Fracture Resistance of Direct versus Indirect Restorations on Posterior Teeth: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Study Selection
2.2. Selection Criteria
2.3. Data Extraction and Analysis
2.4. Selection Criteria
3. Results
3.1. Direct vs. Indirect Composite Resin Restorations
Sub-Group Analysis: With vs. without Cusp Reduction
3.2. Direct Composite Resin vs. Indirect Ceramic Restorations
Sub-Group Analysis: With vs. without Cusp Reduction
4. Discussion
5. Limitations
6. Research Perspective
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hyson, J.M. Amalgam: Its history and perils. J. Calif. Dent. Assoc. 2006, 34, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Alreshaid, L.; El-Badrawy, W.; Kulkarni, G.; Santos, M.J.; Prakki, A. Resin composite versus amalgam restorations placed in United States dental schools. Oper. Dent. 2023, 48, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kelly, J.R. Dental ceramics for restoration and metal veneering. Dent. Clin. N. Am. 2017, 61, 797–819. [Google Scholar] [CrossRef] [PubMed]
- Gracis, S.; Thompson, V.P.; Ferencz, J.L.; Silva, N.R.F.A.; Bonfante, E.A. A new classification system for all-ceramic and ceramic-like restorative materials. Int. J. Prosthodont. 2015, 28, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Bompolaki, D.; Lubisich, E.B.; Fugolin, A.P. Resin-based composites for direct and indirect restorations: Clinical applications, recent advances, and future trends. Dent. Clin. N. Am. 2022, 66, 517–536. [Google Scholar] [CrossRef] [PubMed]
- Ayub, J.M.; Blatz, M.B. What’s trending in resin-based restorations. Compend. Contin. Educ. Dent. 1995. 2024, 45, 96–97. [Google Scholar]
- Ruse, N.D.; Sadoun, M.J. Resin-composite blocks for dental CAD/CAM applications. J. Dent. Res. 2014, 93, 1232–1234. [Google Scholar] [CrossRef] [PubMed]
- Giordano, I.R. Ceramics overview. Br. Dent. J. 2022, 232, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Worthington, H.V.; Khangura, S.; Seal, K.; Mierzwinski-Urban, M.; Veitz-Keenan, A.; Sahrmann, P.; Alcaraz, M.G.R. Direct composite resin fillings versus amalgam fillings for permanent posterior teeth. Cochrane Database Syst. Rev. 2021, 8, CD005620. [Google Scholar]
- Ardu, S.; Daher, R.; Di Bella, E.; Rossier, I.; Krejci, I. Influence of mechanical and chemical degradation on surface gloss of direct and CAD-CAM resin composite materials. Am. J. Dent. 2020, 33, 157–160. [Google Scholar]
- Demarco, F.F.; Collares, K.; Correa, M.B.; Cenci, M.S.; de Moraes, R.R.; Opdam, N.J. Should my composite restorations last forever? Why are they failing? Braz. Oral Res. 2017, 31, e56. [Google Scholar] [CrossRef] [PubMed]
- Heboyan, A.; Vardanyan, A.; Karobari, M.I.; Marya, A.; Avagyan, T.; Tebyaniyan, H.; Avetisyan, A. Dental luting cements: An updated comprehensive review. Molecules 2023, 28, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Schwendicke, F.; Stolpe, M. Restoring root-canal treated molars: Cost-effectiveness-analysis of direct versus indirect restorations. J. Dent. 2018, 77, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Angeletaki, F.; Gkogkos, A.; Papazoglou, E.; Kloukos, D. Direct versus indirect inlay/onlay composite restorations in posterior teeth. A systematic review and meta-analysis. J. Dent. 2016, 53, 12–21. [Google Scholar] [CrossRef]
- Azeem, R.A.; Sureshbabu, N.M. Clinical performance of direct versus indirect composite restorations in posterior teeth: A systematic review. J. Conserv. Dent. JCD 2018, 21, 2–9. [Google Scholar]
- De Kuijper, M.C.F.M.; Cune, M.S.; Özcan, M.; Gresnigt, M.M.M. Clinical performance of direct composite resin versus indirect restorations on endodontically treated posterior teeth: A systematic review and meta-analysis. J. Prosthet. Dent. 2023, 130, 295–306. [Google Scholar] [CrossRef]
