Local Antimicrobial Potential of Bupivacaine and Tolfenamic Acid-Loaded Ultra-High Molecular Weight Polyethylene (UHMWPE) for Orthopedic Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteria, Drug Stock, and Material Preparation
2.2. Antibacterial Activity of Analgesics
2.3. Bacterial Membrane Fluidity Analysis
2.4. Gene Expression Studies
2.5. Drug Release Profile of BP/TA-Loaded UHMWPE
2.6. Longitudinal Antibacterial Activity of BP/TA-Loaded UHMWPE
2.7. Statistics
3. Results
3.1. Antibacterial Properties of BP and TA Against S. aureus
3.2. Longitudinal Assessment of Drug Release and Antibacterial Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zmistowski, B.; Karam, J.A.; Durinka, J.B.; Casper, D.S.; Parvizi, J. Periprosthetic Joint Infection Increases the Risk of One-Year Mortality. J. Bone Jt. Surg. 2013, 95, 2177–2184. [Google Scholar] [CrossRef] [PubMed]
- Thompson, O.; W-Dahl, A.; Stefánsdóttir, A. Increased Short- and Long-Term Mortality amongst Patients with Early Periprosthetic Knee Joint Infection. BMC Musculoskelet. Disord. 2022, 23, 1069. [Google Scholar] [CrossRef]
- Kapadia, B.H.; Berg, R.A.; Daley, J.A.; Fritz, J.; Bhave, A.; Mont, M.A. Periprosthetic Joint Infection. Lancet 2016, 387, 386–394. [Google Scholar] [CrossRef]
- Castelli, C.C.; Gotti, V.; Ferrari, R. Two-Stage Treatment of Infected Total Knee Arthroplasty: Two to Thirteen Year Experience Using an Articulating Preformed Spacer. Int. Orthop. 2014, 38, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Charette, R.S.; Melnic, C.M. Two-Stage Revision Arthroplasty for the Treatment of Prosthetic Joint Infection. Curr. Rev. Musculoskelet. Med. 2018, 11, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Rottier, W.; Seidelman, J.; Wouthuyzen-Bakker, M. Antimicrobial Treatment of Patients with a Periprosthetic Joint Infection: Basic Principles. Arthroplasty 2023, 5, 10. [Google Scholar] [CrossRef]
- Flurin, L.; Greenwood-Quaintance, K.E.; Patel, R. Microbiology of Polymicrobial Prosthetic Joint Infection. Diagn. Microbiol. Infect. Dis. 2019, 94, 255–259. [Google Scholar] [CrossRef]
- Peng, H.-M.; Zhou, Z.-K.; Wang, F.; Yan, S.-G.; Xu, P.; Shang, X.-F.; Zheng, J.; Zhu, Q.-S.; Cao, L.; Weng, X.-S. Microbiology of Periprosthetic Hip and Knee Infections in Surgically Revised Cases from 34 Centers in Mainland China. Infect. Drug Resist. 2021, 14, 2411–2418. [Google Scholar] [CrossRef] [PubMed]
- Dapunt, U.; Radzuweit-Mihaljevic, S.; Lehner, B.; Haensch, G.M.; Ewerbeck, V. Bacterial Infection and Implant Loosening in Hip and Knee Arthroplasty: Evaluation of 209 Cases. Materials 2016, 9, 871. [Google Scholar] [CrossRef]
