Virtual Dental Articulation Using Computed Tomography Data and Motion Tracking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Modeling of Virtual Articulation
2.2. Virtual Facebow Transfer
2.3. CT Imaging
2.4. Tracking of Patient-Specific Jaw Movement
2.5. Verification Method
3. Results
3.1. Registration of Jaws to the Articulation Coordinate System
3.2. Motion Tracking of Upper and Lower Jaws
3.3. Simulation of Virtual Articulation
3.4. Personalized Condylar Path
- The points on the condylar path of the protrusion process were projected onto the sagittal plane and fitted with a quadratic curve, which contains the personalized condyle shape and condylar inclination;
- At the same time, the condylar path on the working side was projected onto the horizontal plane and fitted with a straight line. This linear trajectory represents the movement of the condyle during lateral motion on the working side, corresponding to the Bennett angle of the articulation, as shown in Figure 10;
- The curve equations of these two two-dimensional planes can be combined into a three-dimensional curve in space, as shown in Equation (18).
3.5. Verification and Analysis of the Jaw Movement
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alzahrani, S.J.; Hajjaj, M.S.; Azhari, A.A.; Ahmed, W.M.; Yeslam, H.E.; Carvalho, R.M. Mechanical Properties of Three-Dimensional Printed Provisional Resin Materials for Crown and Fixed Dental Prosthesis: A Systematic Review. Bioengineering 2023, 10, 663. [Google Scholar] [CrossRef] [PubMed]
- Misch, C.E. Principles for abutment and prosthetic screws and screw-retained components and prostheses. In Dental Implant Prosthetics; Elsevier: Amsterdam, The Netherlands, 2015; pp. 724–752. [Google Scholar]
- Eaton, K.A. The development of digital dentistry in the UK: An overview. Prim. Dent. J. 2022, 11, 94–98. [Google Scholar] [CrossRef] [PubMed]
- De Vos, W.; Casselman, J.; Swennen, G. Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: A systematic review of the literature. Int. J. Oral Maxillofac. Surg. 2009, 38, 609–625. [Google Scholar] [CrossRef] [PubMed]
- Christopoulou, I.; Kaklamanos, E.G.; Makrygiannakis, M.A.; Bitsanis, I.; Perlea, P.; Tsolakis, A.I. Intraoral scanners in Orthodontics: A critical review. Int. J. Environ. Res. Public Health 2022, 19, 1407. [Google Scholar] [CrossRef] [PubMed]
- Presotto, A.G.C.; Bhering, C.L.B.; Mesquita, M.F.; Barão, V.A.R. Marginal fit and photoelastic stress analysis of CAD-CAM and overcast 3-unit implant-supported frameworks. J. Prosthet. Dent. 2017, 117, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Chiu, A.; Chen, Y.-W.; Hayashi, J.; Sadr, A. Accuracy of CAD/CAM digital impressions with different intraoral scanner parameters. Sensors 2020, 20, 1157. [Google Scholar] [CrossRef]
- Beuer, F.; Schweiger, J.; Edelhoff, D. Digital dentistry: An overview of recent developments for CAD/CAM generated restorations. Br. Dent. J. 2008, 204, 505–511. [Google Scholar] [CrossRef]
- Dawood, A.; Marti, B.M.; Sauret-Jackson, V.; Darwood, A. 3D printing in dentistry. Br. Dent. J. 2015, 219, 521–529. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, W.; Li, P. 3D Printing and Its Current Status of Application in Obstetrics and Gynecological Diseases. Bioengineering 2023, 10, 299. [Google Scholar] [CrossRef]
- Starcke, E.N. The history of articulators: Early attempts to reproduce mandibular movement. J. Prosthodont. 2000, 9, 51–56. [Google Scholar] [CrossRef]
