Multiscale Mechanical Characterization of Polyether-2-ketone (PEKK) for Biomedical Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimens for Macro Tests
Volumetric and Surface Analyses of Specimens
2.2. Mechanical Tests at Macroscale
Analysis of Strain Distributions
2.3. Micromechanical Characterization
2.4. Scanning Electron Microscopy (SEM) Analysis
2.5. Statistical Analysis of Data
3. Results and Discussion
3.1. Volumetric and Surface Analysis of Specimens
3.2. Mechanical Tests at Macroscale
3.3. Nanoindentation Tests
3.4. SEM Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaes, D.; Van Puyvelde, P. Semi-Crystalline Feedstock for Filament-Based 3D Printing of Polymers. Prog. Polym. Sci. 2021, 118, 101411. [Google Scholar] [CrossRef]
- Stratasys. Antero 800NA FDM PEKK Thermoplastic. Available online: https://go.stratasys.com/Rs/533-LAV099/Images/AFSWP_FDM_AnteroChemResistance_A4_1018a.Pdf (accessed on 22 January 2024).
- Alqurashi, H.; Khurshid, Z.; Syed, A.U.Y.; Rashid Habib, S.; Rokaya, D.; Zafar, M.S. Polyetherketoneketone (PEKK): An Emerging Biomaterial for Oral Implants and Dental Prostheses. J. Adv. Res. 2021, 28, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Cheng, Q.; Zhao, R.; Zhu, X.; Yang, X.; Yang, X.; Zhang, K.; Song, Y.; Zhang, X. Comparison of Osteointegration Property between PEKK and PEEK: Effects of Surface Structure and Chemistry. Biomaterials 2018, 170, 116–126. [Google Scholar] [CrossRef]
- Clegg, B.A.; Shrestha, D.R.; Emami, N. Tribo-Mechanical Properties and Bioactivity of Additively Manufactured PAEK Materials for Load Bearing Medical Applications: A Systematic Review. Biotribology 2023, 35–36, 100263. [Google Scholar] [CrossRef]
- Oladapo, B.I.; Zahedi, S.A.; Ismail, S.O.; Omigbodun, F.T. 3D Printing of PEEK and Its Composite to Increase Biointerfaces as a Biomedical Material—A Review. Colloids Surf. B Biointerfaces 2021, 203, 111726. [Google Scholar] [CrossRef]
- Sydney Gladman, A.; Garcia-Leiner, M.; Sauer-Budge, A.F. Emerging Polymeric Materials in Additive Manufacturing for Use in Biomedical Applications. AIMS Bioeng. 2019, 6, 1–20. [Google Scholar] [CrossRef]
- Wang, M.; Bhardwaj, G.; Webster, T. Antibacterial Properties of PEKK for Orthopedic Applications. Int. J. Nanomed. 2017, 12, 6471–6476. [Google Scholar] [CrossRef]
- Cheng, B.C.; Jaffee, S.; Averick, S.; Swink, I.; Horvath, S.; Zhukauskas, R. A Comparative Study of Three Biomaterials in an Ovine Bone Defect Model. Spine J. 2020, 20, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Shi, Z.; Wang, R.; Jiang, X.; Xiao, F.; Liu, Y. 3D Printed PEKK Bone Analogs with Internal Porosity and Surface Modification for Mandibular Reconstruction: An In Vivo Rabbit Model Study. Biomater. Adv. 2023, 151, 213455. [Google Scholar] [CrossRef]
