Precision Imaging for Early Detection of Esophageal Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.1.1. Data Acquisition
2.1.2. Image Processing
2.1.3. AI Processing
2.2. Hyperspectral Imaging Algorithm
2.3. YOLOv5
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ajani, J.A.; D’Amico, T.A.; Bentrem, D.J.; Chao, J.; Corvera, C.; Das, P.; Denlinger, C.S.; Enzinger, P.C.; Fanta, P.; Farjah, F. Esophageal and esophagogastric junction cancers, version 2.2019, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Cancer Netw. 2019, 17, 855–883. [Google Scholar] [CrossRef] [PubMed]
- Plum, P.S.; Hölscher, A.H.; Pacheco Godoy, K.; Schmidt, H.; Berlth, F.; Chon, S.-H.; Alakus, H.; Bollschweiler, E. Prognosis of patients with superficial T1 esophageal cancer who underwent endoscopic resection before esophagectomy—A propensity score-matched comparison. Surg. Endosc. 2018, 32, 3972–3980. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Abnet, C.; Shen, Q.; Lewin, K.; Sun, X.; Roth, M.; Qiao, Y.; Mark, S.; Dong, Z.; Taylor, P. Histological precursors of oesophageal squamous cell carcinoma: Results from a 13 year prospective follow up study in a high risk population. Gut 2005, 54, 187–192. [Google Scholar] [CrossRef]
- Sheikh, M.; Roshandel, G.; McCormack, V.; Malekzadeh, R. Current status and future prospects for esophageal cancer. Cancers 2023, 15, 765. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.Q.; Ma, Y.L.; Qin, Q.; Wang, P.H.; Luo, Y.; Xu, P.F.; Cui, Y. Epidemiology of esophageal cancer in 2020 and projections to 2030 and 2040. Thorac. Cancer 2023, 14, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.-L.; Li, H.; Zhu, Y.-J.; Xu, G. The treatments and postoperative complications of esophageal cancer: A review. J. Cardiothorac. Surg. 2020, 15, 163. [Google Scholar] [CrossRef]
- Fang, Y.-J.; Mukundan, A.; Tsao, Y.-M.; Huang, C.-W.; Wang, H.-C. Identification of Early Esophageal Cancer by Semantic Segmentation. J. Pers. Med. 2022, 12, 1204. [Google Scholar] [CrossRef]
- Dawsey, S.M.; Fleischer, D.E.; Wang, G.Q.; Zhou, B.; Kidwell, J.A.; Lu, N.; Lewin, K.J.; Roth, M.J.; Tio, T.L.; Taylor, P.R. Mucosal iodine staining improves endoscopic visualization of squamous dysplasia and squamous cell carcinoma of the esophagus in Linxian, China. Cancer Interdiscip. Int. J. Am. Cancer Soc. 1998, 83, 220–231. [Google Scholar] [CrossRef]
- Toriie, S.; Kohli, Y.; Akasaka, Y.; Kawai, K. New trial for endoscopical observation of esophagus by dye scattering method. Endoscopy 1975, 7, 75–79. [Google Scholar] [CrossRef]
- Wu, I.-C.; Syu, H.-Y.; Jen, C.-P.; Lu, M.-Y.; Chen, Y.-T.; Wu, M.-T.; Kuo, C.-T.; Tsai, Y.-Y.; Wang, H.-C. Early identification of esophageal squamous neoplasm by hyperspectral endoscopic imaging. Sci. Rep. 2018, 8, 13797. [Google Scholar] [CrossRef]
- Inoue, H.; Honda, T.; Nagai, K.; Kawano, T.; Yoshino, K.; Takeshita, K.; Endo, M. Ultra-high magnification endoscopic observation of carcinoma in situ of the esophagus. Dig. Endosc. 1997, 9, 16–18. [Google Scholar] [CrossRef]
- Hamamoto, Y.; Endo, T.; Nosho, K.; Arimura, Y.; Sato, M.; Imai, K. Usefulness of narrow-band imaging endoscopy for diagnosis of Barrett’s esophagus. J. Gastroenterol. 2004, 39, 14–20. [Google Scholar] [CrossRef]
