
- Reis-Filho, J.S.; Kather, J.N. Overcoming the Challenges to Implementation of Artificial Intelligence in Pathology. J. Natl. Cancer Inst. 2023, 115, 608–612. [Google Scholar] [CrossRef]
- Zuraw, A.; Aeffner, F. Whole-Slide Imaging, Tissue Image Analysis, and Artificial Intelligence in Veterinary Pathology: An Updated Introduction and Review. Vet. Pathol. 2022, 59, 6–25. [Google Scholar] [CrossRef]
- Niazi, M.K.K.; Parwani, A.V.; Gurcan, M.N. Digital Pathology and Artificial Intelligence. Lancet Oncol. 2019, 20, e253–e261. [Google Scholar] [CrossRef]
- Kim, I.; Kang, K.; Song, Y.; Kim, T.-J. Application of Artificial Intelligence in Pathology: Trends and Challenges. Diagnostics 2022, 12, 2794. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yang, M.; Wang, S.; Li, X.; Sun, Y. Emerging Role of Deep Learning-Based Artificial Intelligence in Tumor Pathology. Cancer Commun. 2020, 40, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Baxi, V.; Edwards, R.; Montalto, M.; Saha, S. Digital Pathology and Artificial Intelligence in Translational Medicine and Clinical Practice. Mod. Pathol. 2022, 35, 23–32. [Google Scholar] [CrossRef]
- Cheng, J.Y.; Abel, J.T.; Balis, U.G.J.; McClintock, D.S.; Pantanowitz, L. Challenges in the Development, Deployment, and Regulation of Artificial Intelligence in Anatomic Pathology. Am. J. Pathol. 2021, 191, 1684–1692. [Google Scholar] [CrossRef] [PubMed]
- Tomita, N.; Abdollahi, B.; Wei, J.; Ren, B.; Suriawinata, A.; Hassanpour, S. Attention-Based Deep Neural Networks for Detection of Cancerous and Precancerous Esophagus Tissue on Histopathological Slides. JAMA Netw. Open 2019, 2, e1914645. [Google Scholar] [CrossRef]
- Sali, R.; Moradinasab, N.; Guleria, S.; Ehsan, L.; Fernandes, P.; Shah, T.U.; Syed, S.; Brown, D.E. Deep Learning for Whole-Slide Tissue Histopathology Classification: A Comparative Study in the Identification of Dysplastic and Non-Dysplastic Barrett’s Esophagus. JPM 2020, 10, 141. [Google Scholar] [CrossRef]
- Law, J.; Paulson, T.G.; Sanchez, C.A.; Galipeau, P.C.; Jansen, M.; Stachler, M.D.; Maley, C.C.; Yuan, Y. Wisdom of the Crowd for Early Detection in Barrett’s Esophagus. In Proceedings of the 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Nice, France, 13 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 531–535. [Google Scholar]
- Codipilly, D.C.; Vogelsang, D.; Agarwal, S.; Dhaliwal, L.; Johnson, M.L.; Lansing, R.; Hagen, C.E.; Lewis, J.T.; Leggett, C.L.; Katzka, D.A.; et al. ID: 3524488 Utilization of a Deep Learning Artificial Intelligence Model in the Histologic Diagnosis of Dysplasia in Barrett’s Esophagus. Gastrointest. Endosc. 2021, 93, AB288–AB289. [Google Scholar] [CrossRef]
- Beuque, M.; Martin-Lorenzo, M.; Balluff, B.; Woodruff, H.C.; Lucas, M.; De Bruin, D.M.; Van Timmeren, J.E.; de Boer, O.J.; Heeren, R.M.; Meijer, S.L.; et al. Machine Learning for Grading and Prognosis of Esophageal Dysplasia Using Mass Spectrometry and Histological Imaging. Comput. Biol. Med. 2021, 138, 104918. [Google Scholar] [CrossRef]
- Faghani, S.; Codipilly, D.C.; Vogelsang, D.; Moassefi, M.; Rouzrokh, P.; Khosravi, B.; Agarwal, S.; Dhaliwal, L.; Katzka, D.A.; Hagen, C.; et al. Development of a Deep Learning Model for the Histologic Diagnosis of Dysplasia in Barrett’s Esophagus. Gastrointest. Endosc. 2022, 96, 918–925.e3. [Google Scholar] [CrossRef]
- Guleria, S.; Shah, T.U.; Pulido, J.V.; Fasullo, M.; Ehsan, L.; Lippman, R.; Sali, R.; Mutha, P.; Cheng, L.; Brown, D.E.; et al. Deep Learning Systems Detect Dysplasia with Human-like Accuracy Using Histopathology and Probe-Based Confocal Laser Endomicroscopy. Sci. Rep. 2021, 11, 5086. [Google Scholar] [CrossRef]
