Integrating Wearable Sensor Signal Processing with Unsupervised Learning Methods for Tremor Classification in Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Description
2.2. Data Pre-Processing
2.2.1. Mean-Centering
2.2.2. Modulus of Mean-Centered Data
2.3. K-Means Clustering Model
Percentile Reduction
2.4. Classification Performance Evaluation
3. Results
3.1. Tremor vs. Non-Tremor Classification
3.2. Tremor Severity Classification
3.2.1. Multiclass Classification
3.2.2. Binary Classification of Higher vs. Milder Tremor Scores
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jankovic, J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 368–376. [Google Scholar] [CrossRef]
- Radlicka-Borysewska, A.; Jabłońska, J.; Lenarczyk, M.; Szumiec, Ł.; Harda, Z.; Bagińska, M.; Barut, J.; Pera, J.; Kreiner, G.; Wójcik, D.K.; et al. Non-motor symptoms associated with progressive loss of dopaminergic neurons in a mouse model of Parkinson’s disease. Front. Neurosci. 2024, 18, 1375265. [Google Scholar] [CrossRef] [PubMed]
- Corallo, F.; De Cola, M.C.; Lo Buono, V.; Di Lorenzo, G.; Bramanti, P.; Marino, S. Observational study of quality of life of P arkinson’s patients and their caregivers. Psychogeriatrics 2017, 17, 97–102. [Google Scholar] [CrossRef]
- Kipfer, S.; Stephan, M.A.; Schüpbach, W.M.; Ballinari, P.; Kaelin-Lang, A. Resting tremor in Parkinson disease: A negative predictor of levodopa-induced dyskinesia. Arch. Neurol. 2011, 68, 1037–1039. [Google Scholar] [CrossRef]
- Lyons, K.E.; Pahwa, R. Diagnosis and initiation of treatment in Parkinson’s disease. Int. J. Neurosci. 2011, 121, 27–36. [Google Scholar] [CrossRef]
- Hoehn, M.M.; Yahr, M.D. Parkinsonism: Onset, progression, and mortality. Neurology 1967, 17, 427. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. Off. J. Mov. Disord. Soc. 2008, 23, 2129–2170. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Lo, S.E.; Louis, E.D. Common misdiagnosis of a common neurological disorder: How are we misdiagnosing essential tremor? Arch. Neurol. 2006, 63, 1100–1104. [Google Scholar] [CrossRef] [PubMed]
- Schrag, A.; Münchau, A.; Bhatia, K.; Quinn, N.; Marsden, C. Essential tremor: An overdiagnosed condition? J. Neurol. 2000, 247, 955–959. [Google Scholar] [CrossRef] [PubMed]
- Perez, A.J.; Labrador, M.A.; Barbeau, S.J. G-sense: A scalable architecture for global sensing and monitoring. IEEE Netw. 2010, 24, 57–64. [Google Scholar] [CrossRef]
- Boukhennoufa, I.; Zhai, X.; Utti, V.; Jackson, J.; McDonald-Maier, K.D. Wearable sensors and machine learning in post-stroke rehabilitation assessment: A systematic review. Biomed. Signal Process. Control 2022, 71, 103197. [Google Scholar] [CrossRef]
- Cavallo, F.; Moschetti, A.; Esposito, D.; Maremmani, C.; Rovini, E. Upper limb motor pre-clinical assessment in Parkinson’s disease using machine learning. Park. Relat. Disord. 2019, 63, 111–116. [Google Scholar] [CrossRef] [PubMed]
- De, A.; Bhatia, K.P.; Volkmann, J.; Peach, R.; Schreglmann, S.R. Machine learning in tremor analysis: Critique and directions. Mov. Disord. 2023, 38, 717–731. [Google Scholar] [CrossRef] [PubMed]