- Tsai, C.-L.; Mukundan, A.; Chung, C.-S.; Chen, Y.-H.; Wang, Y.-K.; Chen, T.-H.; Tseng, Y.-S.; Huang, C.-W.; Wu, I.-C.; Wang, H.-C. Hyperspectral Imaging Combined with Artificial Intelligence in the Early Detection of Esophageal Cancer. Cancers 2021, 13, 4593. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.-J.; Mukundan, A.; Chi, Y.-S.; Tsao, Y.-M.; Wang, Y.-K.; Chen, T.-H.; Wu, I.-C.; Huang, C.-W.; Wang, H.-C. Intelligent Identification of Early Esophageal Cancer by Band-Selective Hyperspectral Imaging. Cancers 2022, 14, 4292. [Google Scholar] [CrossRef]
- Thamir, N.N.; Mohammed, F.G. Early Esophageal Cancer detection using Deep learning Techniques. In Journal of Physics: Conference Series, Proceedings of the 2nd International Conference on Physics and Applied Sciences (ICPAS 2021), College of Education, Mustansiriyah University, Baghdad, Iraq, 26–27 May 2021; IOP Publishing: Bristol, UK, 2021; Volume 1963. [Google Scholar]
- Domingues, I.; Sampaio, I.L.; Duarte, H.; Santos, J.A.; Abreu, P.H. Computer vision in esophageal cancer: A literature review. IEEE Access 2019, 7, 103080–103094. [Google Scholar] [CrossRef]
- Ghatwary, N.; Ye, X.; Zolgharni, M. Esophageal abnormality detection using densenet based faster r-cnn with gabor features. IEEE Access 2019, 7, 84374–84385. [Google Scholar] [CrossRef]
- Muller, J.; Erasmi, H.; Stelzner, M.; Zieren, U.; Pichlmaier, H. Surgical therapy of oesophageal carcinoma. Br. J. Surg. 1990, 77, 845–857. [Google Scholar] [CrossRef]
- Mukundan, A.; Huang, C.-C.; Men, T.-C.; Lin, F.-C.; Wang, H.-C. Air Pollution Detection Using a Novel Snap-Shot Hyperspectral Imaging Technique. Sensors 2022, 22, 6231. [Google Scholar] [CrossRef]
- Huang, L.-y.; Cui, J.; Wu, C.-R.; Liu, Y.-x.; Xu, N. Narrow-band imaging in the diagnosis of early esophageal cancer and precancerous lesions. Chin. Med. J. 2009, 122, 776–780. [Google Scholar]
- Collins, T.; Maktabi, M.; Barberio, M.; Bencteux, V.; Jansen-Winkeln, B.; Chalopin, C.; Marescaux, J.; Hostettler, A.; Diana, M.; Gockel, I. Automatic recognition of colon and esophagogastric cancer with machine learning and hyperspectral imaging. Diagnostics 2021, 11, 1810. [Google Scholar] [CrossRef] [PubMed]
- Kodama, M.; Kakegawa, T. Treatment of superficial cancer of the esophagus: A summary of responses to a questionnaire on superficial cancer of the esophagus in Japan. Surgery 1998, 123, 432–439. [Google Scholar] [CrossRef]
- Li, Q.; He, X.; Wang, Y.; Liu, H.; Xu, D.; Guo, F. Review of spectral imaging technology in biomedical engineering: Achievements and challenges. J. Biomed. Opt. 2013, 18, 100901. [Google Scholar] [CrossRef] [PubMed]
- Maktabi, M.; Wichmann, Y.; Köhler, H.; Ahle, H.; Lorenz, D.; Bange, M.; Braun, S.; Gockel, I.; Chalopin, C.; Thieme, R. Tumor cell identification and classification in esophageal adenocarcinoma specimens by hyperspectral imaging. Sci. Rep. 2022, 12, 4508. [Google Scholar] [CrossRef]