- Geringer, J.; Tatkiewicz, W.; Rouchouse, G. Wear Behavior of PAEK, Poly(Aryl-Ether-Ketone), under Physiological Conditions, Outlooks for Performing These Materials in the Field of Hip Prosthesis. Wear 2011, 271, 2793–2803. [Google Scholar] [CrossRef]
- Villefort, R.F.; Diamantino, P.J.S.; von Zeidler, S.L.V.; Borges, A.L.S.; Silva-Concílio, L.R.; Saavedra, G.d.F.A.; Tribst, J.P.M. Mechanical Response of PEKK and PEEK as Frameworks for Implant-Supported Full-Arch Fixed Dental Prosthesis: 3D Finite Element Analysis. Eur. J. Dent. 2022, 16, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Zol, S.M.; Alauddin, M.S.; Said, Z.; Mohd Ghazali, M.I.; Hao-Ern, L.; Mohd Farid, D.A.; Zahari, N.A.H.; Al-Khadim, A.H.A.; Abdul Aziz, A.H. Description of Poly(Aryl-Ether-Ketone) Materials (PAEKs), Polyetheretherketone (PEEK) and Polyetherketoneketone (PEKK) for Application as a Dental Material: A Materials Science Review. Polymers 2023, 15, 2170. [Google Scholar] [CrossRef] [PubMed]
- Dawson, J.H.; Hyde, B.; Hurst, M.; Harris, B.T.; Lin, W.-S. Polyetherketoneketone (PEKK), a Framework Material for Complete Fixed and Removable Dental Prostheses: A Clinical Report. J. Prosthet. Dent. 2018, 119, 867–872. [Google Scholar] [CrossRef]
- Torstrick, F.B.; Safranski, D.L.; Burkus, J.K.; Chappuis, J.L.; Lee, C.S.D.; Guldberg, R.E.; Gall, K.; Smith, K.E. Getting PEEK to Stick to Bone: The Development of Porous PEEK for Interbody Fusion Devices. Tech. Orthop. 2017, 32, 158–166. [Google Scholar] [CrossRef]
- Song, K.J.; Choi, B.W.; Kim, G.H.; Song, J.H. Usefulness of Polyetheretherketone (PEEK) Cage with Plate Augmentation for Anterior Arthrodesis in Traumatic Cervical Spine Injury. Spine J. 2010, 10, 50–57. [Google Scholar] [CrossRef]
- Wang, Y.; Müller, W.D.; Rumjahn, A.; Schwitalla, A. Parameters Influencing the Outcome of Additive Manufacturing of Tiny Medical Devices Based on PEEK. Materials 2020, 13, 466. [Google Scholar] [CrossRef]
- Vaezi, M.; Yang, S. Extrusion-Based Additive Manufacturing of PEEK for Biomedical Applications. Virtual Phys. Prototyp. 2015, 10, 123–135. [Google Scholar] [CrossRef]
- Oladapo, B.I.; Zahedi, S.A. Improving Bioactivity and Strength of PEEK Composite Polymer for Bone Application. Mater. Chem. Phys. 2021, 266, 124485. [Google Scholar] [CrossRef]
- Su, Y.; He, J.; Jiang, N.; Zhang, H.; Wang, L.; Liu, X.; Li, D.; Yin, Z. Additively-Manufactured Poly-Ether-Ether-Ketone (PEEK) Lattice Scaffolds with Uniform Microporous Architectures for Enhanced Cellular Response and Soft Tissue Adhesion. Mater. Des. 2020, 191, 108671. [Google Scholar] [CrossRef]
- European Union. Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on Medical Devices, Amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 and Repealing Council Directives 90/385/EEC and 93/42/EEC. Off. J. Eur. Union 2017, 117, 1–175. [Google Scholar]
- Gao, X.; Fraulob, M.; Haïat, G. Biomechanical Behaviours of the Bone-Implant Interface: A Review. J. R. Soc. Interface 2019, 16, 20190259. [Google Scholar] [CrossRef]