- Gillis, R.R. Articulator development and the importance of observing the condyle paths in full denture prosthesis. J. Am. Dent. Assoc. (1922) 1926, 13, 3–25. [Google Scholar] [CrossRef]
- Starcke, E.N. The history of articulators: From facebows to the gnathograph, a brief history of early devices developed for recording condylar movement: Part II. J. Prosthodont. 2002, 11, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Starcke, E.N.; Engelmeier, R.L.; Belles, D.M. The history of articulators: The “Articulator Wars” phenomenon with some circumstances leading up to it. J. Prosthodont. 2010, 19, 321–333. [Google Scholar] [CrossRef]
- Szentpétery, A. Computer aided dynamic correction of digitized occlusal surfaces. J. Gnathol. 1997, 16, 53–60. [Google Scholar]
- Gärtner, C.; Kordass, B. The virtual articulator: Development and evaluation. Int. J. Comput. Dent. 2003, 6, 11–24. [Google Scholar] [PubMed]
- Prinz, J. The cybermouse: A simple method of describing the trajectory of the human mandible in three dimensions. J. Biomech. 1997, 30, 643–645. [Google Scholar] [CrossRef]
- Santos, I.C.; Tavares, J.M.R.; Mendes, J.G.; Paulo, M.P. Acquisition and analysis of 3D mandibular movement using a device based on electromagnetic sensors and a neural network. J. Med. Eng. Technol. 2009, 33, 437–441. [Google Scholar] [CrossRef]
- Pinheiro, A.; Pereira, A.; Andrade, A.; Bellomo, D. Measurement of jaw motion: The proposal of a simple and accurate method. J. Med. Eng. Technol. 2011, 35, 125–133. [Google Scholar] [CrossRef]
- Bapelle, M.; Dubromez, J.; Savoldelli, C.; Tillier, Y.; Ehrmann, E. Modjaw® device: Analysis of mandibular kinematics recorded for a group of asymptomatic subjects. Cranio® 2021. [Google Scholar] [CrossRef]
- Li, W.; Li, L.; Wang, Y.; Sun, Y.; Xie, Q. Accuracy of recording edentulous arch relations using an optical jaw-tracking system: An in vitro study. Int J. Prosthodont. 2022, 35, 302–310. [Google Scholar] [CrossRef]
- Kwon, J.H.; Im, S.; Chang, M.; Kim, J.-E.; Shim, J.-S. A digital approach to dynamic jaw tracking using a target tracking system and a structured-light three-dimensional scanner. J. Prosthodont. Res. 2019, 63, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Lepidi, L.; Galli, M.; Mastrangelo, F.; Venezia, P.; Joda, T.; Wang, H.L.; Li, J. Virtual articulators and virtual mounting procedures: Where do we stand? J. Prosthodont. 2021, 30, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Yau, H.-T.; Liao, S.-W.; Chang, C.-H. Modeling of digital dental articulator and its accuracy verification using optical measurement. Comput. Methods Programs Biomed. 2020, 196, 105646. [Google Scholar] [CrossRef] [PubMed]
- Farias-Neto, A.; Dias, A.; de Miranda, B.; de Oliveira, A. Face-bow transfer in prosthodontics: A systematic review of the literature. J. Oral Rehabil. 2013, 40, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Nagy, W.W.; Goldstein, G.R. Facebow use in clinical prosthodontic practice. J. Prosthodont. 2019, 28, 772–774. [Google Scholar] [CrossRef]
- Koralakunte, P.R.; Aljanakh, M. The role of virtual articulator in prosthetic and restorative dentistry. J. Clin. Diagn. Res. 2014, 8, ZE25. [Google Scholar] [CrossRef]