- Everson, M.; Herrera, L.G.P.; Li, W.; Luengo, I.M.; Ahmad, O.; Banks, M.; Magee, C.; Alzoubaidi, D.; Hsu, H.; Graham, D. Artificial intelligence for the real-time classification of intrapapillary capillary loop patterns in the endoscopic diagnosis of early oesophageal squamous cell carcinoma: A proof-of-concept study. United Eur. Gastroenterol. J. 2019, 7, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Ohmori, M.; Ishihara, R.; Aoyama, K.; Nakagawa, K.; Iwagami, H.; Matsuura, N.; Shichijo, S.; Yamamoto, K.; Nagaike, K.; Nakahara, M.J.G.e. Endoscopic detection and differentiation of esophageal lesions using a deep neural network, Gastrointest. Endosc. 2020, 91, 301–309. [Google Scholar]
- Ishihara, R.; Takeuchi, Y.; Chatani, R.; Kidu, T.; Inoue, T.; Hanaoka, N.; Yamamoto, S.; Higashino, K.; Uedo, N.; Iishi, H. Prospective evaluation of narrow-band imaging endoscopy for screening of esophageal squamous mucosal high-grade neoplasia in experienced and less experienced endoscopists. Dis. Esophagus 2010, 23, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Courtenay, L.A.; González-Aguilera, D.; Lagüela, S.; Del Pozo, S.; Ruiz-Mendez, C.; Barbero-García, I.; Román-Curto, C.; Cañueto, J.; Santos-Durán, C.; Cardeñoso-Álvarez, M.E. Hyperspectral imaging and robust statistics in non-melanoma skin cancer analysis. Biomed. Opt. Express 2021, 12, 5107–5127. [Google Scholar] [CrossRef] [PubMed]
- Aboughaleb, I.H.; Aref, M.H.; El-Sharkawy, Y.H. Hyperspectral imaging for diagnosis and detection of ex-vivo breast cancer. Photodiagn. Photodyn. Ther. 2020, 31, 101922. [Google Scholar] [CrossRef]
- Urbanos, G.; Martín, A.; Vázquez, G.; Villanueva, M.; Villa, M.; Jimenez-Roldan, L.; Chavarrías, M.; Lagares, A.; Juárez, E.; Sanz, C. Supervised Machine Learning Methods and Hyperspectral Imaging Techniques Jointly Applied for Brain Cancer Classification. Sensors 2021, 21, 3827. [Google Scholar] [CrossRef] [PubMed]
- Gono, K.; Obi, T.; Yamaguchi, M.; Ohyama, N.; Machida, H.; Sano, Y.; Yoshida, S.; Hamamoto, Y.; Endo, T. Appearance of enhanced tissue features in narrow-band endoscopic imaging. J. Biomed. Opt. 2004, 9, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Backman, V.; Gurjar, R.; Badizadegan, K.; Itzkan, I.; Dasari, R.R.; Perelman, L.T.; Feld, M.S. Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ. IEEE J. Sel. Top. Quantum Electron. 1999, 5, 1019–1026. [Google Scholar] [CrossRef]
- Condeelis, J.; Wyckoff, J.; Segall, J. Imaging of cancer invasion and metastasis using green fluorescent protein. Eur. J. Cancer 2000, 36, 1671–1680. [Google Scholar] [CrossRef]
- Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature 2000, 407, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, K.; Follen, M.; Richards-Kortum, R. Optical spectroscopy for detection of neoplasia. Curr. Opin. Chem. Biol. 2002, 6, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Choo-Smith, L.P.; Edwards, H.; Endtz, H.P.; Kros, J.; Heule, F.; Barr, H.; Robinson, J.S., Jr.; Bruining, H.; Puppels, G. Medical applications of Raman spectroscopy: From proof of principle to clinical implementation. Biopolym. Orig. Res. Biomol. 2002, 67, 1–9. [Google Scholar] [CrossRef]
- Wang, J.; Mao, X.; Wang, Y.; Tao, X.; Chu, J.; Li, Q. Automatic generation of pathological benchmark dataset from hyperspectral images of double stained tissues. Opt. Laser Technol. 2023, 163, 109331. [Google Scholar] [CrossRef]
