Stepwise Corrected Attention Registration Network for Preoperative and Follow-Up Magnetic Resonance Imaging of Glioma Patients
Abstract
:1. Introduction
- Our method is designed as a bidirectional registration framework to address the problem of non-correspondence voxels, avoiding the irrationality of the registration results of areas with missing correspondence and balancing the information input into the model from paired registered images.
- Our model embraces three levels of stepwise registration to capture the most accurate deformation field at the initial level and refines the deformation field based on the item output from the upper-level registration network at the following level. Thus, it is capable of generating an accurate and reasonable deformation field.
- To further eliminate adverse effects of possible registration biases, our model incorporates a corrected attention module that enhances the model’s focus on areas with significant deformation and integrates the clinical data of the area if that certain pathological area of the preoperative image should have no corresponding relationship.
2. Methods
2.1. Problem Statement
2.2. Bidirectional Registration Framework
2.3. Stepwise Registration Network
2.4. Corrected Attention Module
2.5. Loss Function
3. Experiments and Results
3.1. Dataset
3.2. Experimental Details
3.3. Evaluation Metrics
3.4. Comparative Experiment
3.4.1. Experiment Design
3.4.2. Results and Analysis
3.5. Ablation Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MRI | magnetic resonance imaging; |
CNN | convolutional neural network; |
BraTS | Brain Tumor Segmentation; |
MICCAI | Medical Image Computing and Computer-Assisted Intervention Society; |
BraTS-Reg | Brain Tumor Sequence Registration; |
TRE | target registration error; |
DIR | deformable image registration; |
NCC | normalized cross-correlation; |
SD | standard deviation. |
References
- Yang, X.; Ghafourian, P.; Sharma, P.; Salman, K.; Martin, D.; Fei, B. Nonrigid registration and classification of the kidneys in 3D dynamic contrast enhanced (DCE) MR images. In Proceedings of the Medical Imaging 2012: Image Processing, San Diego, CA, USA, 4–9 February 2012; Haynor, D.R., Ourselin, S., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2012; Volume 8314, p. 83140B. [Google Scholar] [CrossRef]
- Anzidei, M.; Argiro, R.; Porfiri, A.; Boni, F.; Anile, M.; Zaccagna, F.; Vitolo, D.; Saba, L.; Napoli, A.; Leonardi, A.; et al. Preliminary clinical experience with a dedicated interventional robotic system for CT-guided biopsies of lung lesions: A comparison with the conventional manual technique. Eur. Radiol. 2015, 25, 1310–1316. [Google Scholar] [CrossRef] [PubMed]
- Tekchandani, H.; Verma, S.; Londhe, N.D.; Jain, R.R.; Tiwari, A. Computer aided diagnosis system for cervical lymph nodes in CT images using deep learning. Biomed. Signal Process. Control 2022, 71, 103158. [Google Scholar] [CrossRef]
- Krilavicius, T.; Zliobaite, I.; Simonavicius, H.; Jarusevicius, L. Predicting respiratory motion for real-time tumour tracking in radiotherapy. arXiv 2015, arXiv:1508.00749. [Google Scholar]
- Andersen, E.S.; Østergaard Noe, K.; Sørensen, T.S.; Nielsen, S.K.; Fokdal, L.; Paludan, M.; Lindegaard, J.C.; Tanderup, K. Simple DVH parameter addition as compared to deformable registration for bladder dose accumulation in cervix cancer brachytherapy. Radiother. Oncol. 2013, 107, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Jones, C.; Lee, J.; Wu, P.; Vagdargi, P.; Uneri, A.; Helm, P.; Luciano, M.; Anderson, W.; Siewerdsen, J. Deformable MR-CT image registration using an unsupervised, dual-channel network for neurosurgical guidance. Med. Image Anal. 2022, 75, 102292. [Google Scholar] [CrossRef]
- Brock, K.K.; Mutic, S.; McNutt, T.R.; Li, H.; Kessler, M.L. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med. Phys. 2017, 44, e43–e76. [Google Scholar] [CrossRef]