- Obwegeser, H.; Farmand, M.; Al-Majali, F.; Engelke, W. Findings of mandibular movement and the position of the mandibular condyles during maximal mouth opening. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 1987, 63, 517–525. [Google Scholar] [CrossRef]
- Goldenberg, A.; Benhabib, B.; Fenton, R. A complete generalized solution to the inverse kinematics of robots. IEEE J. Robot. Autom. 1985, 1, 14–20. [Google Scholar] [CrossRef]
- Sahoo, S.; Singh, D.; Raghav, D.; Singh, G.; Sarin, A.; Kumar, P. Systematic assessment of the various controversies, difficulties, and current trends in the reestablishment of lost occlusal planes in edentulous patients. Ann. Med. Health Sci. Res. 2014, 4, 313–319. [Google Scholar]
- We, L. Marching cubes: A high resolution 3d surface construction algorithm. Comput. Graph 1987, 21, 163–169. [Google Scholar]
- Besl, P.J.; McKay, N.D. Method for registration of 3-D shapes. In Sensor Fusion IV: Control Paradigms and Data Structures; SPIE: Bellingham, WA, USA, 1992; pp. 586–606. [Google Scholar]
- Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A benchmark for the evaluation of RGB-D SLAM systems. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 573–580. [Google Scholar]
- Alt, H.; Godau, M. Computing the Fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl. 1995, 5, 75–91. [Google Scholar] [CrossRef]
- Eiter, T.; Mannila, H. Computing Discrete Fréchet Distance. 1994. Available online: http://www.kr.tuwien.ac.at/staff/eiter/et-archive/cdtr9464.pdf (accessed on 12 September 2023).
- Hangai, K.; Aridome, K.; Wang, C.-H.; Igarashi, Y. Clinical evaluation of semi-adjustable articulators: Reproducibility of sagittal condylar path inclination assessed by a jaw-tracking system with six degrees of freedom. Nihon Hotetsu Shika Gakkai Zasshi 2008, 52, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-H.; Cheng, C.-W.; Ye, S.-Y.; Chien, C.-H. A double blinded trial to compare the patient satisfaction and crown accuracy of two different intraoral scanners for the fabrication of monolithic lithium disilicate single crowns. J. Dent. Sci. 2023, 18, 1206–1211. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.-J.; Noh, K. Setting the sagittal condylar inclination on a virtual articulator by using a facial and intraoral scan of the protrusive interocclusal position: A dental technique. J. Prosthet. Dent. 2021, 125, 392–395. [Google Scholar] [CrossRef] [PubMed]
- Jairaj, A.; Agroya, P.; Tiwari, R.V.; Alqahtani, N.M.; Salkar, M.; Sagar, Y.P. Evolution of Articulators-Research and Review. Ann. Rom. Soc. Cell Biol. 2021, 25, 10665–10681. [Google Scholar]
- Gobbi, D.; Mousavi, P.; Li, K.; Xiang, J.; Campigotto, A.; LaPointe, A.; Fichtinger, G.; Abolmaesumi, P. Simulink libraries for visual programming of VTK and ITK. In Proceedings of the The MIDAS Journal-Systems and Architectures for Computer Assisted Interventions (MICCAI 2008 Workshop), New York, NY, USA, 6 September 2008. [Google Scholar]
- Teng, T.T.-Y.; Ko, E.W.-C.; Huang, C.S.; Chen, Y.-R. The Effect of early physiotherapy on the recovery of mandibular function after orthognathic surgery for Class III correction: Part I—Jaw-motion analysis. J. Cranio-Maxillofac. Surg. 2015, 43, 131–137. [Google Scholar] [CrossRef]
- Revilla-León, M.; Zeitler, J.M.; Gómez-Polo, M.; Kois, J.C. Utilizing additively manufactured custom devices to record mandibular motion by using optical jaw tracking systems: A dental technique. J. Prosthet. Dent. 2022, in press. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Larrivée, N.; Lee, A.; Bilaniuk, O.; Durand, R. Use of artificial intelligence in dentistry: Current clinical trends and research advances. J. Can. Dent. Assoc. 2021, 87, 1488–2159. [Google Scholar] [CrossRef]
