Motion Artifact Reduction Using U-Net Model with Three-Dimensional Simulation-Based Datasets for Brain Magnetic Resonance Images
Abstract
:1. Introduction
2. Related Works
3. Materials and Methods
3.1. Subsection Brain MR Images Acquisition
3.2. Motion Artifact Simulation
3.3. U-Net Model for Motion Artifact Reduction
3.4. Quantitative Evaluation
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Talo, M.; Yildirim, O.; Baloglu, U.; Aydin, G.; Achary, U. Convolutional neural networks for multi-class brain disease detection using MRI images. Comput. Med. Imaging Graph. 2019, 78, 101673. [Google Scholar] [CrossRef]
- Islam, J.; Zhang, Y. Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Inform. 2018, 31, 2. [Google Scholar] [CrossRef]
- Hu, M.; Zhong, Y.; Xie, S.; Lv, H.; Lv, Z. Fuzzy System Based Medical Image Processing for Brain Disease Prediction. Front. Neurosci. 2021, 30, 714318. [Google Scholar]
- Duffy, B.; Zhao, L.; Sepehrband, F.; Min, J.; Wang, D.; Shi, Y.; Toga, A.; Kim, H. Retrospective motion artifact correction of structural MRI images using deep learning improves the quality of cortical surface reconstructions. Neuroimage 2021, 15, 117756. [Google Scholar] [CrossRef]
- Liu, J.; Kocak, M.; Supanich, M.; Deng, J. Motion artifacts reduction in brain MRI by means of a deep residual network with densely connected multi-resolution blocks (DRN-DCMB). Magn. Reson. Imaging 2020, 71, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liang, Y.; Yuan Wu, Y.; Zhao, S.; Du, Y. Correction of out-of-FOV motion artifacts using convolutional neural network. Magn. Reson. Imaging 2020, 71, 93–102. [Google Scholar] [CrossRef]
- Oh, G.; Lee, J.; Ye, J. Unpaired MR Motion Artifact Deep Learning Using Outlier-Rejecting Bootstrap Aggregation. IEEE Trans. Med. Imaging 2021, 40, 3125–3139. [Google Scholar] [CrossRef] [PubMed]
- Al-Masni, M.; Lee, S.; Yi, J.; Kim, S.; Gho, S.; Choi, Y.; Kim, D. Stacked U-Nets with self-assisted priors towards robust correction of rigid motion artifact in brain MRI. Neuroimage 2022, 1, 119411. [Google Scholar] [CrossRef] [PubMed]
- David, M.; Malhotra, P. New approaches for the quantification and targeting of noradrenergic dysfunction in Alzheimer’s disease. Ann. Clin. Transl. Neurol. 2022, 9, 582–596. [Google Scholar] [CrossRef]
- Dong, S.; Zhu, M.; Bulas, D. Techniques for minimizing sedation in pediatric MRI. J. Magn. Reson. Imaging 2019, 50, 1047–1054. [Google Scholar] [CrossRef]
- Jaimes, C.; Gee, M. Strategies to minimize sedation in pediatric body magnetic resonance imaging. Pediatr. Radiol. 2016, 46, 916–927. [Google Scholar] [CrossRef]
- Gholipour, A.; Polak, M.; Kouwe, A.; Nevo, E.; Warfield, S. Motion-robust MRI through real-time motion tracking and retrospective super-resolution volume reconstruction. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 5722–5725. [Google Scholar]
- Li, G.; Wei, J.; Olek, D.; Kadbi, M.; Tyagi, N.; Zakian, K.; Mechalakos, J.; Deasy, J.; Hunt, M. Direct Comparison of Respiration-Correlated Four-Dimensional Magnetic Resonance Imaging Reconstructed Using Concurrent Internal Navigator and External Bellows. Int. J. Radiat. Oncol. Biol. Phys. 2017, 97, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Laustsen, M.; Andersen, M.; Xue, R.; Madsen, K.; Hanson, L. Tracking of rigid head motion during MRI using an EEG system. Magn. Reson. Med. 2022, 88, 986–1001. [Google Scholar] [CrossRef] [PubMed]
- Inati, S.; Naegele, J.; Zwart, N.; Roopchansingh, V.; Lizak, M.; Hansen, D.; Liu, C.; Atkinson, D.; Kellman, P.; Kozerke, S.; et al. ISMRM Raw data format: A proposed standard for MRI raw datasets. Magn. Reson. Med. 2017, 77, 411–421. [Google Scholar] [CrossRef]
- Knoll, F.; Zbontar, J.; Sriram, A.; Muckley, M.; Bruno, M.; Defazio, A.; Parente, M.; Geras, K.; Katsnelson, J.; Chandarana, H.; et al. fastMRI: A Publicly Available Raw k-Space and DICOM Dataset of Knee Images for Accelerated MR Image Reconstruction Using Machine Learning. Radiol. Artif. Intell. 2020, 2, e190007. [Google Scholar] [CrossRef]