- Fan, J.; Xu, Y.; Si, L.; Li, X.; Fu, B.; Hannig, M. Long-term clinical performance of composite resin or ceramic inlays, onlays, and overlays: A systematic review and meta-analysis. Oper. Dent. 2021, 46, 25–44. [Google Scholar] [CrossRef]
- Dioguardi, M.; Alovisi, M.; Comba, A.; Baldi, A.; Troiano, G.; Cadenaro, M.; Scotti, N. The influence of indirect bonded restorations on clinical prognosis of endodontically treated teeth: A systematic review and meta-analysis. Dent. Mater. 2022, 38, e203–e219. [Google Scholar] [CrossRef]
- Morimoto, S.; Rebello de Sampaio, F.B.W.; Braga, M.M.; Sesma, N.; Özcan, M. Survival rate of resin and ceramic inlays, onlays, and overlays: A systematic review and meta-analysis. J. Dent. Res. 2016, 95, 985–994. [Google Scholar] [CrossRef]
- Shu, X.; Mai, Q.Q.; Blatz, M.; Price, R.; Wang, X.D.; Zhao, K. Direct and indirect restorations for endodontically treated teeth: A systematic review and meta-analysis, IAAD 2017 Consensus Conference Paper. J. Adhes. Dent. 2018, 20, 183–194. [Google Scholar]
- Da Veiga, A.M.A.; Cunha, A.C.; Ferreira, D.M.T.P.; da Silva Fidalgo, T.K.; Chianca, T.K.; Reis, K.R.; Maia, L.C. Longevity of direct and indirect resin composite restorations in permanent posterior teeth: A systematic review and meta-analysis. J. Dent. 2016, 54, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Moher, D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.; Thomas, J. Cochrane Handbook for Systematic Reviews of Interventions Version 6.4. 2023. Available online: https://training.cochrane.org/handbook/current (accessed on 13 February 2024).
- Camacho, G.B.; Gonçalves, M.; Nonaka, T.; Osório, A.B. Fracture strength of restored premolars. Am. J. Dent. 2007, 20, 121–124. [Google Scholar] [PubMed]
- Cobankara, F.K.; Unlu, N.; Cetin, A.R.; Ozkan, H.B. The effect of different restoration techniques on the fracture resistance of endodontically-treated molars. Oper. Dent. 2008, 33, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Coelho-De-Souza, F.H.; Camacho, G.B.; Demarco, F.F.; Powers, J.M. Fracture resistance and gap formation of MOD restorations: Influence of restorative technique, bevel preparation and water storage. Oper. Dent. 2008, 33, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Plotino, G.; Buono, L.; Grande, N.M.; Lamorgese, V.; Somma, F. Fracture resistance of endodontically treated molars restored with extensive composite resin restorations. J. Prosthet. Dent. 2008, 99, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Ragauska, A.; Apse, P.; Kasjanovs, V.; Berzina-Cimdina, L. Influence of ceramic inlays and composite fillings on fracture resistance of premolars in vitro. Stomatologija 2008, 10, 121–126. [Google Scholar] [PubMed]
- Soares, P.V.; Santos-Filho, P.C.F.; Martins, L.R.M.; Soares, C.J. Influence of restorative technique on the biomechanical behavior of endodontically treated maxillary premolars. Part I: Fracture resistance and fracture mode. J. Prosthet. Dent. 2008, 99, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Batalha-Silva, S.; de Andrada, M.A.C.; Maia, H.P.; Magne, P. Fatigue resistance and crack propensity of large MOD composite resin restorations: Direct versus CAD/CAM inlays. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2013, 29, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Bianchi ESilva, A.A.; Ghiggi, P.C.; Mota, E.G.; Borges, G.A.; Burnett, L.H.; Spohr, A.M. Influence of restorative techniques on fracture load of endodontically treated premolars. Stomatologija 2013, 15, 123–128. [Google Scholar]
- Frankenberger, R.; Zeilinger, I.; Krech, M.; Mörig, G.; Naumann, M.; Braun, A.; Roggendorf, M.J. Stability of endodontically treated teeth with differently invasive restorations: Adhesive vs. non-adhesive cusp stabilization. Dent. Mater. 2015, 31, 1312–1320. [Google Scholar] [CrossRef] [PubMed]
