AFNet Algorithm for Automatic Amniotic Fluid Segmentation from Fetal MRI
Abstract
:1. Introduction
2. Methods
2.1. Dataset
2.2. Model Architecture
Attention Block
2.3. Evaluation Metrics
2.4. Training Implementation
3. Results & Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cunningham, G.F. (Ed.) Chapter 11: Amniotic Fluid. In Williams Obstetrics, 25th ed.; McGraw-Hill: New York, NY, USA, 2018. [Google Scholar]
- Beall, M.; Wijngaard, J.v.D.; van Gemert, M.; Ross, M. Amniotic Fluid Water Dynamics. Placenta 2007, 28, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Harman, C.R. Amniotic Fluid Abnormalities. Semin. Perinatol. 2008, 32, 288–294. [Google Scholar] [CrossRef]
- Dashe, J.S.; McIntire, D.D.; Ramus, R.M.; Santos-Ramos, R.; Twickler, D.M. Hydramnios: Anomaly prevalence and sonographic detection. Obstet. Gynecol. 2002, 100, 134–139. [Google Scholar] [CrossRef]
- Moschos, E.; Güllmar, D.; Fiedler, A.; John, U.; Renz, D.M.; Waginger, M.; Schleussner, E.; Schlembach, D.; Schneider, U.; Mentzel, H.-J. Comparison of amniotic fluid volumetry between fetal sonography and MRI—Correlation to MR diffusion parameters of the fetal kidney. Birth Defects 2017, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lim, K.I.; Butt, K.; Naud, K.; Smithies, M. Amniotic Fluid: Technical Update on Physiology and Measurement. J. Obstet. Gynaecol. Can. 2017, 39, 52–58. [Google Scholar] [CrossRef]
- Amitai, A.; Wainstock, T.; Sheiner, E.; Walfisch, A.; Landau, D.; Pariente, G. The association between pregnancies complicated with isolated polyhydramnios or oligohydramnios and offspring long-term gastrointestinal morbidity. Arch. Gynecol. Obstet. 2019, 300, 1607–1612. [Google Scholar] [CrossRef]
- Hughes, D.S.; Magann, E.F.; Whittington, J.R.; Wendel, M.P.; Sandlin, A.T.; Ounpraseuth, S.T. Accuracy of the Ultrasound Estimate of the Amniotic Fluid Volume (Amniotic Fluid Index and Single Deepest Pocket) to Identify Actual Low, Normal, and High Amniotic Fluid Volumes as Determined by Quantile Regression. J. Ultrasound Med. 2019, 39, 373–378. [Google Scholar] [CrossRef]
- Magann, E.F.; Chauhan, S.P.; Whitworth, N.S.; Isler, C.; Wiggs, C.; Morrison, J.C. Subjective versus objective evaluation of amniotic fluid volume of pregnancies of less than 24 weeks’ gestation: How can we be accurate? J. Ultrasound Med. 2001, 20, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Magann, E.F.; A Doherty, D.; Chauhan, S.P.; Lanneau, G.S.; Morrison, J.C. Dye-Determined Amniotic Fluid Volume and Intrapartum/Neonatal Outcome. J. Perinatol. 2004, 24, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Pugash, D.; Brugger, P.C.; Bettelheim, D.; Prayer, D. Prenatal ultrasound and fetal MRI: The comparative value of each modality in prenatal diagnosis. Eur. J. Radiol. 2008, 68, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Levine, D. Ultrasound versus Magnetic Resonance Imaging in Fetal Evaluation. Top. Magn. Reson. Imaging 2001, 12, 25–38. [Google Scholar] [CrossRef]
- Hilliard, N.J.; Hawkes, R.; Patterson, A.J.; Graves, M.J.; Priest, A.N.; Hunter, S.; Lees, C.; Set, P.A.; Lomas, D.J. Amniotic fluid volume: Rapid MR-based assessment at 28–32 weeks gestation. Eur. Radiol. 2016, 26, 3752–3759. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, M.R.; Andreu-Vázquez, C.; Thuissard-Vasallo, I.J.; Alonso, R.C.; López, C.B.; Degenhardt, I.T.; Ten, P.M.; Costa, A.L.F. Real-Life Diagnostic Accuracy of MRI in Prenatal Diagnosis. Radiol. Res. Pract. 2020, 2020, 4085349. [Google Scholar] [CrossRef]
- Maralani, P.J.; Kapadia, A.; Liu, G.; Moretti, F.; Ghandehari, H.; Clarke, S.E.; Wiebe, S.; Garel, J.; Ertl-Wagner, B.; Hurrell, C.; et al. Canadian Association of Radiologists Recommendations for the Safe Use of MRI During Pregnancy. Can. Assoc. Radiol. J. 2021, 73, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Caballo, M.; Pangallo, D.R.; Mann, R.M.; Sechopoulos, I. Deep learning-based segmentation of breast masses in dedicated breast CT imaging: Radiomic feature stability between radiologists and artificial intelligence. Comput. Biol. Med. 2020, 118, 103629. [Google Scholar] [CrossRef]