- Labek, G.; Thaler, M.; Janda, W.; Agreiter, M.; Stöckl, B. Revision Rates after Total Joint Replacement. J. Bone Jt. Surg. Br. 2011, 93-B, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Goud, A.L.; Harlianto, N.I.; Ezzafzafi, S.; Veltman, E.S.; Bekkers, J.E.J.; van der Wal, B.C.H. Reinfection Rates after One- and Two-Stage Revision Surgery for Hip and Knee Arthroplasty: A Systematic Review and Meta-Analysis. Arch. Orthop. Trauma Surg. 2021, 143, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Kranjec, C.; Angeles, D.M.; Mårli, M.T.; Fernández, L.; García, P.; Kjos, M.; Diep, D.B. Staphylococcal Biofilms: Challenges and Novel Therapeutic Perspectives. Antibiotics 2021, 10, 131. [Google Scholar] [CrossRef] [PubMed]
- Uruén, C.; Chopo-Escuin, G.; Tommassen, J.; Mainar-Jaime, R.C.; Arenas, J. Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics 2020, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Sivori, F.; Cavallo, I.; Truglio, M.; Pelagalli, L.; Mariani, V.; Fabrizio, G.; Abril, E.; Santino, I.; Fradiani, P.A.; Solmone, M.; et al. Biofilm-Mediated Antibiotic Tolerance in Staphylococcus aureus from Spinal Cord Stimulation Device-Related Infections. Microbiol. Spectr. 2024, 12, e0168324. [Google Scholar] [CrossRef] [PubMed]
- Stewart, P.S.; Franklin, M.J. Physiological Heterogeneity in Biofilms. Nat. Rev. Microbiol. 2008, 6, 199–210. [Google Scholar] [CrossRef]
- Le Vavasseur, B.; Zeller, V. Antibiotic Therapy for Prosthetic Joint Infections: An Overview. Antibiotics 2022, 11, 486. [Google Scholar] [CrossRef]
- Yates, A.J.; American Association of Hip and Knee Surgeons Evidence-Based Medicine Committee. Postoperative Prophylactic Antibiotics in Total Joint Arthroplasty. Arthroplast. Today 2018, 4, 130–131. [Google Scholar] [CrossRef] [PubMed]
- Steadman, W.; Chapman, P.R.; Schuetz, M.; Schmutz, B.; Trampuz, A.; Tetsworth, K. Local Antibiotic Delivery Options in Prosthetic Joint Infection. Antibiotics 2023, 12, 752. [Google Scholar] [CrossRef]
- Sekar, A.; Fan, Y.; Tierney, P.; McCanne, M.; Jones, P.; Malick, F.; Kannambadi, D.; Wannomae, K.K.; Inverardi, N.; Muratoglu, O.K.; et al. Investigating the Translational Value of Periprosthetic Joint Infection Models to Determine the Risk and Severity of Staphylococcal Biofilms. ACS Infect. Dis. 2024, 10, 4156–4166. [Google Scholar] [CrossRef]
- Lekkala, S.; Inverardi, N.; Yuh, J.; Wannomae, K.K.; Tierney, P.; Sekar, A.; Muratoglu, O.K.; Oral, E. Antibiotic-Loaded Ultrahigh Molecular Weight Polyethylenes. Macromol. Biosci. 2024, 24, 2300389. [Google Scholar] [CrossRef]
- Suhardi, V.J.; Bichara, D.A.; Kwok, S.J.J.; Freiberg, A.A.; Rubash, H.; Malchau, H.; Yun, S.H.; Muratoglu, O.K.; Oral, E. A Fully Functional Drug-Eluting Joint Implant. Nat. Biomed. Eng. 2017, 1, 80. [Google Scholar] [CrossRef] [PubMed]
- Gil, D.; Atici, A.E.; Connolly, R.L.; Hugard, S.; Shuvaev, S.; Wannomae, K.K.; Oral, E.; Muratoglu, O.K. Addressing Prosthetic Joint Infections via Gentamicin-Eluting UHMWPE Spacer. Bone Jt. J. 2020, 102-B, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Resistance. Available online: https://www.cdc.gov/antimicrobial-resistance/data-research/facts-stats/index.html (accessed on 27 December 2024).