- Al Amri, M.D.; Al-Johany, S.; Sherfudhin, H.; Al Shammari, B.; Al Mohefer, S.; Al Saloum, M.; Al Qarni, H. Fracture resistance of endodontically treated mandibular first molars with conservative access cavity and different restorative techniques: An in vitro study. Aust. Endod. J. 2016, 42, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Bromberg, C.R.; Alves, C.B.; Stona, D.; Spohr, A.M.; Rodrigues-Junior, S.A.; Melara, R.; Burnett, L.H., Jr. Fracture resistance of endodontically treated molars restored with horizontal fiberglass posts or indirect techniques. J. Am. Dent. Assoc. 2016, 147, 952–958. [Google Scholar] [CrossRef] [PubMed]
- Özkir, S.E. Effect of restoration material on stress distribution on partial crowns: A 3D finite element analysis. J. Dent. Sci. 2018, 13, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Soares, L.M.; Razaghy, M.; Magne, P. Optimization of large MOD restorations: Composite resin inlays vs. short fiber-reinforced direct restorations. Dent. Mater. 2018, 34, 587–597. [Google Scholar] [CrossRef]
- Mergulhão, V.A.; de Mendonça, L.S.; de Albuquerque, M.S.; Braz, R. Fracture resistance of endodontically treated maxillary premolars restored with different methods. Oper. Dent. 2019, 44, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, C.; Dionysopoulos, D.; Tolidis, K.; Kouros, P.; Koliniotou-Koumpia, E.; Tsitrou, E.A. Structural integrity evaluation of large MOD restorations fabricated with a bulk-fill and a CAD/CAM resin composite material. Oper. Dent. 2019, 44, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Prechtel, A.; Stawarczyk, B.; Hickel, R.; Edelhoff, D.; Reymus, M. Fracture load of 3D printed PEEK inlays compared with milled ones, direct resin composite fillings, and sound teeth. Clin. Oral. Investig. 2020, 24, 3457–3466. [Google Scholar] [CrossRef] [PubMed]
- Bajunaid, S.O.; AlSadhan, N.O.; AlBuqmi, N.; Alghamdi, R. Influence of type of final restoration on the fracture resistance and fracture mode of endodontically treated premolars with occluso-mesial cavities. Saudi Dent. J. 2021, 33, 316–321. [Google Scholar] [CrossRef]
- Yazdi, H.K.; Sohrabi, N.; Mostofi, S.N. Effect of direct composite and indirect ceramic onlay restorations on fracture resistance of endodontically treated maxillary premolars. Front. Dent. 2020, 17, 1–8. [Google Scholar]
- Daher, R.; Ardu, S.; Di Bella, E.; Rocca, G.T.; Feilzer, A.J.; Krejci, I. Fracture strength of non-invasively reinforced MOD cavities on endodontically treated teeth. Odontology 2021, 109, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Hofsteenge, J.W.; van den Heijkant, I.A.; Cune, M.S.; Bazos, P.K.; van der Made, S.; Kerdijk, W.; Gresnigt, M.M.M. Influence of preparation design and restorative material on fatigue and fracture strength of restored maxillary premolars. Oper. Dent. 2021, 46, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Kim, B.S.; Kim, H.; Cho, S.Y. Occlusal stress distribution and remaining crack propagation of a cracked tooth treated with different materials and designs: 3D finite element analysis. Dent. Mater. 2021, 37, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Althaqafi, K.A. Performance of direct and indirect onlay restorations for structurally compromised teeth. J. Prosthet. Dent. 2023, S0022-3913, 00549-8. [Google Scholar] [CrossRef] [PubMed]
- Garoushi, S.; Akbaşak-Sungur, A.Ö.; Erkut, S.; Vallittu, P.K.; Uctasli, S.; Lassila, L. Evaluation of fracture behavior in short fiber-reinforced direct and indirect overlay restorations. Clin. Oral. Investig. 2023, 27, 5449–5458. [Google Scholar] [CrossRef] [PubMed]
- Tsertsidou, V.; Mourouzis, P.; Dionysopoulos, D.; Pandoleon, P.; Tolidis, K. Fracture resistance of class II MOD cavities restored by direct and indirect techniques and different materials combination. Polymers 2023, 15, 341–343. [Google Scholar] [CrossRef] [PubMed]