- Singh, T.; Sanghi, V.; Thota, P.N. Current Management of Barrett Esophagus and Esophageal Adenocarcinoma. Clevel. Clin. J. Med. 2019, 86, 724–732. [Google Scholar] [CrossRef]
- Chen, F.; Zhuang, X.; Lin, L.; Yu, P.; Wang, Y.; Shi, Y.; Hu, G.; Sun, Y. New Horizons in Tumor Microenvironment Biology: Challenges and Opportunities. BMC Med. 2015, 13, 45. [Google Scholar] [CrossRef] [PubMed]
- AbdulJabbar, K.; Raza, S.E.A.; Rosenthal, R.; Jamal-Hanjani, M.; Veeriah, S.; Akarca, A.; Lund, T.; Moore, D.A.; Salgado, R.; Al Bakir, M.; et al. Geospatial Immune Variability Illuminates Differential Evolution of Lung Adenocarcinoma. Nat. Med. 2020, 26, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Odze, R.D. Diagnosis and Grading of Dysplasia in Barrett’s Oesophagus. J. Clin. Pathol. 2006, 59, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Gonzalo, N.; Tearney, G.J.; Serruys, P.W.; van Soest, G.; Okamura, T.; García-García, H.M.; Jan van Geuns, R.; van der Ent, M.; Ligthart, J.; Bouma, B.E.; et al. Second-Generation Optical Coherence Tomography in Clinical Practice. High-Speed Data Acquisition Is Highly Reproducible in Patients Undergoing Percutaneous Coronary Intervention. Rev. Española Cardiol. 2010, 63, 893–903. [Google Scholar] [CrossRef]
- Fonolla, R.; Scheeve, T.; Struyvenberg, M.R.; Curvers, W.L.; de Groof, A.J.; van der Sommen, F.; Schoon, E.J.; Bergman, J.J.G.H.M.; de With, P.H.N. Ensemble of Deep Convolutional Neural Networks for Classification of Early Barrett’s Neoplasia Using Volumetric Laser Endomicroscopy. Appl. Sci. 2019, 9, 2183. [Google Scholar] [CrossRef]
- Van Der Putten, J.; Struyvenberg, M.; De Groof, J.; Scheeve, T.; Curvers, W.; Schoon, E.; Bergman, J.J.G.H.M.; De With, P.H.N.; Van Der Sommen, F. Deep Principal Dimension Encoding for the Classification of Early Neoplasia in Barrett’s Esophagus with Volumetric Laser Endomicroscopy. Comput. Med. Imaging Graph. 2020, 80, 101701. [Google Scholar] [CrossRef]
- Yang, Z.; Soltanian-Zadeh, S.; Chu, K.K.; Zhang, H.; Moussa, L.; Watts, A.E.; Shaheen, N.J.; Wax, A.; Farsiu, S. Connectivity-Based Deep Learning Approach for Segmentation of the Epithelium in in Vivo Human Esophageal OCT Images. Biomed. Opt. Express 2021, 12, 6326. [Google Scholar] [CrossRef]
- Gehrung, M.; Crispin-Ortuzar, M.; Berman, A.G.; O’Donovan, M.; Fitzgerald, R.C.; Markowetz, F. Triage-Driven Diagnosis of Barrett’s Esophagus for Early Detection of Esophageal Adenocarcinoma Using Deep Learning. Nat. Med. 2021, 27, 833–841. [Google Scholar] [CrossRef]
- Waterhouse, D.J.; Januszewicz, W.; Ali, S.; Fitzgerald, R.C.; Di Pietro, M.; Bohndiek, S.E. Spectral Endoscopy Enhances Contrast for Neoplasia in Surveillance of Barrett’s Esophagus. Cancer Res. 2021, 81, 3415–3425. [Google Scholar] [CrossRef]
- Lu, G.; Fei, B. Medical Hyperspectral Imaging: A Review. J. Biomed. Opt. 2014, 19, 10901. [Google Scholar] [CrossRef] [PubMed]
- Halicek, M.; Fabelo, H.; Ortega, S.; Callico, G.M.; Fei, B. In-Vivo and Ex-Vivo Tissue Analysis through Hyperspectral Imaging Techniques: Revealing the Invisible Features of Cancer. Cancers 2019, 11, 756. [Google Scholar] [CrossRef] [PubMed]
- Barragán-Montero, A.; Javaid, U.; Valdés, G.; Nguyen, D.; Desbordes, P.; Macq, B.; Willems, S.; Vandewinckele, L.; Holmström, M.; Löfman, F.; et al. Artificial Intelligence and Machine Learning for Medical Imaging: A Technology Review. Phys. Med. 2021, 83, 242–256. [Google Scholar] [CrossRef] [PubMed]
- Handelman, G.S.; Kok, H.K.; Chandra, R.V.; Razavi, A.H.; Lee, M.J.; Asadi, H. eDoctor: Machine Learning and the Future of Medicine. J. Intern. Med. 2018, 284, 603–619. [Google Scholar] [CrossRef]
- Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2012; Volume 25. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep. Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2261–2269. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Liu, Z.; Wang, S.; Dong, D.; Wei, J.; Fang, C.; Zhou, X.; Sun, K.; Li, L.; Li, B.; Wang, M.; et al. The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. Theranostics 2019, 9, 1303–1322. [Google Scholar] [CrossRef]
- Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F.; et al. Artificial Intelligence in Cancer Imaging: Clinical Challenges and Applications. CA Cancer J. Clin. 2019, 69, 127–157. [Google Scholar] [CrossRef]
- Wu, S.; Roberts, K.; Datta, S.; Du, J.; Ji, Z.; Si, Y.; Soni, S.; Wang, Q.; Wei, Q.; Xiang, Y.; et al. Deep Learning in Clinical Natural Language Processing: A Methodical Review. J. Am. Med. Inform. Assoc. 2020, 27, 457–470. [Google Scholar] [CrossRef]
- Huang, S.; Yang, J.; Shen, N.; Xu, Q.; Zhao, Q. Artificial Intelligence in Lung Cancer Diagnosis and Prognosis: Current Application and Future Perspective. Semin. Cancer Biol. 2023, 89, 30–37. [Google Scholar] [CrossRef]
- Radak, M.; Lafta, H.Y.; Fallahi, H. Machine Learning and Deep Learning Techniques for Breast Cancer Diagnosis and Classification: A Comprehensive Review of Medical Imaging Studies. J. Cancer Res. Clin. 2023, 149, 10473–10491. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.; Sounderajah, V.; Martin, G.; Ting, D.S.W.; Karthikesalingam, A.; King, D.; Ashrafian, H.; Darzi, A. Diagnostic Accuracy of Deep Learning in Medical Imaging: A Systematic Review and Meta-Analysis. NPJ Digit. Med. 2021, 4, 65. [Google Scholar] [CrossRef] [PubMed]
- van der Velden, B.H.M.; Kuijf, H.J.; Gilhuijs, K.G.A.; Viergever, M.A. Explainable Artificial Intelligence (XAI) in Deep Learning-Based Medical Image Analysis. Med. Image Anal. 2022, 79, 102470. [Google Scholar] [CrossRef] [PubMed]
- Handelman, G.S.; Kok, H.K.; Chandra, R.V.; Razavi, A.H.; Huang, S.; Brooks, M.; Lee, M.J.; Asadi, H. Peering Into the Black Box of Artificial Intelligence: Evaluation Metrics of Machine Learning Methods. AJR Am. J. Roentgenol. 2019, 212, 38–43. [Google Scholar] [CrossRef]
Author | Year | Task | Dataset Size | Data Type | Methodology and Innovation | Model Architecture | Comparison with Experts | Result |
---|---|---|---|---|---|---|---|---|
Jisu, H. [16] | 2017 | Intestinal metaplasia vs. Gastric metaplasia vs. Neoplasia | 262 | Endoscopic images | Augmented Data, Iterations: 15,000, Batch: 20, Optimizer: Adaptive Subgradient, LR: 1 × 10−5, LR Decay: 1/10 per step | Traditional CNN | No | Accuracy: 80.77% |
de Groof, J. [17] | 2018 | BE boundary detection | 40 | Endoscopic images | NA | Inception v3 | Yes | Delineation scores: 47.5% |
Ebigbo, A. [18] | 2019 | BE vs. EAC | 248 | Endoscopic images | Leave-one-patient-out cross-validation, Augmented Patches from Endoscopic Images | ResNet | No | Sensitivities/specificities of 97%/88% (Augsburg data); Sensitivities/specificities of 92%/100% (MICCAI data) |
Passos, L.A. [19] | 2019 | BE vs. Others | 100 | Endoscopic images | Adopts 6 meta-heuristic technology optimization algorithms | Infinite restricted Boltzmann machines | No | MAX accuracy: 67% |
van der Putten, J. [20] | 2019 | Normal vs. BE | 86 | Endoscopic videos | Using a pre-trained deep learning model and the Hidden Markov Model to automatically classify endoscopic video frames as ‘informative’ or ‘non-informative’ | ResNet | No | Accuracy: 94% Sensitivity: 86% Specificity: 96% |