RGB-WLI | ||||||
True | SCC | Dysplasia | Normal | Background | Predicted All | |
Predicted | ||||||
SCC | 521 | 0 | 0 | 39 | 560 | |
Dysplasia | 0 | 559 | 0 | 75 | 634 | |
Normal | 0 | 0 | 514 | 63 | 577 | |
Background | 145 | 185 | 128 | 0 | 458 | |
True all | 666 | 744 | 642 | 177 | 2229 | |
HSI-WLI | ||||||
True | SCC | Dysplasia | Normal | Background | Predicted all | |
Predicted | ||||||
SCC | 589 | 0 | 0 | 32 | 621 | |
Dysplasia | 0 | 641 | 0 | 50 | 691 | |
Normal | 0 | 0 | 535 | 49 | 584 | |
Background | 77 | 103 | 107 | 0 | 287 | |
True all | 666 | 744 | 642 | 131 | 2183 | |
RGB-NBI | ||||||
True | SCC | Dysplasia | Normal | Background | Predicted all | |
Predicted | ||||||
SCC | 581 | 0 | 0 | 47 | 628 | |
Dysplasia | 0 | 571 | 0 | 42 | 613 | |
Normal | 0 | 0 | 526 | 71 | 597 | |
Background | 73 | 107 | 86 | 0 | 266 | |
True all | 654 | 678 | 612 | 160 | 2104 | |
HSI-NBI | ||||||
True | SCC | Dysplasia | Normal | Background | Predicted all | |
Predicted | ||||||
SCC | 604 | 0 | 0 | 51 | 655 | |
Dysplasia | 0 | 594 | 0 | 55 | 649 | |
Normal | 0 | 0 | 546 | 63 | 609 | |
Background | 50 | 84 | 66 | 0 | 200 | |
True all | 654 | 678 | 612 | 169 | 2113 |
Ap | Sensitivity | Precision | Specificity | F1-Score | Accuracy | κappa | ||
---|---|---|---|---|---|---|---|---|
RGB-WLI | SCC | 0.82 | 0.78 | 0.93 | 0.96 | 0.85 | 0.78 | 0.62 |
Dysplasia | 0.71 | 0.75 | 0.88 | 0.93 | 0.81 | |||
Normal | 0.79 | 0.8 | 0.89 | 0.94 | 0.84 | |||
Mean | 0.77 | 0.78 | 0.9 | 0.94 | 0.83 | |||
HSI-WLI | SCC | 0.9 | 0.88 | 0.95 | 0.97 | 0.92 | 0.86 | 0.74 |
Dysplasia | 0.85 | 0.86 | 0.93 | 0.96 | 0.89 | |||
Normal | 0.75 | 0.83 | 0.92 | 0.96 | 0.87 | |||
Mean | 0.83 | 0.86 | 0.93 | 0.96 | 0.89 | |||
RGB-NBI | SCC | 0.88 | 0.89 | 0.93 | 0.96 | 0.91 | 0.86 | 0.72 |
Dysplasia | 0.85 | 0.84 | 0.93 | 0.96 | 0.88 | |||
Normal | 0.89 | 0.86 | 0.88 | 0.94 | 0.87 | |||
Mean | 0.87 | 0.86 | 0.91 | 0.95 | 0.89 | |||
HSI-NBI | SCC | 0.91 | 0.92 | 0.92 | 0.96 | 0.92 | 0.9 | 0.76 |
Dysplasia | 0.89 | 0.88 | 0.92 | 0.95 | 0.9 | |||
Normal | 0.91 | 0.89 | 0.9 | 0.95 | 0.89 | |||
Mean | 0.9 | 0.9 | 0.91 | 0.95 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.-C.; Huang, C.-W.; Karmakar, R.; Mukundan, A.; Chen, T.-H.; Chou, C.-K.; Yang, K.-Y.; Wang, H.-C. Precision Imaging for Early Detection of Esophageal Cancer. Bioengineering 2025, 12, 90. https://doi.org/10.3390/bioengineering12010090
Yang P-C, Huang C-W, Karmakar R, Mukundan A, Chen T-H, Chou C-K, Yang K-Y, Wang H-C. Precision Imaging for Early Detection of Esophageal Cancer. Bioengineering. 2025; 12(1):90. https://doi.org/10.3390/bioengineering12010090
Chicago/Turabian StyleYang, Po-Chun, Chien-Wei Huang, Riya Karmakar, Arvind Mukundan, Tsung-Hsien Chen, Chu-Kuang Chou, Kai-Yao Yang, and Hsiang-Chen Wang. 2025. "Precision Imaging for Early Detection of Esophageal Cancer" Bioengineering 12, no. 1: 90. https://doi.org/10.3390/bioengineering12010090
APA StyleYang, P.-C., Huang, C.-W., Karmakar, R., Mukundan, A., Chen, T.-H., Chou, C.-K., Yang, K.-Y., & Wang, H.-C. (2025). Precision Imaging for Early Detection of Esophageal Cancer. Bioengineering, 12(1), 90. https://doi.org/10.3390/bioengineering12010090