- Mazzetti, T.; Collares, K.; Rodolfo, B.; da Rosa Rodolpho, P.A.; van de Sande, F.H.; Cenci, M.S. 10-year practice-based evaluation of ceramic and direct composite veneers. Dent. Mater. 2022, 38, 898–906. [Google Scholar] [CrossRef] [PubMed]
- Kaisarly, D.; Gezawi, M.E. Polymerization shrinkage assessment of dental resin composites: A literature review. Odontology 2016, 104, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.J.; Faria-E-Silva, A.L.; de Rodrigues, M.P.; Vilela, A.B.F.; Pfeifer, C.S.; Tantbirojn, D.; Versluis, A. Polymerization shrinkage stress of composite resins and resin cements—What do we need to know? Braz. Oral Res. 2017, 31, e62. [Google Scholar] [CrossRef]
- Lima, F.F.; Neto, C.F.; Rubo, J.H.; Santos, G.C.; Moraes Coelho Santos, M.J. Marginal adaptation of CAD-CAM onlays: Influence of preparation design and impression technique. J. Prosthet. Dent. 2018, 120, 396–402. [Google Scholar] [CrossRef]
- Santos, E.R.D.; Busato, A.L. Microleakage in posterior teeth with different materials and different types of cavities. Indian J. Dent. Res. 2019, 30, 783–787. [Google Scholar] [CrossRef] [PubMed]
- Nandini, S. Indirect resin composites. J. Conserv. Dent. JCD 2010, 13, 184–194. [Google Scholar] [CrossRef]
- Nasr, E.; Makhlouf, A.C.; Zebouni, E.; Makzoumé, J. All-ceramic computer-aided design and computer-aided manufacturing restorations: Evolution of structures and criteria for clinical application. J. Contemp. Dent. Pract. 2019, 20, 516–523. [Google Scholar] [PubMed]
- Dammaschke, T.; Nykiel, K.; Sagheri, D.; Schäfer, E. Influence of coronal restorations on the fracture resistance of root canal-treated premolar and molar teeth: A retrospective study. Aust. Endod. J. 2013, 39, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Park, J.K.; Lee, G.H.; Kim, J.H.; Park, M.G.; Ko, C.C.; Kim, H.I.; Kwon, Y.H. Polymerization shrinkage, flexural and compression properties of low-shrinkage dental resin composites. Dent. Mater. J. 2014, 33, 104–110. [Google Scholar] [CrossRef]
- Ilie, N.; Hilton, T.J.; Heintze, S.D.; Hickel, R.; Watts, D.C.; Silikas, N.; Ferracane, J.L. Academy of Dental Materials guidance-Resin composites: Part I-Mechanical properties. Dent. Mater. 2017, 33, 880–894. [Google Scholar] [CrossRef]
Database | Search String |
---|---|
Medline | ((“mechanical tests” [Mesh] OR “mechanical phenomena” [Mesh] OR “mechanical properties” [tiab] OR “mechanical behavior” [tiab] OR “mechanical performance” [tiab] OR “mechanical strength” [tiab] OR “mechanical evaluation” [tiab] OR “load” [tiab]) AND (“Composite Resins” [Mesh] OR “direct” [tiab]) AND (“indirect” [tiab] OR “Computer-Aided Design” [Mesh] OR “computer-aided design/ manufacturing” OR “Inlays” [Mesh] OR “Onlays” [tiab] OR “Dental Porcelain” [Mesh]) AND (“posterior teeth” [tiab] OR “molar” [Mesh] OR “bicuspid” [Mesh] OR “premolar” [tiab])) Run data search: 3 February 2024 (611 results) |
Embase | ((mechanical strength OR load) AND (composite resins OR direct) AND (indirect OR computer-aided design OR computer-aided design/manufacturing OR inlays OR onlays OR dental porcelain) AND (posterior teeth OR molar OR bicuspid OR premolar)) Run data search: 3 February 2024 (110 results) |
Central | #1‘direct restoration:ti,ab,kw’,#2‘indirect restoration:ti,ab,kw’,#3‘mechanical test:ti,ab,kw’,#4‘#1 AND #2 AND #3‘. Run data search: 3 February 2024 (6 results) |
Year of Publication | Author(s) | Study Title | Study Type | Study Population | Endodontic Treatment | Cavity Configuration | Number of Teeth per Group | Evaluated Direct Materials | Evaluated Indirect Materials | Aging Procedure | Mechanical Testing | Evaluation of Fracture Pattern |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2007 | Camacho et al. [24] | Fracture strength of restored premolars | In vitro study | 120 maxillar premolars | No | MOD cavities | 10 | 1. Composite resin (Z-250) 2. Conventional amalgam restorations (GS-80) 3. Bonded amalgam restorations. | 1. Composite resin (Z-250) 2. Ceramic (Vitadur Alpha) | No | Fracture resistance test: static compressive strength | Yes |