- Jamaludin, A.; The Genodisc Consortium; Lootus, M.; Kadir, T.; Zisserman, A.; Urban, J.; Battié, M.; Fairbank, J.; McCall, I. ISSLS PRIZE IN BIOENGINEERING SCIENCE 2017: Automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is comparable with an expert radiologist. Eur. Spine J. 2017, 26, 1374–1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, C. Re: Prediction of Spontaneous Ureteral Stone Passage: Automated 3D-Measurements Perform Equal to Radiologists, and Linear Measurements Equal to Volumetric. J. Urol. 2019, 201, 646. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Kwon, J.-Y.; Park, Y.; Cho, H.C.; Hyun, C.M.; Seo, J.K. Complementary Network for Accurate Amniotic Fluid Segmentation From Ultrasound Images. IEEE Access 2021, 9, 108223–108235. [Google Scholar] [CrossRef]
- Li, Y.; Xu, R.; Ohya, J.; Iwata, H. Automatic fetal body and amniotic fluid segmentation from fetal ultrasound images by encoder-decoder network with inner layers. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017; pp. 1485–1488. [Google Scholar] [CrossRef]
- Looney, P.; Yin, Y.; Collins, S.L.; Nicolaides, K.H.; Plasencia, W.; Molloholli, M.; Natsis, S.; Stevenson, G.N. Fully Automated 3-D Ultrasound Segmentation of the Placenta, Amniotic Fluid, and Fetus for Early Pregnancy Assessment. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 2038–2047. [Google Scholar] [CrossRef]
- Yuan, X.; Shi, J.; Gu, L. A review of deep learning methods for semantic segmentation of remote sensing imagery. Expert Syst. Appl. 2020, 169, 114417. [Google Scholar] [CrossRef]
- Seo, H.; Huang, C.; Bassenne, M.; Xiao, R.; Xing, L. Modified U-Net (mU-Net) With Incorporation of Object-Dependent High Level Features for Improved Liver and Liver-Tumor Segmentation in CT Images. IEEE Trans. Med. Imaging 2019, 39, 1316–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jha, D.; Smedsrud, P.H.; Riegler, M.A.; Johansen, D.; De Lange, T.; Halvorsen, P.; Johansen, H.D. ResUNet++: An Advanced Architecture for Medical Image Segmentation. In Proceedings of the IEEE International Symposium on Multimedia (ISM), San Diego, CA, USA, 9–11 December 2019; pp. 225–2255. [Google Scholar] [CrossRef] [Green Version]
- Roy, R.M.; Ameer, P.M. Segmentation of leukocyte by semantic segmentation model: A deep learning approach. Biomed. Signal Process. Control 2020, 65, 102385. [Google Scholar] [CrossRef]
- Cheng, G.; Ji, H.; Ding, Z. Spatial-channel relation learning for brain tumor segmentation. Med. Phys. 2020, 47, 4885–4894. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2018; Volume 11045. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar] [CrossRef]
- Jha, D.; Riegler, M.A.; Johansen, D.; Halvorsen, P.; Johansen, H.D. DoubleU-Net: A Deep Convolutional Neural Network for Medical Image Segmentation. In Proceedings of the 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), Rochester, MN, USA, 28–30 July 2020. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Mnih, V.; Heess, N.; Graves, A.; Kavukcuoglu, K. Recurrent Models of Visual Attention. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Luong, M.; Pham, H.; Manning, C.D. Effective Approaches to Attention-based Neural Machine Translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP), Lisbon, Portugal, 17–21 September 2015; pp. 1412–1421. [Google Scholar] [CrossRef]
- Dumoulin, V.; Visin, F. A Guide to Convolution Arithmetic for Deep Learning. arXiv 2018. [Google Scholar] [CrossRef]
- Chen, L.-C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017. [Google Scholar] [CrossRef]