- San-Segundo, R.; Zhang, A.; Cebulla, A.; Panev, S.; Tabor, G.; Stebbins, K.; Massa, R.E.; Whitford, A.; De la Torre, F.; Hodgins, J. Parkinson’s disease tremor detection in the wild using wearable accelerometers. Sensors 2020, 20, 5817. [Google Scholar] [CrossRef]
- Kim, H.B.; Lee, W.W.; Kim, A.; Lee, H.J.; Park, H.Y.; Jeon, H.S.; Kim, S.K.; Jeon, B.; Park, K.S. Wrist sensor-based tremor severity quantification in Parkinson’s disease using convolutional neural network. Comput. Biol. Med. 2018, 95, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.; Lee, W.; Park, H.; Lee, H.J.; Kim, S.K.; Kim, H.B.; Jeon, B.; Park, K.S. High-accuracy automatic classification of Parkinsonian tremor severity using machine learning method. Physiol. Meas. 2017, 38, 1980. [Google Scholar] [CrossRef]
- Garcia Santa Cruz, B.; Husch, A.; Hertel, F. Machine learning models for diagnosis and prognosis of Parkinson’s disease using brain imaging: General overview, main challenges, and future directions. Front. Aging Neurosci. 2023, 15, 1216163. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.J.; Catt, M.; Davies, M.J.; Edwardson, C.L.; Mirkes, E.M.; Khunti, K.; Yates, T.; Rowlands, A.V. Feature selection for unsupervised machine learning of accelerometer data physical activity clusters—A systematic review. Gait Posture 2021, 90, 120–128. [Google Scholar] [CrossRef]
- Ariza Colpas, P.; Vicario, E.; De-La-Hoz-Franco, E.; Pineres-Melo, M.; Oviedo-Carrascal, A.; Patara, F. Unsupervised human activity recognition using the clustering approach: A review. Sensors 2020, 20, 2702. [Google Scholar] [CrossRef] [PubMed]
- Dobbins, C.; Rawassizadeh, R. Towards clustering of mobile and smartwatch accelerometer data for physical activity recognition. Informatics 2018, 5, 29. [Google Scholar] [CrossRef]
- Arthur, D.; Vassilvitskii, S. k-means++: The Advantages of Careful Seeding; Stanford InfoLab: Stanford, CA, USA, 2007; Volume 7, pp. 1027–1035. [Google Scholar]
- Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- Surangsrirat, D.; Sri-Iesaranusorn, P.; Chaiyaroj, A.; Vateekul, P.; Bhidayasiri, R. Parkinson’s disease severity clustering based on tapping activity on mobile device. Sci. Rep. 2022, 12, 3142. [Google Scholar] [CrossRef] [PubMed]
- Machado, I.P.; Gomes, A.L.; Gamboa, H.; Paixão, V.; Costa, R.M. Human activity data discovery from triaxial accelerometer sensor: Non-supervised learning sensitivity to feature extraction parametrization. Inf. Process. Manag. 2015, 51, 204–214. [Google Scholar] [CrossRef]
- Rabelo, A.; Folador, J.P.; Cabral, A.M.; Lima, V.; Arantes, A.P.; Sande, L.; Vieira, M.F.; de Almeida, R.M.A.; Andrade, A.D.O. Identification and Characterization of Short-Term Motor Patterns in Rest Tremor of Individuals with Parkinson’s Disease. Healthcare 2022, 10, 2536. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.L.; Dinesh, K.; Snyder, C.W.; Xiong, M.; Tarolli, C.G.; Sharma, S.; Dorsey, E.R.; Sharma, G. A real-world study of wearable sensors in Parkinson’s disease. Npj Park. Dis. 2021, 7, 106. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar]
- Duncan, R.P.; Combs-Miller, S.A.; McNeely, M.E.; Leddy, A.L.; Cavanaugh, J.T.; Dibble, L.E.; Ellis, T.D.; Ford, M.P.; Foreman, K.B.; Earhart, G.M. Are the average gait speeds during the 10 meter and 6 minute walk tests redundant in Parkinson disease? Gait Posture 2017, 52, 178–182. [Google Scholar] [CrossRef]