2008 | Cobankara et al. [25] | The effect of different restoration techniques on the fracture resistance of endodontically-treated molars | In vitro study | 60 mandibular molars | Yes | MOD cavities | 10 | 1. Amalgam 2. Composite resin (Clearfil Photoposterior) 3. Polyethylene ribbon fiber (Ribbond) + Composite resin | Ceramic (Estenia) | Yes | Fracture resistance test: static compressive strength | Yes |
2008 | Coelho-De-Souza et al. [26] | Fracture resistance and gap formation of MOD restorations: influence of restorative technique, bevel preparation and water storage | In vitro study | 100 premolars | No | MOD cavities | 10 | Composite resin (Filtek Z250) | Composite resin (Filtek Z250) | Yes | Fracture resistance test: static compressive strength | Yes |
2008 | Plotino et al. [27] | Fracture resistance of endodontically treated molars restored with extensive composite resin restorations | In vitro study | 45 mandibular molars | Yes | Class II MO cavities + reduction of 2 mesial cusps | 15 | Composite resin (Estelite Sigma) | Composite resin (Estelite Sigma) | No | Fracture resistance test: static compressive strength | Yes |
2008 | Ragauska et al. [28] | Influence of ceramic inlays and composite fillings on fracture resistance of premolars in vitro | In vitro study | 27 premolars | No | MOD cavities | 9 | Composite resin (Filtek P60). | Ceramic (Finesse) | No | Fracture resistance test: static compressive strength | Yes |
2008 | Soares et al. [29] | Influence of restorative technique on the biomechanical behavior of endodontically treated maxillary premolars. Part I: Fracture resistance and fracture mode | In vitro study | 70 maxillar premolars | Yes | MOD cavities | 10 | 1. Amalgam 2. Composite resin (Filtek Supreme) | 1. Composite resin (SR Adoro) 2. Ceramic (IPS Empress). | No | Fracture resistance test: static compressive strength | Yes |
2012 | Batalha-Silvaa et al. [30] | Fatigue resistance and crack propensity of large MOD composite resin restorations: Direct versus CAD/CAM inlays | In vitro study | 32 maxillar molars | No | MOD cavities | 15 for direct 17 for indirect | Composite resin (Miris2) | Composite resin (CEREC inlay with Paradigm MZ100) | No | Cyclic-load-to-failure test | Yes |
2013 | Bianchi E Silva et al. [31] | Influence of restorative techniques on fracture load of endodontically treated premolars | In vitro study | 60 maxillar premolars | Yes | MOD with and without cusp reduction | 10 | Four Seasons composite resin (Ivoclar/Vivadent) | 1. Composite resin (Adoro) with and without cusp coverage 2. Ceramic (IPS Empress) with and without cusp coverage | No | Fracture resistance test: static compressive strength | Yes |
2015 | Frankenberger et al. [32] | Stability of endodontically treated teeth with differently invasive restorations: Adhesive vs. non-adhesive cusp stabilization | In vitro study | 264 third molars | Yes | 1. MO 2. MOD 3. MO + cusp reduction 4. MOD + cusp reduction | 8 | 1. Bulkfill composite resin (Tetric EvoCeram Bulk Fill) 2. Amalgam | 1. Composite resin (IPS Empress) 2. Celtra Duo 3. e.max CAD 4. Lava Ultimate 5. Enamic 6. Gold | Yes | Fracture resistance test: static compressive strength | No |
2016 | Al Amri et al. [33] | Fracture resistance of endodontically treated mandibular first molars with conservative access cavity and different restorative techniques: An in vitro study | In vitro study | 72 mandibular first molar teeth | Yes | 1. Amalgam cavity 2. Only access cavity 3. Onlay: MOD cavities + cusp reduction 4. Inlay: class I | 12 | 1. Amalgam 2. Composite resin (Tetric_ EvoCeram) | 1. Ceramic inlay (IPS e.max) with and without cusp coverage 2. Zirconium crown | No | Fracture resistance test: static compressive strength | Yes |