van der Putten, J. [21] | 2019 | NDBE vs. Neoplastic BE | 40 | Endoscopic images | Utilize two-stage training with differential learning rates to optimize transfer learning from ImageNet, and during post-processing, average predictions over multiple image transformations and define lesion areas based on a score threshold | ResNet | Yes | Accuracy: 98% Sensitivity: 100% Specificity: 95% |
Ghatwary, N. [22] | 2019 | BE vs. EAC | 100 | Endoscopic images | Utilize a range of deep learning-based object detection methods during modeling, including R-CNN, Fast R-CNN, Faster R-CNN, and SSD, to detect EAC | Single-shot multibox detector based on VGG | No | Sensitivity: 96% Specificity: 92% |
van der Putten, J. [23] | 2019 | NDBE vs. Dysplastic BE | Pre-training: 494,364 Two centers: 159 | Endoscopic images and videos | Use endoscopic imagery for pre-training and validate using four-fold subject-wise cross-validation | Encoder/ResNet | No | AUC: 0.91 |
de Souza, L.A., Jr. [24] | 2020 | BE vs. EAC | Public repository | Endoscopic images | Adopt patch- and image-based preprocessing strategies, apply data augmentation, and perform 20-fold cross-validation | CNN based on a generative adversarial network | No | Accuracy: 90% patch-based approach Accuracy: 85% image-based approach |
Liu, G. [25] | 2020 | Normal vs. Precancer vs. Cancer | 1272 | Endoscopic images | Contrast-enhanced esophageal images were used as input to the CNN and trained using data augmentation and a two-stream CNN algorithm, combining features of the original and pre-processed images | CNN with two subnetworks | No | Accuracy: 85.83% Sensitivity: 94.23% Specificity: 94.67% |
de Groof, A.J. [26] | 2020 | NDBE vs. Neoplastic BE | Pre-training: 494,364 Training: 1544 Test: 160 Application: 20 | Endoscopic images | Use a pre-trained large dataset to initialize the deep learning CAD system, then fine-tune with Barrett’s epithelium-specific images, employing a custom hybrid model for simultaneous image classification and segmentation | ResNet/U-Net | No | Accuracy: 90% Sensitivity: 91% Specificity: 89% |
van der Putten, J. [27] | 2020 | NDBE vs. Dysplastic BE | T1 pre-training: 494,355 T2 training: 1247 T3 validation: 297 T4 + T5 test: 160 | Endoscopic images | Developed a computer-aided classification and localization algorithm using a semi-supervised learning approach and optimized it through a multi-stage transfer learning strategy | U-Net/ResNet | Yes | Accuracy: 90% Sensitivity: 90% Specificity: 90% |
Pulido, J.V. [28] | 2020 | Normal vs. NDBE vs. Dysplastic BE/Cancer | 1057 | Endoscopic videos | The video classification model includes frame-level networks, pooling networks, and classifiers, using attention pooling technology to highlight the importance of each frame in video classification | AttnPooling/MultiAttnPooling | No | AttnPooling: sensitivity: 90%, specificity: 88% MultiAttnPooling: sensitivity: 92%, specificity: 84% |
Struyvenberg, M.R. [29] | 2021 | NDBE vs. Neoplastic BE | Pre-training: 494,364 Endoscopic images: 1247 NBI images: 183 NBI videos: 157 | Endoscopic images and videos | NBI is trained on still images and improves performance through automatic video analysis, taking the average prediction of all frames within the video | Resnet/U-Net | No | Image: sensitivity 88%, specificity 78% video: sensitivity 85%, specificity 83% |
Pan, W. [30] | 2021 | BE and normal tissue segmentation | 443 | Endoscopic images | Extract the feature map of the input image through a multi-layer convolutional network and achieve pixel-level semantic segmentation | FCN | No | Intersection over union: 0.56 (GEJ), 0.82 (SCJ) |
Hou, W. [31] | 2021 | BE: Cancer vs. No-cancer | 100 | Endoscopic images | Proposed a novel end-to-end network equipped with an attention hierarchical aggregation module and self-distillation mechanism | SE-ResNet50 | No | AUC: 0.9629 |