- Svensson Malchau, K.; Tillander, J.; Zaborowska, M.; Hoffman, M.; Lasa, I.; Thomsen, P.; Malchau, H.; Rolfson, O.; Trobos, M. Biofilm Properties in Relation to Treatment Outcome in Patients with First-Time Periprosthetic Hip or Knee Joint Infection. J. Orthop. Transl. 2021, 30, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Davidson, D.J.; Spratt, D.; Liddle, A.D. Implant Materials and Prosthetic Joint Infection: The Battle with the Biofilm. EFORT Open Rev. 2019, 4, 633–639. [Google Scholar] [CrossRef]
- Gil, D.; Daffinee, K.; Friedman, R.; Bhushan, B.; Muratoglu, O.K.; LaPlante, K.; Oral, E. Synergistic Antibacterial Effects of Analgesics and Antibiotics against Staphylococcus aureus. Diagn. Microbiol. Infect. Dis. 2020, 96, 114967. [Google Scholar] [CrossRef] [PubMed]
- Sekar, A.; Gil, D.; Tierney, P.; McCanne, M.; Daesety, V.; Trendafilova, D.; Muratoglu, O.K.; Oral, E. Synergistic Use of Anti-Inflammatory Ketorolac and Gentamicin to Target Staphylococcal Biofilms. J. Transl. Med. 2024, 22, 102. [Google Scholar] [CrossRef] [PubMed]
- Barbarossa, A.; Rosato, A.; Corbo, F.; Clodoveo, M.L.; Fracchiolla, G.; Carrieri, A.; Carocci, A. Non-Antibiotic Drug Repositioning as an Alternative Antimicrobial Approach. Antibiotics 2022, 11, 816. [Google Scholar] [CrossRef]
- Kim, W.; Zou, G.; Hari, T.P.A.; Wilt, I.K.; Zhu, W.; Galle, N.; Faizi, H.A.; Hendricks, G.L.; Tori, K.; Pan, W.; et al. A Selective Membrane-Targeting Repurposed Antibiotic with Activity against Persistent Methicillin-Resistant Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 2019, 116, 16529–16534. [Google Scholar] [CrossRef] [PubMed]
- Kamurai, B.; Mombeshora, M.; Mukanganyama, S. Repurposing of Drugs for Antibacterial Activities on Selected ESKAPE Bacteria Staphylococcus aureus and Pseudomonas aeruginosa. Int. J. Microbiol. 2020, 2020, 8885338. [Google Scholar] [CrossRef] [PubMed]
- Gil, D.; Hugard, S.; Grindy, S.; Borodinov, N.; Ovchinnikova, O.S.; Muratoglu, O.K.; Bedair, H.; Oral, E. Structural and Antibacterial Properties of NSAID-Loaded Ultra-High Molecular Weight Polyethylene. Materialia 2020, 12, 100662. [Google Scholar] [CrossRef]
- Inverardi, N.; Lekkala, S.; Serafim, M.F.; Sekar, A.; Wannomae, K.K.; Micheli, B.; Bedair, H.; Muratoglu, O.K.; Oral, E. Diffusion Doping of Analgesics into UHMWPE for Prophylactic Pain Management. J. Mater. Chem. B 2024, 12, 10332–10345. [Google Scholar] [CrossRef]
- Gil, D.; Hugard, S.; Borodinov, N.; Ovchinnikova, O.S.; Muratoglu, O.K.; Bedair, H.; Oral, E. Dual-analgesic Loaded UHMWPE Exhibits Synergistic Antibacterial Effects against Staphylococci. J. Biomed. Mater. Res. B Appl. Biomater. 2023, 111, 912–922. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, M.; Vischer, N.; Strahl, H.; Hamoen, L. Assessing Membrane Fluidity and Visualizing Fluid Membrane Domains in Bacteria Using Fluorescent Membrane Dyes. Bio-Protocol 2018, 8, e3063. [Google Scholar] [CrossRef] [PubMed]
- Sekar, A.; Lekkala, S.; Oral, E. A Novel Method to Determine the Longitudinal Antibacterial Activity of Drug-Eluting Materials. J. Vis. Exp. 2023, 193, e64641. [Google Scholar] [CrossRef] [PubMed]