- Payette, K.; de Dumast, P.; Kebiri, H.; Ezhov, I.; Paetzold, J.C.; Shit, S.; Iqbal, A.; Khan, R.; Kottke, R.; Grehten, P.; et al. An automatic multi-tissue human fetal brain segmentation benchmark using the Fetal Tissue Annotation Dataset. Sci. Data 2021, 8, 167. [Google Scholar] [CrossRef]
- Torrents-Barrena, J.; Piella, G.; Masoller, N.; Gratacós, E.; Eixarch, E.; Ceresa, M.; Ballester, M.G. Fully automatic 3D reconstruction of the placenta and its peripheral vasculature in intrauterine fetal MRI. Med. Image Anal. 2019, 54, 263–279. [Google Scholar] [CrossRef]
- Lo, J.; Nithiyanantham, S.; Cardinell, J.; Young, D.; Cho, S.; Kirubarajan, A.; Wagner, M.W.; Azma, R.; Miller, S.; Seed, M.; et al. Cross Attention Squeeze Excitation Network (CASE-Net) for Whole Body Fetal MRI Segmentation. Sensors 2021, 21, 4490. [Google Scholar] [CrossRef]
- Jha, D.; Smedsrud, P.H.; Riegler, M.A.; Halvorsen, P.; de Lange, T.; Johansen, D.; Johansen, H.D. Kvasir-SEG: A Segmented Polyp Dataset. In MultiMedia Modeling; Ro, Y.M., Cheng, W.-H., Kim, J., Chu, W.-T., Cui, P., Choi, J.-W., Hu, M.-C., De Neve, W., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2019; Volume 11962, pp. 451–462. [Google Scholar] [CrossRef] [Green Version]
- Bernal, J.; Sánchez, F.J.; Fernández-Esparrach, G.; Gil, D.; Rodríguez, C.; Vilariño, F. WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 2015, 43, 99–111. [Google Scholar] [CrossRef]
- Shelhamer, E.; Long, J.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef]
- Taha, A.A.; Hanbury, A. Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool. BMC Med. Imaging 2015, 15, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Feng, X.; Xiao, P.; He, G.; Zhu, L. Segmentation quality evaluation using region-based precision and recall measures for remote sensing images. ISPRS J. Photogramm. Remote Sens. 2015, 102, 73–84. [Google Scholar] [CrossRef]
- Vabalas, A.; Gowen, E.; Poliakoff, E.; Casson, A.J. Machine learning algorithm validation with a limited sample size. PLoS ONE 2019, 14, e0224365. [Google Scholar] [CrossRef] [PubMed]
Dataset | So1 (Amniotic Fluid) | So2 (Not AF) |
---|---|---|
Sg1 (Amniotic Fluid) | TP | FN |
Sg2 (Not AF) | FP | TN |
Model | Loss | mIoU | Recall | Precision | # of Parameters |
---|---|---|---|---|---|
ResUNet++ | 0.1305 0.12 | 91.36% 2.7 | 90.56% 5.3 | 93.66% 1.4 | 4.07 M |
AFNet noT | 0.1228 0.042 | 92.46% 1.6 | 94.28% 1.2 | 92.46% 1.6 | 4.85 M |
AFNet | 0.1295 0.078 | 93.38% 1.3 | 95.06% 1.2 | 92.01% 2.0 | 4.80 M |
Model | Loss | mIoU | Recall | Precision |
---|---|---|---|---|
U-Net | 0.5697 0.14 | 80.04% * 3.4 | 93.65% 4.1 | 89.67% 2.3 |
UNet++ | 0.1668 0.066 | 93.65% 0.70 | 96.00% 0.90 | 90.34% 0.80 |
DeepLabV3+ | 0.3939 0.043 | 75.92% * 1.7 | 91.21% 1.7 | 90.26% 0.90 |
Double UNet | 0.3288 0.073 | 78.80% * 4.0 | 97.24% 0.33 | 92.59% 0.58 |
AFNet | 0.1295 0.078 | 93.38% 1.3 | 95.06% 1.2 | 92.01% 2.0 |
Model | Training Time * (min) | # of Parameters |
---|---|---|
U-Net | 48.0 14.0 | 31.0 M |
UNet++ | 50.0 26.0 | 9.17 M |
DeepLabV3+ | 6.0 3.0 | 11.8 M |
Double UNet | 34.0 33.0 | 29.2 M |
AFNet | 47.0 18.0 | 4.80 M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costanzo, A.; Ertl-Wagner, B.; Sussman, D. AFNet Algorithm for Automatic Amniotic Fluid Segmentation from Fetal MRI. Bioengineering 2023, 10, 783. https://doi.org/10.3390/bioengineering10070783
Costanzo A, Ertl-Wagner B, Sussman D. AFNet Algorithm for Automatic Amniotic Fluid Segmentation from Fetal MRI. Bioengineering. 2023; 10(7):783. https://doi.org/10.3390/bioengineering10070783
Chicago/Turabian StyleCostanzo, Alejo, Birgit Ertl-Wagner, and Dafna Sussman. 2023. "AFNet Algorithm for Automatic Amniotic Fluid Segmentation from Fetal MRI" Bioengineering 10, no. 7: 783. https://doi.org/10.3390/bioengineering10070783
APA StyleCostanzo, A., Ertl-Wagner, B., & Sussman, D. (2023). AFNet Algorithm for Automatic Amniotic Fluid Segmentation from Fetal MRI. Bioengineering, 10(7), 783. https://doi.org/10.3390/bioengineering10070783