Ali, S. [32] | 2021 | Automatically quantify Barrett’s epithelium | 131 | Endoscopic images and videos | Automatically quantify Barrett’s epithelium and measure Barrett’s length and Barrett’s area | NA | No | Accuracy: 98.4% |
de Souza, L.A., Jr. [33] | 2021 | BE vs. EAC | 176 | Endoscopic images | Four convolutional neural network models were analyzed using five different interpretation techniques to compare their consistency with expert previous annotations of cancer tissue | AlexNet/SqueezeNet/ResNet/VGG | No | Explain the “black box” |
Kusters, C.H.J. [34] | 2022 | NDBE vs. Neoplastic BE | Images: 1748 Neoplastic BE, 1762 NDBE Videos: 90 Neoplastic BE, 194 NDBE | Endoscopic images and videos | Build an endoscope-driven, pre-trained deep learning-based model to characterize NBI images of BE and evaluate the algorithm’s performance on images and videos | EfficientNet-b4 | No | AUC: 0.985 |
Kumar, A.C. [35] | 2022 | Esophagitis vs. BE | 1663 | Endoscopic images | Try as many model frameworks and classifier combinations as possible to find the optimal model | 5 CNN structures and 6 classifiers | No | MAX AUC: 0.962 |
Villagrana-Banuelos, K.E. [36] | 2022 | Esophagitis vs. BE | 1561 | Endoscopic images | In order to classify into classes, MiniVGGNet was implemented, and after experimentation, it was tested every 50 epochs until reaching 500 | VGG | No | Normal: AUC: 0.95 BE: AUC: 0.96 Esophagitis-a: AUC: 0.86 Esophagitis-b-d: AUC: 0.83 |
Author | Year | Task | Dataset Size | Data Type | Methodology and Innovation | Model Architecture | Comparison with Experts | Result |
---|---|---|---|---|---|---|---|---|
Tomita, N. [51] | 2019 | Normal vs. NDBE vs. Dysplastic BE vs. EAC | 123 | Pathological images | A two-step attention model is proposed to extract features from high-resolution images and apply the attention mechanism for classification | CNN with attention | No | Noraml AUC: 0.751 NDBE AUC: 0.897 Dysplastic BE AUC: 0.817 EAC AUC: 0.795 |
Sali, R. [52] | 2020 | Normal vs. NDBE vs. Dysplastic BE | 387 | Pathological images | Compare the impact of fully supervised, weakly supervised, and unsupervised learning methods on the model | ResNet | No | MAX accuracy: 95.2% |
Law, J. [53] | 2021 | Cell sorting | Multiple public datasets | Pathological images | An improved U-Net cell detection network is proposed, using SE(2,N) group convolution to enhance rotation invariance and optimize training | SE2-U-Net | No | Sensitivity: 92.8% F1 score 0.907 |
Codipilly, D.C. [54] | 2021 | NDBE vs. LGD vs. HGD | 587 | Pathological images | NA | ResNet | No | NDBE: sensitivity: 93%, specificity: 100% LGD: sensitivity: 99.2%, specificity: 95.3% HGD: sensitivity: 100%, specificity: 99.5% |
Beuque, M. [55] | 2021 | Task 1: epithelial vs. stroma Task 2: dysplastic grade Task 3: progression of dysplasia | 57 | Pathological images mass spectrometry images (MSI) | MSI’s spatially resolved molecular data and H&E staining data are combined to achieve complementary lesion classification and severity grading | Grid searches + ensemble learning Convolutional Block Attention Module with Resnet50 | No | Task 1: AUC 0.89 (MSI), 0.95 (H&E) Task 2: AUC 0.97 (MSI), 0.85 (H&E) Task 3: accuracy of 72% (MSI) and 48% (H&E) |
Faghani, S. [56] | 2022 | NDBE vs. LGD vs. HGD | 542 | Pathological images | Whole-slide images are converted into tiles, detected using YOLO v5, then processed using a classifier model, and the results of the two models are combined | YOLO recognition and segmentation ResNet101 classification | No | NDBE F1 score: 0.91 LGD F1 score: 0.90 HGD F1 score: 1.0 |