- Staats, A.; Li, D.; Sullivan, A.C.; Stoodley, P. Biofilm Formation in Periprosthetic Joint Infections. Ann. Jt. 2021, 6, 43. [Google Scholar] [CrossRef] [PubMed]
- Mandell, J.B.; Orr, S.; Koch, J.; Nourie, B.; Ma, D.; Bonar, D.D.; Shah, N.; Urish, K.L. Large Variations in Clinical Antibiotic Activity against Staphylococcus aureus Biofilms of Periprosthetic Joint Infection Isolates. J. Orthop. Res. 2019, 37, 1604–1609. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, F.D.A.; de Carvalho, C.C.C.R. Phenotypic Modifications in Staphylococcus Aureus Cells Exposed to High Concentrations of Vancomycin and Teicoplanin. Front. Microbiol. 2016, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Wenzel, M.; Strahl, H.; Grein, F.; Saaki, T.N.V.; Kohl, B.; Siersma, T.; Bandow, J.E.; Sahl, H.-G.; Schneider, T.; et al. Daptomycin Inhibits Cell Envelope Synthesis by Interfering with Fluid Membrane Microdomains. Proc. Natl. Acad. Sci. USA 2016, 113, E7077–E7086. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, D.; Guo, Y.; De Castro, C.; Kim, S.-H.; Schlatterer, K.; Xu, F.-F.; Pereira, C.; Seeberger, P.H.; Ali, S.; Codée, J.; et al. Methicillin-Resistant Staphylococcus aureus Alters Cell Wall Glycosylation to Evade Immunity. Nature 2018, 563, 705–709. [Google Scholar] [CrossRef]
- Aggarwal, M.; Patra, A.; Awasthi, I.; George, A.; Gagneja, S.; Gupta, V.; Capalash, N.; Sharma, P. Drug Repurposing against Antibiotic Resistant Bacterial Pathogens. Eur. J. Med. Chem. 2024, 279, 116833. [Google Scholar] [CrossRef]
- Stokes, J.M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.; Donghia, N.M.; MacNair, C.R.; French, S.; Carfrae, L.A.; Bloom-Ackermann, Z.; et al. A Deep Learning Approach to Antibiotic Discovery. Cell 2020, 180, 688–702.e13. [Google Scholar] [CrossRef]
- Higashihira, S.; Simpson, S.J.; Collier, C.D.; Natoli, R.M.; Kittaka, M.; Greenfield, E.M. Halicin Is Effective Against Staphylococcus aureus Biofilms In Vitro. Clin. Orthop. Relat. Res. 2022, 480, 1476–1487. [Google Scholar] [CrossRef] [PubMed]
- Mackay, A.M. Fluoxetine Is Antimicrobial and Modulates the Antibiotic Resistance Status of Bacteria. J. Cell. Immunol. 2023, 5, 87–91. [Google Scholar] [CrossRef]
- Gardete, S.; Wu, S.W.; Gill, S.; Tomasz, A. Role of VraSR in Antibiotic Resistance and Antibiotic-Induced Stress Response in Staphylococcus aureus. Antimicrob. Agents Chemother. 2006, 50, 3424–3434. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, M.; Frees, D.; Ingmer, H. Antibiotic Resistance and the MRSA Problem. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Kuroda, M.; Kuroda, H.; Oshima, T.; Takeuchi, F.; Mori, H.; Hiramatsu, K. Two-Component System VraSR Positively Modulates the Regulation of Cell-Wall Biosynthesis Pathway in Staphylococcus aureus. Mol. Microbiol. 2004, 49, 807–821. [Google Scholar] [CrossRef] [PubMed]
- Hess, D.J.; Henry-Stanley, M.J.; Wells, C.L. Gentamicin Promotes Staphylococcus aureus Biofilms on Silk Suture. J. Surg. Res. 2011, 170, 302–308. [Google Scholar] [CrossRef]