- Singh, A.; Yadav, A.; Rana, A. K-means with Three different Distance Metrics. Int. J. Comput. Appl. 2013, 67, 13–17. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Society. Ser. C (Appl. Stat.) 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Friedrich, M.U.; Roenn, A.J.; Palmisano, C.; Alty, J.; Paschen, S.; Deuschl, G.; Ip, C.W.; Volkmann, J.; Muthuraman, M.; Peach, R.; et al. Validation and application of computer vision algorithms for video-based tremor analysis. Npj Digit. Med. 2024, 7, 165. [Google Scholar] [CrossRef] [PubMed]
- Vignoud, G.; Desjardins, C.; Salardaine, Q.; Mongin, M.; Garcin, B.; Venance, L.; Degos, B. Video-based automated assessment of movement parameters consistent with MDS-UPDRS III in Parkinson’s disease. J. Park. Dis. 2022, 12, 2211–2222. [Google Scholar] [CrossRef]
- Pang, Y.; Christenson, J.; Jiang, F.; Lei, T.; Rhoades, R.; Kern, D.; Thompson, J.A.; Liu, C. Automatic detection and quantification of hand movements toward development of an objective assessment of tremor and bradykinesia in Parkinson’s disease. J. Neurosci. Methods 2020, 333, 108576. [Google Scholar] [CrossRef] [PubMed]
- Shawen, N.; O’Brien, M.K.; Venkatesan, S.; Lonini, L.; Simuni, T.; Hamilton, J.L.; Ghaffari, R.; Rogers, J.A.; Jayaraman, A. Role of data measurement characteristics in the accurate detection of Parkinson’s disease symptoms using wearable sensors. J. Neuroeng. Rehabil. 2020, 17, 1–14. [Google Scholar] [CrossRef]
- Mahadevan, N.; Demanuele, C.; Zhang, H.; Volfson, D.; Ho, B.; Erb, M.K.; Patel, S. Development of digital biomarkers for resting tremor and bradykinesia using a wrist-worn wearable device. Npj Digit. Med. 2020, 3, 5. [Google Scholar] [CrossRef]
- Koçer, A.; Oktay, A.B. Nintendo Wii assessment of Hoehn and Yahr score with Parkinson’s disease tremor. Technol. Health Care 2016, 24, 185–191. [Google Scholar] [CrossRef]
- Nair, P.; Trisno, R.; Baghini, M.S.; Pendharkar, G.; Chung, H. Predicting early stage drug induced parkinsonism using unsupervised and supervised machine learning. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 776–779. [Google Scholar]
- Eckhardt, C.M.; Madjarova, S.J.; Williams, R.J.; Ollivier, M.; Karlsson, J.; Pareek, A.; Nwachukwu, B.U. Unsupervised machine learning methods and emerging applications in healthcare. Knee Surg. Sport. Traumatol. Arthrosc. 2023, 31, 376–381. [Google Scholar] [CrossRef]
- Trezza, A.; Visibelli, A.; Roncaglia, B.; Spiga, O.; Santucci, A. Unsupervised Learning in Precision Medicine: Unlocking Personalized Healthcare through AI. Appl. Sci. 2024, 14, 9305. [Google Scholar] [CrossRef]
- Porciuncula, F.; Roto, A.V.; Kumar, D.; Davis, I.; Roy, S.; Walsh, C.J.; Awad, L.N. Wearable movement sensors for rehabilitation: A focused review of technological and clinical advances. Pm&r 2018, 10, S220–S232. [Google Scholar]
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 2012, 9, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Murtagh, F.; Contreras, P. Algorithms for hierarchical clustering: An overview, II. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2017, 7, e1219. [Google Scholar] [CrossRef]