Guleria, S. [57] | 2021 | Normal vs. NDBE vs. Dysplasia/cancer | 1970 pCLE videos 897,931 biopsy patches 387 whole-slide images | PCLE endoscopic pathology images and videos | Images and videos were modeled simultaneously | NA | No | pCLE analysis: accuracy: 90% Biopsies at the patch level: accuracy: 90% Whole-slide-image-level accuracy: 94% |
Author | Year | Task | Dataset Size | Data Type | Methodology and Innovation | Model Architecture | Comparison with Experts | Result |
---|---|---|---|---|---|---|---|---|
Fonollà, R. [63] | 2019 | NDBE vs. HGD | 7191 | Volumetric laser endomicroscopy images | Using FusionNet for VLE segmentation, features were extracted by layer histograms and gland statistics, and the model was fine-tuned with adaptive learning, data augmentation, and balanced classes | VGG-16 | No | AUC: 0.96 |
van der Putten, J. [64] | 2020 | NDBE vs. HGD | 140 | Volumetric laser endomicroscopy images | Principal dimension encoding for VLE data is proposed, which effectively utilizes a priori information about the importance of dimensions in the image to create a lower-dimensional feature space | FusionNet/DenseNet | No | AUC: 0.93 |
Yang, Z. [65] | 2021 | Segmentation of tissue epithelium | 30 | OCT images | Proposed a bilateral connectivity-based neural network for in vivo human esophageal OCT layer segmentation | CE-Net (Bicon-CE) | No | Evaluate through the dice coefficient |
Gehrung, M. [66] | 2021 | Normal vs. BE | 4662 | Picture of a pathological section of exfoliated cells | Proposed a classification-driven approach to analyze samples tested by Cytosponge-TFF3 | VGG-16 | Yes | AUC: 0.88 |
Waterhouse, D.J. [67] | 2021 | NDBE vs. EAC | 715 | Spectral signal | Endoscopic spectral imaging extracts vascular properties in Barrett’s esophagus to achieve high contrast | Traditional CNN | No | Sensitivity: 83.7% Specificity: 85.5% |
Author | Task | Data Type | Model Performance | Expert Performance |
---|---|---|---|---|
de Groof, J. [17] | BE boundary detection | Endoscopic images | Delineation scores: 35% | Delineation scores: 69% |
van der Putten, J. [21] | NDBE vs. Neoplastic BE | Endoscopic images | Accuracy: 98% Sensitivity: 100% Specificity: 95% | NA |
van der Putten, J. [27] | NDBE vs. Dysplastic BE | Endoscopic images | Accuracy: 87.5% Sensitivity: 92.5% Specificity: 82.5% | Accuracy: 73.0% Sensitivity: 71.8% Specificity: 74.3% |
Gehrung, M. [66] | Normal vs. BE | Picture of a pathological section of exfoliated cells | Sensitivity: 72.62% Specificity: 93.13% AUC: 0.88 | Sensitivity: 81.7% Specificity: 92.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, R.; Wang, L.; Lin, L.; Li, J.; Lu, R.; Liu, S.; Liu, B.; Gu, Y.; Zhang, H.; Shang, Q.; et al. Deep Learning in Barrett’s Esophagus Diagnosis: Current Status and Future Directions. Bioengineering 2023, 10, 1239. https://doi.org/10.3390/bioengineering10111239
Cui R, Wang L, Lin L, Li J, Lu R, Liu S, Liu B, Gu Y, Zhang H, Shang Q, et al. Deep Learning in Barrett’s Esophagus Diagnosis: Current Status and Future Directions. Bioengineering. 2023; 10(11):1239. https://doi.org/10.3390/bioengineering10111239
Chicago/Turabian StyleCui, Ruichen, Lei Wang, Lin Lin, Jie Li, Runda Lu, Shixiang Liu, Bowei Liu, Yimin Gu, Hanlu Zhang, Qixin Shang, and et al. 2023. "Deep Learning in Barrett’s Esophagus Diagnosis: Current Status and Future Directions" Bioengineering 10, no. 11: 1239. https://doi.org/10.3390/bioengineering10111239
APA StyleCui, R., Wang, L., Lin, L., Li, J., Lu, R., Liu, S., Liu, B., Gu, Y., Zhang, H., Shang, Q., Chen, L., & Tian, D. (2023). Deep Learning in Barrett’s Esophagus Diagnosis: Current Status and Future Directions. Bioengineering, 10(11), 1239. https://doi.org/10.3390/bioengineering10111239