- Hu, X.; Chen, Y.; Cai, W.; Cheng, M.; Yan, W.; Huang, W. Computer-Aided Design and 3D Printing of Hemipelvic Endoprosthesis for Personalized Limb-Salvage Reconstruction after Periacetabular Tumor Resection. Bioengineering 2022, 9, 400. [Google Scholar] [CrossRef]
- de Ruiter, L.; Rankin, K.; Browne, M.; Briscoe, A.; Janssen, D.; Verdonschot, N. Decreased Stress Shielding with a PEEK Femoral Total Knee Prosthesis Measured in Validated Computational Models. J. Biomech. 2021, 118, 110270. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.T.; Koak, J.Y.; Lim, Y.J.; Kim, S.K.; Kwon, H.B.; Kim, M.J. Stress Shielding and Fatigue Limits of Poly-Ether-Ether-Ketone Dental Implants. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100B, 1044–1052. [Google Scholar] [CrossRef]
- Kia, C.; Antonacci, C.L.; Wellington, I.; Makanji, H.S.; Esmende, S.M. Spinal Implant Osseointegration and the Role of 3D Printing: An Analysis and Review of the Literature. Bioengineering 2022, 9, 108. [Google Scholar] [CrossRef] [PubMed]
- Distefano, F.; Mineo, R.; Epasto, G. Mechanical Behaviour of a Novel Biomimetic Lattice Structure for Bone Scaffold. J. Mech. Behav. Biomed. Mater. 2023, 138, 105656. [Google Scholar] [CrossRef]
- Przykaza, K.; Jurak, M.; Wiącek, A.E.; Mroczka, R. Characteristics of Hybrid Chitosan/Phospholipid-Sterol, Peptide Coatings on Plasma Activated PEEK Polymer. Mater. Sci. Eng. C 2021, 120, 111658. [Google Scholar] [CrossRef] [PubMed]
- Recek, N. Biocompatibility of Plasma-Treated Polymeric Implants. Materials 2019, 12, 240. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Wang, T.; Li, F.; Mao, X. Surface Modifications of Biomaterials in Different Applied Fields. RSC Adv. 2023, 13, 20495–20511. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Bradshaw, R.D. Isothermal Physical Aging Characterization of Polyether-Ether-Ketone (PEEK) and Polyphenylene Sulfide (PPS) Films by Creep and Stress Relaxation. Mech. Time Depend. Mater. 2007, 11, 61–89. [Google Scholar] [CrossRef]
- Fairhurst, A.; Thommen, M.; Rytka, C. Comparison of Short and Long Term Creep Testing in High Performance Polymers. Polym. Test. 2019, 78, 105979. [Google Scholar] [CrossRef]
- Abbasnezhad, N.; Khavandi, A.; Fitoussi, J.; Arabi, H.; Shirinbayan, M.; Tcharkhtchi, A. Influence of Loading Conditions on the Overall Mechanical Behavior of Polyether-Ether-Ketone (PEEK). Int. J. Fatigue 2018, 109, 83–92. [Google Scholar] [CrossRef]
- Chang, B.; Wang, X.; Long, Z.; Li, Z.; Gu, J.; Ruan, S.; Shen, C. Constitutive Modeling for the Accurate Characterization of the Tension Behavior of PEEK under Small Strain. Polym. Test. 2018, 69, 514–521. [Google Scholar] [CrossRef]
- Krödel, S.; Li, L.; Constantinescu, A.; Daraio, C. Stress Relaxation in Polymeric Microlattice Materials. Mater. Des. 2017, 130, 433–441. [Google Scholar] [CrossRef]