- Zhao, Y.; Ossowski, J.; Wang, X.; Li, S.; Devinsky, O.; Martin, S.; Pardoe, H. Localized Motion Artifact Reduction on Brain MRI Using Deep Learning with Effective Data Augmentation Techniques. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; pp. 1–9. [Google Scholar]
- Usui, K.; Muro, I.; Shibukawa, S.; Goto, M.; Ogawa, K.; Sakano, Y.; Kyogoku, S.; Daida, H. Evaluation of motion artefact reduction depending on the artefacts’ directions in head MRI using conditional generative adversarial networks. Sci. Rep. 2023, 13, 8526. [Google Scholar] [CrossRef]
- Su, B.; Wen, Y.; Liu, Y.; Liao, S.; Fu, J.; Quan, G.; Li, Z. A deep learning method for eliminating head motion artifacts in computed tomography. Med. Phys. 2022, 49, 411–419. [Google Scholar] [CrossRef]
- Song, X.; Han, Y.; Xi, X.; Li, L.; Zhu, L.; Yang, S.; Liu, M.; Tan, S.; Yan, B. Preliminary denoising by 3D U-Net in image domain for low dose CT images. In Proceedings of the 2022 2nd International Conference on Bioinformatics and Intelligent Computing, Harbin, China, 21–23 January 2022; pp. 367–370. [Google Scholar]
- Chuang, C.; Chang, K.; Huang, C.; Jung, T. IC-U-Net: A U-Net-based Denoising Autoencoder Using Mixtures of Independent Components for Automatic EEG Artifact Removal. Neuroimage 2022, 263, 119586. [Google Scholar] [CrossRef] [PubMed]
- Gunawan, R.; Tran, Y.; Zheng, J.; Nguyen, H.; Chai, R. Image Recovery from Synthetic Noise Artifacts in CT Scans Using Modified U-Net. Sensors 2022, 22, 7031. [Google Scholar] [CrossRef]
- Feng, T.; Wang, C.; Chen, X.; Fan, H.; Zeng, K.; Li, Z. URNet: A U-Net based residual network for image dehazing. Appl. Soft Comput. 2021, 102, 106884. [Google Scholar] [CrossRef]
- Cao, X.; Chen, B.; He, W. Unsupervised Defect Segmentation of Magnetic Tile Based on Attention Enhanced Flexible U-Net. IEEE Trans. Instrum. Meas. 2022, 71, 1–10. [Google Scholar] [CrossRef]
- Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-Attention Generative Adversarial Networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 7354–7363. [Google Scholar]
- Fu, B.; Zhang, X.; Wang, L.; Ren, Y.; Thanh, D. Double enhanced residual network for biological image denoising. Gene Expr. Patterns 2022, 45, 119270. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, Y.; Liu, P. Hybrid dilation and attention residual U-Net for medical image segmentation. Comput. Biol. Med. 2021, 134, 104449. [Google Scholar] [CrossRef]
- Khanna, A.; Londhe, N.; Gupta, S.; Semwal, A. A deep Residual U-Net convolutional neural network for automated lung segmentation in computed tomography images. Biocybern. Biomed. Eng. 2020, 40, 1314–1327. [Google Scholar] [CrossRef]
- Pawar, K.; Chen, Z.; Shah, N.; Egan, G. Suppressing motion artefacts in MRI using an Inception-ResNet network with motion simulation augmentation. NMR Biomed. 2022, 35, e4225. [Google Scholar] [CrossRef] [PubMed]
- Oksuz, I. Brain MRI artefact detection and correction using convolutional neural networks. Comput. Methods Programs Biomed. 2021, 199, 105909. [Google Scholar] [CrossRef] [PubMed]
- Loizillon, S.; Bottani, S.; Maire, A.; Ströer, S.; Dormont, D.; Colliot, O. Automatic motion artefact detection in brain T1-weighted magnetic resonance images from a clinical data warehouse using synthetic data. Med. Image Anal. 2023, 93, 103073. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Kothapalli, S.; Liu, J.; Kahali, S.; Gan, W.; Yablonskiy, D.; Kamilov, U. Learning-based motion artifact removal networks for quantitative R2* mapping. Magn. Reson. Med. 2022, 88, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Al-Masni, M.; Lee, S.; Al-Shamiri, S.; Gho, D.; Choi, Y.; Kim, F. A knowledge interaction learning for multi-echo MRI motion artifact correction towards better enhancement of SWI. Comput. Biol. Med. 2023, 153, 106553. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.; Sudre, C.; Varsavsky, T.; Ourselin, S.; Cardoso, M. A k-Space Model of Movement Artefacts: Application to Segmentation Augmentation and Artefact Removal. IEEE Trans. Med. Imaging 2020, 39, 2881–2892. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Hwang, D.; Kim, K.; Kang, S.; Kim, Y.; Lee, J. Computed tomography super-resolution using deep convolutional neural network. Phys. Med. Biol. 2018, 63, 145011. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Duan, M.; Yang, L.; Feng, W.; Ding, L.; Jiang, L. An Improved U-Net Image Segmentation Method and Its Application for Metallic Grain Size Statistics. Materials 2022, 15, 4417. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Lin, J.; Chen, S.; He, H.; Cai, Y. Automatic Tumor Segmentation by Means of Deep Convolutional U-Net With Pre-Trained Encoder in PET Images. IEEE Access 2020, 8, 113636–113648. [Google Scholar] [CrossRef]
- Sanjar, K.; Bekhzod, O.; Kim, J.; Kim, J.; Paul, A.; Kim, J. Improved U-Net: Fully Convolutional Network Model for Skin-Lesion Segmentation. Appl. Sci. 2020, 10, 3658. [Google Scholar] [CrossRef]
- Das, S.; Swain, M.; Nayak, G.; Saxena, S.; Satpathy, S. Effect of learning parameters on the performance of U-Net Model in segmentation of Brain tumor. Multimed. Tools Appl. 2022, 81, 34717–34735. [Google Scholar] [CrossRef]
- Mishro, P.; Agrawal, S.; Panda, R.; Abraham, A. A Survey on State-of-the-Art Denoising Techniques for Brain Magnetic Resonance Images. IEEE Rev. Biomed. Eng. 2022, 15, 184–199. [Google Scholar] [CrossRef] [PubMed]
- Kidoh, M.; Shinoda, K.; Kitajima, M.; Isogawa, K.; Nambu, M.; Uetani, H.; Morita, K.; Nakaura, T.; Tateishi, M.; Yamashita, Y.; et al. Deep Learning Based Noise Reduction for Brain MR Imaging: Tests on Phantoms and Healthy Volunteers. Magn. Reson. Med. Sci. 2020, 19, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, F.; Delrieux, C.; Pisula, J.; García, J.; Lucena, M.; García, R.; Borggrefe, J. Noise reduction using novel loss functions to compute tissue mineral density and trabecular bone volume fraction on low resolution QCT. Comput. Med. Imaging Graph. 2020, 86, 101816. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Cahill, D.; Li, S.; Xiao, F.; Blu, T.; Griffith, J.; Chen, W. Denoising of three-dimensional fast spin echo magnetic resonance images of knee joints using spatial-variant noise-relevant residual learning of convolution neural network. Comput. Biol. Med. 2022, 151, 106295. [Google Scholar] [CrossRef]
- Cherukuri, V.; Guo, T.; Schiff, S.; Monga, V. Deep MR Brain Image Super-Resolution Using Spatio-Structural Priors. IEEE Trans. Image Process 2019, 29, 1368–1383. [Google Scholar] [CrossRef]
- Rubert, N.; Bardo, D.; Vaughn, J.; Cornejo, P.; Goncalves, L. Data Quality Assessment for Super-Resolution Fetal Brain MR Imaging: A Retrospective 1.5 T Study. J. Magn. Reson. Imaging 2021, 54, 1349–1360. [Google Scholar] [CrossRef]
- Lin, J.; Miao, Q.; Surawech, C.; Raman, S.; Zhao, K.; Wu, H.; Sung, K. High-Resolution 3D MRI With Deep Generative Networks via Novel Slice-Profile Transformation Super-Resolution. IEEE Access 2023, 11, 95022–95036. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Liu, Y.; Qi, N.; Zhu, Q.; Li, W. CR-U-Net: Cascaded U-Net with Residual Mapping for Liver Segmentation in CT Images. In Proceedings of the 2019 IEEE Visual Communications and Image Processing (VCIP), Sydney, Australia, 1–4 December 2019; pp. 1–4. [Google Scholar]
- Küstner, T.; Armanious, K.; Yang, J.; Yang, B.; Schick, F.; Gatidis, S. Retrospective correction of motion-affected MR images using deep learning frameworks. Magn. Reson. Med. 2019, 82, 1527–1540. [Google Scholar] [CrossRef]
- Huttinga, N.; Berg, C.; Luijten, P.; Sbrizzi, A. MR-MOTUS: Model-based non-rigid motion estimation for MR-guided radiotherapy using a reference image and minimal k-space data. Phys. Med. Biol. 2020, 65, 015004. [Google Scholar] [CrossRef]