- Velec, M.; Moseley, J.L.; Eccles, C.L.; Craig, T.; Sharpe, M.B.; Dawson, L.A.; Brock, K.K. Effect of Breathing Motion on Radiotherapy Dose Accumulation in the Abdomen Using Deformable Registration. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 265–272. [Google Scholar] [CrossRef]
- Huang, Y.; Ahmad, S.; Fan, J.; Shen, D.; Yap, P.T. Difficulty-aware hierarchical convolutional neural networks for deformable registration of brain MR images. Med. Image Anal. 2021, 67, 101817. [Google Scholar] [CrossRef]
- Mok, T.C.W.; Chung, A.C.S. Large Deformation Diffeomorphic Image Registration with Laplacian Pyramid Networks. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2020, Lima, Peru, 4–8 October 2020; Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L., Eds.; Springer: Cham, Switzerland, 2020; pp. 211–221. [Google Scholar]
- Ginat, D.T.; Schaefer, P.W.; Moisi, M.D. Imaging the Intraoperative and Postoperative Brain. In Atlas of Postsurgical Neuroradiology: Imaging of the Brain, Spine, Head, and Neck; Ginat, D.T., Westesson, P.L.A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 183–258. [Google Scholar] [CrossRef]
- Bajcsy, R.; Kovačič, S. Multiresolution elastic matching. Comput. Vis. Graph. Image Process. 1989, 46, 1–21. [Google Scholar] [CrossRef]
- Thirion, J.P. Image matching as a diffusion process: An analogy with Maxwell’s demons. Med. Image Anal. 1998, 2, 243–260. [Google Scholar] [CrossRef]
- Rueckert, D.; Sonoda, L.; Hayes, C.; Hill, D.; Leach, M.; Hawkes, D. Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Trans. Med. Imaging 1999, 18, 712–721. [Google Scholar] [CrossRef] [PubMed]
- Avants, B.; Epstein, C.; Grossman, M.; Gee, J. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 2008, 12, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Yang, X.; Aylward, S.; Kwitt, R.; Niethammer, M. Efficient registration of pathological images: A joint PCA/image-reconstruction approach. In Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, VIC, Australia, 18–21 April 2017; pp. 10–14. [Google Scholar] [CrossRef]
- Sokooti, H.; de Vos, B.; Berendsen, F.; Lelieveldt, B.P.F.; Išgum, I.; Staring, M. Nonrigid Image Registration Using Multi-scale 3D Convolutional Neural Networks. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2017, Quebec City, QC, Canada, 11–13 September 2017; Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S., Eds.; Springer: Cham, Switzerland, 2017; pp. 232–239. [Google Scholar]
- Eppenhof, K.A.J.; Pluim, J.P.W. Pulmonary CT Registration Through Supervised Learning With Convolutional Neural Networks. IEEE Trans. Med. Imaging 2019, 38, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- de Vos, B.D.; Berendsen, F.F.; Viergever, M.A.; Sokooti, H.; Staring, M.; Išgum, I. A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 2019, 52, 128–143. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Kim, D.H.; Park, S.H.; Kim, J.; Lee, J.G.; Ye, J.C. CycleMorph: Cycle consistent unsupervised deformable image registration. Med. Image Anal. 2021, 71, 102036. [Google Scholar] [CrossRef]
- Balakrishnan, G.; Zhao, A.; Sabuncu, M.R.; Guttag, J.; Dalca, A.V. VoxelMorph: A Learning Framework for Deformable Medical Image Registration. IEEE Trans. Med. Imaging 2019, 38, 1788–1800. [Google Scholar] [CrossRef]
- Dalca, A.V.; Balakrishnan, G.; Guttag, J.; Sabuncu, M.R. Unsupervised Learning for Fast Probabilistic Diffeomorphic Registration. In Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; pp. 729–738. [Google Scholar] [CrossRef]
- Fan, J.; Cao, X.; Yap, P.T.; Shen, D. BIRNet: Brain image registration using dual-supervised fully convolutional networks. Med. Image Anal. 2019, 54, 193–206. [Google Scholar] [CrossRef]
- Hering, A.; van Ginneken, B.; Heldmann, S. mlVIRNET: Multilevel Variational Image Registration Network. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2019, Shenzhen, China, 13–17 October 2019; Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.T., Khan, A., Eds.; Springer: Cham, Switzerland, 2019; pp. 257–265. [Google Scholar]