- Arif, M.F.; Kumar, S.; Varadarajan, K.M.; Cantwell, W.J. Performance of Biocompatible PEEK Processed by Fused Deposition Additive Manufacturing. Mater. Des. 2018, 146, 249–259. [Google Scholar] [CrossRef]
- Bol, R.J.M.; Šavija, B. Micromechanical Models for FDM 3D-Printed Polymers: A Review. Polymers 2023, 15, 4497. [Google Scholar] [CrossRef] [PubMed]
- Arora, G.; Pathak, H. Nanoindentation Characterization of Polymer Nanocomposites for Elastic and Viscoelastic Properties: Experimental and Mathematical Approach. Compos. Part C Open Access 2021, 4, 100103. [Google Scholar] [CrossRef]
- Xu, C.; Cheng, K.; Liu, Y.; Wang, R.; Jiang, X.; Dong, X.; Xu, X. Effect of Processing Parameters on Flexural Properties of 3D-printed Polyetherketoneketone Using Fused Deposition Modeling. Polym. Eng. Sci. 2021, 61, 465–476. [Google Scholar] [CrossRef]
- El Magri, A.; Vaudreuil, S.; Ben Ayad, A.; El Hakimi, A.; El Otmani, R.; Amegouz, D. Effect of Printing Parameters on Tensile, Thermal and Structural Properties of 3D-printed Poly (Ether Ketone Ketone) PEKK Material Using Fused Deposition Modeling. J. Appl. Polym. Sci. 2023, 140, e54078. [Google Scholar] [CrossRef]
- Rashed, K.; Kafi, A.; Simons, R.; Bateman, S. Effects of Fused Filament Fabrication Process Parameters on Tensile Properties of Polyether Ketone Ketone (PEKK). Int. J. Adv. Manuf. Technol. 2022, 122, 3607–3621. [Google Scholar] [CrossRef]
- Pérez-Martín, H.; Mackenzie, P.; Baidak, A.; Brádaigh, C.M.Ó.; Ray, D. Microstructural and Micromechanical Property Characterisation of CF/PEKK Composites Using Nanoindentation. Mater. Des. 2023, 234, 112359. [Google Scholar] [CrossRef]
- Lu, W.; Li, C.; Wu, J.; Ma, Z.; Zhang, Y.; Xin, T.; Liu, X.; Chen, S. Preparation and Characterization of a Polyetherketoneketone/Hydroxyapatite Hybrid for Dental Applications. J. Funct. Biomater. 2022, 13, 220. [Google Scholar] [CrossRef]
- Stratasys Antero 800NA FDM Thermoplastic Filament. Available online: https://www.stratasys.com/Siteassets/Materials/Materials-Catalog/Fdm-Materials/Antero-800na/Mds_Fdm_Antero-800na_0921a.Pdf?V=48e37a (accessed on 22 January 2024).
- Li, N.; Xue, C.; Chen, S.; Aiyiti, W.; Khan, S.B.; Liang, J.; Zhou, J.; Lu, B. 3D Printing of Flexible Mechanical Metamaterials: Synergistic Design of Process and Geometric Parameters. Polymers 2023, 15, 4523. [Google Scholar] [CrossRef]
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2014.
- Blaber, J.; Adair, B.; Antoniou, A. Ncorr: Open-Source 2D Digital Image Correlation Matlab Software. Exp. Mech. 2015, 55, 1105–1122. [Google Scholar] [CrossRef]
- Pharr, G.M.; Oliver, W.C. Measurement of Thin Film Mechanical Properties Using Nanoindentation. MRS Bull. 1992, 17, 28–33. [Google Scholar] [CrossRef]
- ISO 25178-2:2021; Geometrical Product Specifications (GPS) Surface Texture: Areal Part 2: Terms, Definitions and Surface Texture Parameters. International Organization for Standardization: Geneva, Switzerland, 2021.