- Slipsager, J.; Glimberg, S.; Højgaard, L.; Paulsen, R.; Wighton, P.; Tisdall, M.; Jaimes, C.; Gagoski, B.; Grant, P.E.; van der Kouwe, A.; et al. Comparison of prospective and retrospective motion correction in 3D-encoded neuroanatomical MRI. Magn. Reson. Med. 2022, 87, 629–645. [Google Scholar] [CrossRef]
- Johannes Kirchner, J.; Tamara Watson, T.; Markus Lappe, M. Real-Time MRI Reveals Unique Insight into the Full Kinematics of Eye Movements. eNeuro 2022, 9, ENEURO.0357-21.2021. [Google Scholar]
- Oh, G.; Jung, S.; Lee, J.; Ye, J. Annealed Score-Based Diffusion Model for MR Motion Artifact Reduction. IEEE Trans. Comput. Imaging 2023, 10, 43–53. [Google Scholar] [CrossRef]
- Darçot, E.; Yerly, J.; Hilbert, T.; Colotti, R.; Najdenovska, E.; Kober, T.; Stuber, M.; Heeswijk, R. Compressed sensing with signal averaging for improved sensitivity and motion artifact reduction in fluorine-19 MRI. NMR Biomed. 2021, 34, e4418. [Google Scholar] [CrossRef]
- Lyu, Q.; Shan, H.; Xie, Y.; Kwan, A.; Otaki, Y.; Kuronuma, K.; Li, D.; Wang, G. Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural Network. IEEE Trans. Med. Imaging 2021, 40, 2170–2181. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.; Lo, J.; Wagner, M.; Ertl-Wagner, B.; Sussman, D. Motion artifact correction in fetal MRI based on a Generative Adversarial network method. Biomed. Signal Process. Control 2023, 81, 104484. [Google Scholar]
- Ghaffari, M.; Pawar, K.; Oliver, R. Brain MRI motion artifact reduction using 3D conditional generative adversarial networks on simulated motion. In Proceedings of the 2021 Digital Image Computing: Techniques and Applications (DICTA), Gold Coast, Australia, 29 November–1 December 2021. [Google Scholar]
- Gadjimuradov, F.; Benkert, T.; Nickel, M.; Maier, A. Robust partial Fourier reconstruction for diffusion-weighted imaging using a recurrent convolutional neural network. Magn. Reson. Med. 2022, 87, 2018–2033. [Google Scholar] [CrossRef]
- Souza, R.; Bento, M.; Nogovitsyn, N.; Chung, K.; Loos, W.; Lebel, R.; Frayne, R. Dual-domain cascade of U-nets for multi-channel magnetic resonance image reconstruction. Magn. Reson. Imaging 2020, 71, 140–153. [Google Scholar] [CrossRef]
- Chaudhari, A.; Fang, Z.; Kogan, F.; Wood, J.; Stevens, K.; Gibbons, E.; Lee, J.; Gold, G.; Hargreaves, B. Super-resolution musculoskeletal MRI using deep learning. Magn. Reson. Med. 2018, 80, 2139–2154. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Yoo, J.; Tak, S.; Ye, J. Deep Residual Learning for Accelerated MRI Using Magnitude and Phase Networks. IEEE Trans. Biomed. Eng. 2018, 65, 1985–1995. [Google Scholar] [CrossRef] [PubMed]
- Xanthis, C.; Filos, D.; Haris, K.; Aletras, A. Simulator-generated training datasets as an alternative to using patient data for machine learning: An example in myocardial segmentation with MRI. Comput. Methods Programs Biomed. 2021, 198, 105817. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, S.; Zhou, G.; Hu, W.; Yu, G. Evaluation on the generalization of a learned convolutional neural network for MRI reconstruction. Magn. Reson. Imaging 2022, 87, 38–46. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.-H.; Lee, Y. Motion Artifact Reduction Using U-Net Model with Three-Dimensional Simulation-Based Datasets for Brain Magnetic Resonance Images. Bioengineering 2024, 11, 227. https://doi.org/10.3390/bioengineering11030227
Kang S-H, Lee Y. Motion Artifact Reduction Using U-Net Model with Three-Dimensional Simulation-Based Datasets for Brain Magnetic Resonance Images. Bioengineering. 2024; 11(3):227. https://doi.org/10.3390/bioengineering11030227
Chicago/Turabian StyleKang, Seong-Hyeon, and Youngjin Lee. 2024. "Motion Artifact Reduction Using U-Net Model with Three-Dimensional Simulation-Based Datasets for Brain Magnetic Resonance Images" Bioengineering 11, no. 3: 227. https://doi.org/10.3390/bioengineering11030227
APA StyleKang, S. -H., & Lee, Y. (2024). Motion Artifact Reduction Using U-Net Model with Three-Dimensional Simulation-Based Datasets for Brain Magnetic Resonance Images. Bioengineering, 11(3), 227. https://doi.org/10.3390/bioengineering11030227