- Rahman, H.; Bukht, T.F.N.; Imran, A.; Tariq, J.; Tu, S.; Alzahrani, A. A Deep Learning Approach for Liver and Tumor Segmentation in CT Images Using ResUNet. Bioengineering 2022, 9, 368. [Google Scholar] [CrossRef]
- Lo Giudice, A.; Ronsivalle, V.; Spampinato, C.; Leonardi, R. Fully automatic segmentation of the mandible based on convolutional neural networks (CNNs). Orthod. Craniofac. Res. 2021, 24, 100–107. [Google Scholar] [CrossRef]
- Vinayahalingam, S.; Berends, B.; Baan, F.; Moin, D.A.; van Luijn, R.; Bergé, S.; Xi, T. Deep learning for automated segmentation of the temporomandibular joint. J. Dent. 2023, 132, 104475. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Fang, Y.; Mei, L.; Zhang, B.; Yu, B.; Liu, J.; Jiang, C.; Sun, Y.; Ma, L.; Huang, J. A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images. Nat. Commun. 2022, 13, 2096. [Google Scholar] [CrossRef] [PubMed]
- Venezia, P.; Ronsivalle, V.; Rustico, L.; Barbato, E.; Leonardi, R.; Giudice, A.L. Accuracy of orthodontic models prototyped for clear aligners therapy: A 3D imaging analysis comparing different market segments 3D printing protocols. J. Dent. 2022, 124, 104212. [Google Scholar] [CrossRef] [PubMed]
- Lo Giudice, A.; Ronsivalle, V.; Rustico, L.; Aboulazm, K.; Isola, G.; Palazzo, G. Evaluation of the accuracy of orthodontic models prototyped with entry-level LCD-based 3D printers: A study using surface-based superimposition and deviation analysis. Clin. Oral Investig. 2022, 26, 303–312. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, G.-H.; Moon, D.-N.; Kim, J.-C.; Park, M.; Lee, K.-M. A digital approach to the evaluation of mandibular position by using a virtual articulator. J. Prosthet. Dent. 2021, 125, 849–853. [Google Scholar] [CrossRef]
Protrusion | Right Condyle | Left Condyle |
---|---|---|
Forward | 1.84 | 1.63 |
2.42 | 1.96 | |
Average | 2.13 | 1.79 |
Backward | 1.80 | 1.29 |
2.17 | 1.61 | |
Average | 1.98 | 1.45 |
Right excursion | Right condyle | Left condyle |
Forward | 1.59 | 1.40 |
2.08 | 1.66 | |
Average | 1.83 | 1.53 |
Backward | 1.04 | 1.27 |
2.14 | 1.77 | |
Average | 1.59 | 1.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, T.-H.; Liao, S.-W.; Huang, J.-X.; Huang, H.-Y.; Vu-Dinh, H.; Yau, H.-T. Virtual Dental Articulation Using Computed Tomography Data and Motion Tracking. Bioengineering 2023, 10, 1248. https://doi.org/10.3390/bioengineering10111248
Chou T-H, Liao S-W, Huang J-X, Huang H-Y, Vu-Dinh H, Yau H-T. Virtual Dental Articulation Using Computed Tomography Data and Motion Tracking. Bioengineering. 2023; 10(11):1248. https://doi.org/10.3390/bioengineering10111248
Chicago/Turabian StyleChou, Ting-Han, Shu-Wei Liao, Jun-Xuan Huang, Hsun-Yu Huang, Hien Vu-Dinh, and Hong-Tzong Yau. 2023. "Virtual Dental Articulation Using Computed Tomography Data and Motion Tracking" Bioengineering 10, no. 11: 1248. https://doi.org/10.3390/bioengineering10111248
APA StyleChou, T. -H., Liao, S. -W., Huang, J. -X., Huang, H. -Y., Vu-Dinh, H., & Yau, H. -T. (2023). Virtual Dental Articulation Using Computed Tomography Data and Motion Tracking. Bioengineering, 10(11), 1248. https://doi.org/10.3390/bioengineering10111248