- Zhao, Y.; Wong, H.M.; Lui, S.C.; Chong, E.Y.W.; Wu, G.; Zhao, X.; Wang, C.; Pan, H.; Cheung, K.M.C.; Wu, S.; et al. Plasma Surface Functionalized Polyetheretherketone for Enhanced Osseo-Integration at Bone-Implant Interface. ACS Appl. Mater. Interfaces 2016, 8, 3901–3911. [Google Scholar] [CrossRef] [PubMed]
- Spece, H.; Yu, T.; Law, A.W.; Marcolongo, M.; Kurtz, S.M. 3D Printed Porous PEEK Created via Fused Filament Fabrication for Osteoconductive Orthopaedic Surfaces. J. Mech. Behav. Biomed. Mater. 2020, 109, 103850. [Google Scholar] [CrossRef]
- Liu, X.; Ma, P.X. Polymeric Scaffolds for Bone Tissue Engineering. Ann. Biomed. Eng. 2004, 32, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Terzini, M.; Bignardi, C.; Castagnoli, C.; Cambieri, I.; Zanetti, E.M.; Audenino, A.L. Dermis Mechanical Behaviour after Different Cell Removal Treatments. Med. Eng. Phys. 2016, 38, 862–869. [Google Scholar] [CrossRef]
- Attard, M.M. Finite Strain—Isotropic Hyperelasticity. Int. J. Solids Struct. 2003, 40, 4353–4378. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Möller, M. Polymer Science: A Comprehensive Reference; Elsevier: Amsterdam, The Netherlands, 2012; pp. 377–430. [Google Scholar]
- Zarean, P.; Malgaroli, P.; Zarean, P.; Seiler, D.; de Wild, M.; Thieringer, F.M.; Sharma, N. Effect of Printing Parameters on Mechanical Performance of Material-Extrusion 3D-Printed PEEK Specimens at the Point-of-Care. Appl. Sci. 2023, 13, 1230. [Google Scholar] [CrossRef]
- Han, X.; Yang, D.; Yang, C.; Spintzyk, S.; Scheideler, L.; Li, P.; Li, D.; Geis-Gerstorfer, J.; Rupp, F. Carbon Fiber Reinforced PEEK Composites Based on 3D-Printing Technology for Orthopedic and Dental Applications. J. Clin. Med. 2019, 8, 240. [Google Scholar] [CrossRef]
- Wu, W.; Geng, P.; Li, G.; Zhao, D.; Zhang, H.; Zhao, J. Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS. Materials 2015, 8, 5834–5846. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Chen, W.; Ye, X.; Ding, J.; Luo, X.; Wang, S.; Ou, Y.; Zhang, Y.; Li, X. Superior Strength in the 3D-printed Polyether-ether-ketone Composites Reinforced by Annealing and Carbon Fibers. Polym. Compos. 2024, 45, 1872–1883. [Google Scholar] [CrossRef]
- Wang, H.; Chen, P.; Wu, H.; Chen, A.; Wu, S.; Su, J.; Wang, M.; Feng, X.; Yang, C.; Yang, L.; et al. Comparative Evaluation of Printability and Compression Properties of Poly-Ether-Ether-Ketone Triply Periodic Minimal Surface Scaffolds Fabricated by Laser Powder Bed Fusion. Addit. Manuf. 2022, 57, 102961. [Google Scholar] [CrossRef]
- Kossman, S.; Bigerelle, M. Pop-in Identification in Nanoindentation Curves with Deep Learning Algorithms. Materials 2021, 14, 7027. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Weng, Y.J.; Pen, D.J.; Li, H.C. Deformation Model of Brittle and Ductile Materials under Nano-Indentation. Mater. Des. 2009, 30, 1643–1649. [Google Scholar] [CrossRef]
- Molazemhosseini, A.; Tourani, H.; Naimi-Jamal, M.R.; Khavandi, A. Nanoindentation and Nanoscratching Responses of PEEK Based Hybrid Composites Reinforced with Short Carbon Fibers and Nano-Silica. Polym. Test. 2013, 32, 525–534. [Google Scholar] [CrossRef]