- Che, T.; Wang, X.; Zhao, K.; Zhao, Y.; Zeng, D.; Li, Q.; Zheng, Y.; Yang, N.; Wang, J.; Li, S. AMNet: Adaptive multi-level network for deformable registration of 3D brain MR images. Med. Image Anal. 2023, 85, 102740. [Google Scholar] [CrossRef]
- Mok, T.C.W.; Chung, A.C.S. Unsupervised Deformable Image Registration with Absent Correspondences in Pre-operative and Post-Recurrence Brain Tumor MRI Scans. arXiv 2022, arXiv:2206.03900. [Google Scholar]
- Chen, C.; Liu, X.; Ding, M.; Zheng, J.; Li, J. 3D Dilated Multi-Fiber Network for Real-time Brain Tumor Segmentation in MRI. In Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Shenzhen, China, 13–17 October 2019; Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.T., Khan, A., Eds.; Springer: Cham, Switzerland, 2019; pp. 257–265. [Google Scholar]
- Baheti, B.; Chakrabarty, S.; Akbari, H.; Bilello, M.; Wiestler, B.; Schwarting, J.; Calabrese, E.; Rudie, J.; Abidi, S.; Mousa, M.; et al. The Brain Tumor Sequence Registration (BraTS-Reg) Challenge: Establishing Correspondence Between Pre-Operative and Follow-up MRI Scans of Diffuse Glioma Patients. arXiv 2024, arXiv:2112.06979. [Google Scholar]
- Waldmannstetter, D.; Wiestler, B.; Schwarting, J.; Ezhov, I.; Metz, M.; Bakas, S.; Baheti, B.; Chakrabarty, S.; Kirschke, J.S.; Heckemann, R.A.; et al. Framing image registration as a landmark detection problem for better representation of clinical relevance. arXiv 2023, arXiv:2308.01318. [Google Scholar]
Origin TRE | Case | Origin | SyN | VoxelMorph | DIRAC | Ours |
---|---|---|---|---|---|---|
<3 mm | 1 | 2.61 | 5.95 | 4.00 | 1.58 | 1.57 |
2 | 1.61 | 14.77 | 2.56 | 0.79 | 1.03 | |
3 | 2.82 | 6.99 | 3.91 | 1.26 | 1.28 | |
4 | 1.62 | 1.70 | 2.45 | 1.15 | 0.74 | |
5 | 1.47 | 1.61 | 2.25 | 1.43 | 1.40 | |
6 | 2.54 | 5.63 | 4.19 | 1.59 | 1.76 | |
>3 mm | 7 | 3.51 | 8.41 | 5.37 | 1.93 | 1.35 |
8 | 4.17 | 4.45 | 6.44 | 3.21 | 2.79 | |
9 | 3.77 | 6.60 | 9.21 | 2.89 | 2.83 | |
10 | 4.06 | 8.88 | 10.73 | 1.31 | 1.24 | |
11 | 6.56 | 14.83 | 10.68 | 2.44 | 2.21 | |
12 | 12.69 | 20.91 | 20.97 | 3.84 | 3.79 | |
13 | 19.65 | 42.18 | 26.81 | 2.51 | 1.93 | |
14 | 5.12 | 15.41 | 8.45 | 2.05 | 2.05 | |
Mean ± SD | 5.16 ± 5.06 | 11.31 ± 10.05 | 8.43 ± 7.26 | 2.00 ± 0.88 | 1.85 ± 0.83 |
Fold | DIRAC | Ours |
---|---|---|
1 | 2.79 | 2.73 |
2 | 2.50 | 2.51 |
3 | 2.39 | 2.36 |
4 | 2.95 | 2.87 |
5 | 2.47 | 2.20 |
Average | 2.62 | 2.53 |
Our Method | TRE Result (mm) | |
---|---|---|
Stepwise Registration Network | Corrected Attention Module | |
✓ | 1.95 | |
✓ | 1.92 | |
✓ | ✓ | 1.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Zheng, Y.; Huang, D.; Wei, J.; Liu, T.; Wang, Y.; Liu, Y. Stepwise Corrected Attention Registration Network for Preoperative and Follow-Up Magnetic Resonance Imaging of Glioma Patients. Bioengineering 2024, 11, 951. https://doi.org/10.3390/bioengineering11090951
Feng Y, Zheng Y, Huang D, Wei J, Liu T, Wang Y, Liu Y. Stepwise Corrected Attention Registration Network for Preoperative and Follow-Up Magnetic Resonance Imaging of Glioma Patients. Bioengineering. 2024; 11(9):951. https://doi.org/10.3390/bioengineering11090951
Chicago/Turabian StyleFeng, Yuefei, Yao Zheng, Dong Huang, Jie Wei, Tianci Liu, Yinyan Wang, and Yang Liu. 2024. "Stepwise Corrected Attention Registration Network for Preoperative and Follow-Up Magnetic Resonance Imaging of Glioma Patients" Bioengineering 11, no. 9: 951. https://doi.org/10.3390/bioengineering11090951
APA StyleFeng, Y., Zheng, Y., Huang, D., Wei, J., Liu, T., Wang, Y., & Liu, Y. (2024). Stepwise Corrected Attention Registration Network for Preoperative and Follow-Up Magnetic Resonance Imaging of Glioma Patients. Bioengineering, 11(9), 951. https://doi.org/10.3390/bioengineering11090951