2016 | Bromberg et al. [34] | Fracture resistance of endodontically treated molars restored with horizontal fiberglass posts or indirect techniques | In vitro study | 50 third molars | Yes | MOD cavities (+ cusp reduction for onlays) | 10 | 1. Composite resin (Filtek Z230 XT) 2. Transfixed fiberglass post + direct composite resin Filtek Z230 XT (3M ESPE) | Ceramic (Lava Ultimate) with and without cusp coverage | Yes | Fracture resistance test: static compressive strength | Yes |
2017 | Ozkir [35] | Effect of restoration material on stress distribution on partial crowns: A 3D finite element analysis | FEA | Maxillar first molar tooth | Simulated | MOD + Functional cusps reduction | 3 | 1. Bulkfill composite resin 2. Conventional hybrid composite resin | 1. Ceramic 2. Composite resin | - | Von Mises stress values, stress distribution and concentration levels | No |
2017 | Soares et al. [36] | Optimization of large MOD restorations: Composite resin inlays vs. short fiber-reinforced direct restorations | In vitro study | 45 maxillar molars | No | MOD cavities | 15 | Fiber-reinforced composite resin base (EverX Posterior, GC) layered with direct composite (Gra- dia Direct posterior; GC, Lueven, Belgium) | 1. Semi-direct inlay (Gradia Direct Posterior; GC, Lueven, Belgium) 2. CAD/CAM inlay (Cerasmart; GC) | Yes | Cyclic-load-to-failure test | Yes |
2019 | Mergulhão et al. [37] | Fracture resistance of endodontically treated maxillary premolars restored with different methods | In vitro study | 50 maxillar premolars | Yes | MOD cavities | 10 | 1. Conventional composite resin (Filtek Z350XT) 2. Conventional composite resin restoration (Filtek Z350XT) + horizontal glass fiber post (White Post DC) 3. Bulkfill flowable (Filtek) and bulkfill restorative composites (Filtek) | Ceramic (IPS e-max) | Yes | Fracture resistance test: static compressive strength | Yes |
2019 | Papadopoulos et al. [38] | Structural integrity evaluation of large MOD restorations fabricated with a bulk-fill and a CAD/CAM resin composite material | In vitro study | 51 mandibular molars | No | MOD | 17 | Bulkfill composite resin (Filtek Bulk-Fill Posterior Restorative) | Composite CAD/CAM inlays (Lava Ultimate) | Yes | Fracture resistance test: static compressive strength | Yes |
2020 | Prechtel et al. [39] | Fracture load of 3D printed PEEK inlays compared with milled ones, direct resin composite fillings, and sound teeth | In vitro study | 112 molars | No | Class I + cusp reduction | 16 | Composite resin (Tetric EvoCeram) | 1. Essentium PEEK 2. KetaSpire PEEK MS-NT1 (KET) 3. VESTAKEEP i4 G 4. VICTREX PEEK 450G 5. PEEK JUVORA Dental Disc 2 | Yes | Fracture resistance test: static compressive strength | Yes |
2020 | Bajunaid et al. [40] | Influence of type of final restoration on the fracture resistance and fracture mode of endodontically treated premolars with occluso-mesial cavities | In vitro study | 60 maxillar premolars | Yes | MO cavities | 15 | Composite resin (Filtek Z250) | 1. Composite resin (Filtek Z250) 2. Ceramic (IPS E.Max CAD/CAM) | Yes | Fracture resistance test: static compressive strength | Yes |
2020 | Yazdi et al. [41] | Effect of direct composite and indirect ceramic onlay restorations on fracture resistance of endodontically treated maxillary premolars | In vitro study | 45 maxillar premolars | Yes | MOD + cusp reduction | 15 | Composite resin (P60) | Ceramic (IPS e.max) | Yes | Fracture resistance test: static compressive strength | Yes |