- Arevalo, S.E.; Pruitt, L.A. Nanomechanical Analysis of Medical Grade PEEK and Carbon Fiber-Reinforced PEEK Composites. J. Mech. Behav. Biomed. Mater. 2020, 111, 104008. [Google Scholar] [CrossRef]
- Serino, G.; Gusmini, M.; Audenino, A.L.; Bergamasco, G.; Ieropoli, O.; Bignardi, C. Multiscale Characterization of Isotropic Pyrolytic Carbon Used for Mechanical Heart Valve Production. Processes 2021, 9, 338. [Google Scholar] [CrossRef]
- Jagdale, P.; Serino, G.; Oza, G.; Audenino, A.L.; Bignardi, C.; Tagliaferro, A.; Alvarez-Gayosso, C. Physical Characterization of Bismuth Oxide Nanoparticle Based Ceramic Composite for Future Biomedical Application. Materials 2021, 14, 1626. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Tian, X.; Li, D.; Cao, Y.; Zhao, F.; Shi, C. Influence of Thermal Processing Conditions in 3D Printing on the Crystallinity and Mechanical Properties of PEEK Material. J. Mater. Process Technol. 2017, 248, 1–7. [Google Scholar] [CrossRef]
- Wang, P.; Zou, B.; Ding, S.; Li, L.; Huang, C. Effects of FDM-3D Printing Parameters on Mechanical Properties and Microstructure of CF/PEEK and GF/PEEK. Chin. J. Aeronaut. 2021, 34, 236–246. [Google Scholar] [CrossRef]
- Brushan, B.; Palacio, M.L.B. Nanoindentation; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
Parameter | Upper Surface | Lateral Surface |
---|---|---|
Sq 1 [μm] | 18.76 | 26.83 |
Ssk 2 | −0.31 | −0.86 |
Sku 3 | 3.04 | 2.23 |
Sp 4 [μm] | 49.23 | 66.23 |
Sv 5 [μm] | 70.34 | 60.12 |
Sz 6 [μm] | 119.57 | 126.35 |
Sa 7 [μm] | 15.12 | 22.96 |
Loading Rate | ||||||
---|---|---|---|---|---|---|
Properties | 0.5 mm/min | 1 mm/min | 2 mm/min | 5 mm/min | 10 mm/min | 100 mm/min |
Elastic Modulus E [MPa] | 2602 | 2312 | 2603 | 2634 | 2456 | 2728 |
Tensile Strength σm [MPa] | 67.35 | 64.40 | 70.50 | 70.66 | 72.06 | 77.57 |
Elongation at break εu [%] | 11.14 | 8.39 | 8.28 | 8.04 | 8.53 | 10.20 |
Properties | 0.5 mm/min | 2 mm/min | 5 mm/min | 10 mm/min |
---|---|---|---|---|
DIC Elastic Modulus EDIC [MPa] | 309.6 | 305.7 | 301.5 | 308.4 |
Compressive Strength σc [MPa] | 11.36 | 11.59 | 11.03 | 12.21 |
Deformed Shape |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serino, G.; Distefano, F.; Zanetti, E.M.; Pascoletti, G.; Epasto, G. Multiscale Mechanical Characterization of Polyether-2-ketone (PEKK) for Biomedical Application. Bioengineering 2024, 11, 244. https://doi.org/10.3390/bioengineering11030244
Serino G, Distefano F, Zanetti EM, Pascoletti G, Epasto G. Multiscale Mechanical Characterization of Polyether-2-ketone (PEKK) for Biomedical Application. Bioengineering. 2024; 11(3):244. https://doi.org/10.3390/bioengineering11030244
Chicago/Turabian StyleSerino, Gianpaolo, Fabio Distefano, Elisabetta M. Zanetti, Giulia Pascoletti, and Gabriella Epasto. 2024. "Multiscale Mechanical Characterization of Polyether-2-ketone (PEKK) for Biomedical Application" Bioengineering 11, no. 3: 244. https://doi.org/10.3390/bioengineering11030244
APA StyleSerino, G., Distefano, F., Zanetti, E. M., Pascoletti, G., & Epasto, G. (2024). Multiscale Mechanical Characterization of Polyether-2-ketone (PEKK) for Biomedical Application. Bioengineering, 11(3), 244. https://doi.org/10.3390/bioengineering11030244