- Hady, M.F.A.; Schwenker, F. Semi-supervised learning. In Handbook on Neural Information Processing; Springer: Berlin/Heidelberg, Germany, 2013; pp. 215–239. [Google Scholar]
Severity | Description | Score |
---|---|---|
Normal | No tremor | 0 |
Slight | <1 cm in maximal amplitude | 1 |
Mild | ≥1 cm but <3 cm in maximal amplitude | 2 |
Moderate | ≥3 cm but <10 cm in maximal amplitude | 3 |
Severe | ≥10 cm in maximal amplitude | 4 |
Instance ID | MDS-UPDRS Score | Predominant Cluster | Correctly Classified |
---|---|---|---|
1 | 1 | 1 | Yes |
2 | 1 | 1 | Yes |
3 | 1 | 1 | Yes |
4 | 1 | 1 | Yes |
5 | 1 | 0 | No |
6 | 1 | 1 | Yes |
7 | 1 | 0 | No |
8 | 1 | 0 | No |
9 | 1 | 0 | No |
10 | 1 | 0 | No |
11 | 1 | 1 | Yes |
12 | 1 | 1 | Yes |
13 | 1 | 1 | Yes |
14 | 1 | 0 | No |
15 | 0 | 0 | Yes |
16 | 0 | 0 | Yes |
17 | 0 | 0 | Yes |
18 | 0 | 0 | Yes |
19 | 0 | 0 | Yes |
20 | 0 | 0 | Yes |
21 | 0 | 0 | Yes |
22 | 0 | 0 | Yes |
23 | 0 | 0 | Yes |
24 | 0 | 0 | Yes |
25 | 0 | 0 | Yes |
Instance ID | MDS-UPDRS Score | Predominant Cluster | Mapped Score | Correctly Classified |
---|---|---|---|---|
1 | 2 | 3 | 2 | Yes |
2 | 3 | 3 | 2 | No |
3 | 2 | 3 | 2 | Yes |
4 | 2 | 3 | 2 | Yes |
5 | 1 | 1 | 1 | Yes |
6 | 3 | 2 | 3 | Yes |
7 | 2 | 1 | 1 | No |
8 | 1 | 1 | 1 | Yes |
9 | 1 | 1 | 1 | Yes |
10 | 2 | 1 | 1 | No |
11 | 3 | 3 | 2 | No |
12 | 1 | 3 | 2 | No |
13 | 1 | 2 | 3 | No |
14 | 1 | 1 | 1 | Yes |
Instance ID | MDS-UPDRS Binary Score | Predominant Cluster | Correctly Classified |
---|---|---|---|
1 | 1 | 2 | No |
2 | 2 | 1 | No |
3 | 1 | 1 | Yes |
4 | 1 | 1 | Yes |
5 | 1 | 1 | Yes |
6 | 2 | 2 | Yes |
7 | 1 | 1 | Yes |
8 | 1 | 1 | Yes |
9 | 1 | 1 | Yes |
10 | 1 | 1 | Yes |
11 | 2 | 2 | Yes |
12 | 1 | 2 | No |
13 | 1 | 2 | No |
14 | 1 | 1 | Yes |
Accuracy | Precision | Recall | F1 Score | |
---|---|---|---|---|
Task 1 | 0.76 | 1.00 | 0.57 | 0.73 |
Task 2 | 0.57 | 0.56 | 0.53 | 0.54 |
Task 3 | 0.71 | 0.40 | 0.67 | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dattola, S.; Ielo, A.; Quartarone, A.; De Cola, M.C. Integrating Wearable Sensor Signal Processing with Unsupervised Learning Methods for Tremor Classification in Parkinson’s Disease. Bioengineering 2025, 12, 37. https://doi.org/10.3390/bioengineering12010037
Dattola S, Ielo A, Quartarone A, De Cola MC. Integrating Wearable Sensor Signal Processing with Unsupervised Learning Methods for Tremor Classification in Parkinson’s Disease. Bioengineering. 2025; 12(1):37. https://doi.org/10.3390/bioengineering12010037
Chicago/Turabian StyleDattola, Serena, Augusto Ielo, Angelo Quartarone, and Maria Cristina De Cola. 2025. "Integrating Wearable Sensor Signal Processing with Unsupervised Learning Methods for Tremor Classification in Parkinson’s Disease" Bioengineering 12, no. 1: 37. https://doi.org/10.3390/bioengineering12010037
APA StyleDattola, S., Ielo, A., Quartarone, A., & De Cola, M. C. (2025). Integrating Wearable Sensor Signal Processing with Unsupervised Learning Methods for Tremor Classification in Parkinson’s Disease. Bioengineering, 12(1), 37. https://doi.org/10.3390/bioengineering12010037