2021 | Daher et al. [42] | Fracture strength of non-invasively reinforced MOD cavities on endodontically treated teeth | In vitro study | 60 mandibular molars | Yes | MOD cavities (+ cusp reduction for onlays) | 12 | 1. Composite resin (Tetric EvoCeram) 2. Composite resin + reinforced strip (Tetric EvoCeram + Dentapreg) | Composite resin (Tetric CAD) with and without cusp reduction | Yes | Fracture resistance test: static compressive strength | Yes |
2021 | Hofsteenge et al. [43] | Influence of preparation design and restorative material on fatigue and fracture strength of restored maxillary premolars | In vitro study | 90 maxillar premolars | No | MOD with and without cusp reduction | 10 | 1. Composite resin (Filtek Supreme XTE) at 3mm with and without cusp reduction 2. Composite resin (Filtek Supreme XTE) at 5mm with and without cusp reduction | 1. Ceramic (Shofu Vintage LD Press) at 3mm with and without cusp reduction 2. Ceramic (Shofu Vintage LD Press) at 5mm with and without cusp reduction | Yes | Fracture resistance test: static compressive strength | Yes |
2021 | Kim et al. [44] | Occlusal stress distribution and remaining crack propagation of a cracked tooth treated with different materials and designs: 3D finite element analysis | FEA | Mandibular first molar | No | 1. Inlay form 2. Onlay form 3. Crown restoration | 8 | Composite resin (Filtek Z350) | 1. Composite resin (Tescera ATL) 2. Ceramic (Emax) 3. Gold | - | Von Mises stress values, stress distribution and concentration levels | No |
2023 | Althaqafi [45] | Performance of direct and indirect onlay restorations for structurally compromised teeth | In vitro study | 54 mandibular molars | No | MOD cavities + cusp reduction | 9 | Composite resin (everX Posterior) | 1. Composite resin (Grandio) 2. Ceramic (SHOFU Block HC) | Yes | Fracture resistance test: static compressive strength | Yes |
2023 | Garoushi et al. [46] | Evaluation of fracture behavior in short fiber-reinforced direct and indirect overlay restorations | In vitro study | 120 molars | No | MOD cavities + cusp reduction | 15 | 1. Particulate-filled composite (PFC) (G-aenial Posterior) 2. PFC + different increment of short-fiber composite (SFC) (everX Flow Bulk shade) | 1. Cerasmart with SFC 2. Cerasmart without SFC 3. LiSi emax with SFC 4. Lisi emax without SFC | Yes | Fracture resistance test: static compressive strength | Yes |
2023 | Tsertsidou et al. [47] | Fracture resistance of Class II MOD cavities restored by direct and indirect techniques and different materials combination | In vitro study | 60 maxillar molars | No | MOD | 15 | 1. Composite resin (Tetric) 2. Short-fiber-reinforced composite (EverX posterior Bulk shade) + composite resin 3. Ribbond + composite resin | Composite resin (Brilliant Crios) | Yes | Fracture resistance test: static compressive strength | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moussa, C.; Savard, G.; Rochefort, G.; Renaud, M.; Denis, F.; Daou, M.H. Fracture Resistance of Direct versus Indirect Restorations on Posterior Teeth: A Systematic Review and Meta-Analysis. Bioengineering 2024, 11, 536. https://doi.org/10.3390/bioengineering11060536
Moussa C, Savard G, Rochefort G, Renaud M, Denis F, Daou MH. Fracture Resistance of Direct versus Indirect Restorations on Posterior Teeth: A Systematic Review and Meta-Analysis. Bioengineering. 2024; 11(6):536. https://doi.org/10.3390/bioengineering11060536
Chicago/Turabian StyleMoussa, Carol, Guillaume Savard, Gael Rochefort, Matthieu Renaud, Frédéric Denis, and Maha H. Daou. 2024. "Fracture Resistance of Direct versus Indirect Restorations on Posterior Teeth: A Systematic Review and Meta-Analysis" Bioengineering 11, no. 6: 536. https://doi.org/10.3390/bioengineering11060536
APA StyleMoussa, C., Savard, G., Rochefort, G., Renaud, M., Denis, F., & Daou, M. H. (2024). Fracture Resistance of Direct versus Indirect Restorations on Posterior Teeth: A Systematic Review and Meta-Analysis. Bioengineering, 11(6), 536. https://doi.org/10.3390/bioengineering11060536