- Lekkala, S.; Inverardi, N.; Grindy, S.C.; Hugard, S.; Muratoglu, O.K.; Oral, E. Irradiation Behavior of Analgesic and Nonsteroidal Anti-Inflammatory Drug-Loaded UHMWPE for Joint Replacement. Biomacromolecules 2024, 25, 2312–2322. [Google Scholar] [CrossRef] [PubMed]
- Gaglioti, K.; Chierotti, M.R.; Grifasi, F.; Gobetto, R.; Griesser, U.J.; Hasa, D.; Voinovich, D. Improvement of the Water Solubility of Tolfenamic Acid by New Multiple-Component Crystals Produced by Mechanochemical Methods. CrystEngComm 2014, 16, 8252–8262. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Mechanism Matters. Nat. Med. 2010, 16, 347. [CrossRef] [PubMed]
- Davis, R.L. Mechanism of Action and Target Identification: A Matter of Timing in Drug Discovery. iScience 2020, 23, 101487. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.J.; Lou, Z.; Jeong, J.B.; Kim, K.J.; Lee, J.; Lee, S.-H. Tolfenamic Acid Suppresses Inflammatory Stimuli-Mediated Activation of NF-ΚB Signaling. Biomol. Ther. 2015, 23, 39–44. [Google Scholar] [CrossRef] [PubMed]
Formulation | BP HCl [% w/w] | TA [%w/w] | Code |
---|---|---|---|
Virgin UHMWPE | 0 | 0 | VPE |
10% w/w | 10 | 0 | 10BP |
7 | 3 | 7BP3TA | |
5 | 5 | 5BP5TA | |
0 | 10 | 10TA | |
20% w/w | 20 | 0 | 20BP |
14 | 6 | 14BP6TA | |
10 | 10 | 10BP10TA | |
0 | 20 | 20TA |
Gene | Primer Sequences |
vraR | FP 5′-AACTCTGCGCGCTTTTTCAT-3′ |
RP 5′-ATATCGCCGATGCAGTTCGT-3′ | |
icaA | FP 5′-TTGTCGACGTTGGCTACTGG-3′ |
RP 5′-GCGTTGCTTCCAAAGACCTC-3′ | |
ebpS | FP 5′-TACTTTGGCCATGCCACCTT-3′ |
RP 5′-TGCTTCTGCCGCTTCAAAAC-3′ | |
16srRNA | FP 5′-AGACCAGAAAGTCGCCTTCG-3′ |
RP 5′-TCAACCGTGGAGGGTCATTG-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sekar, A.; Inverardi, N.; Lekkala, S.; Thomson, A.; Daesety, V.; Trendafilova, D.; Tierney, P.; Collins, J.E.; Muratoglu, O.K.; Oral, E. Local Antimicrobial Potential of Bupivacaine and Tolfenamic Acid-Loaded Ultra-High Molecular Weight Polyethylene (UHMWPE) for Orthopedic Infection. Bioengineering 2025, 12, 173. https://doi.org/10.3390/bioengineering12020173
Sekar A, Inverardi N, Lekkala S, Thomson A, Daesety V, Trendafilova D, Tierney P, Collins JE, Muratoglu OK, Oral E. Local Antimicrobial Potential of Bupivacaine and Tolfenamic Acid-Loaded Ultra-High Molecular Weight Polyethylene (UHMWPE) for Orthopedic Infection. Bioengineering. 2025; 12(2):173. https://doi.org/10.3390/bioengineering12020173
Chicago/Turabian StyleSekar, Amita, Nicoletta Inverardi, Sashank Lekkala, Andrew Thomson, Vikram Daesety, Darina Trendafilova, Peyton Tierney, Jamie E. Collins, Orhun K. Muratoglu, and Ebru Oral. 2025. "Local Antimicrobial Potential of Bupivacaine and Tolfenamic Acid-Loaded Ultra-High Molecular Weight Polyethylene (UHMWPE) for Orthopedic Infection" Bioengineering 12, no. 2: 173. https://doi.org/10.3390/bioengineering12020173
APA StyleSekar, A., Inverardi, N., Lekkala, S., Thomson, A., Daesety, V., Trendafilova, D., Tierney, P., Collins, J. E., Muratoglu, O. K., & Oral, E. (2025). Local Antimicrobial Potential of Bupivacaine and Tolfenamic Acid-Loaded Ultra-High Molecular Weight Polyethylene (UHMWPE) for Orthopedic Infection. Bioengineering, 12(2), 173. https://doi.org/10.3390/bioengineering12020173