Real-Time Integration of Optical Coherence Tomography Thickness Map Overlays for Enhanced Visualization in Epiretinal Membrane Surgery: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
- Manual Initialization: Five corresponding landmark points are manually selected on both the OCT image and the first frame of the surgical video. Each pair consists of a matching point in the OCT image and its corresponding point in the video frame (Figure 1). These points are used solely to align the OCT image with the initial video frame.
- Homography Calculation: Using the manually selected key points, a homography transformation matrix is computed via the Direct Linear Transformation (DLT) algorithm in OpenCV [14]. This matrix warps the OCT image to match the first frame precisely.
- Frame-to-Frame Transformation: After the initial alignment, a classical method is applied to calculate the transformation matrix between consecutive video frames. Specifically, corner features are detected in each frame using the Shi–Tomasi corner detection method [15], and the Lucas–Kanade optical flow algorithm [16] tracks these features across frames (Figure 2).
- OCT Image Alignment Across Frames: The transformation matrix computed from the frame-to-frame alignment is then applied to the OCT image, ensuring that it remains aligned with every frame in the sequence.
3. Results
4. Discussion
4.1. Impact of Real-Time OCT Overlays on Surgery and Training
4.2. Limitations
- -
- Real-Time Usability Assessments: Conducting intraoperative trials where surgeons actively use the overlay system and provide structured feedback on its utility, accuracy, and impact on decision-making.
- -
- Comparative Studies: Comparing surgical outcomes with and without OCT overlays to determine whether the technology improves precision, reduces complications, or decreases overall procedure time.
- -
- Multicenter Validation: Expanding data collection across different surgical settings and patient populations to ensure that the system generalizes well beyond controlled experimental conditions.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Snead, D.R.; James, S.; Snead, M.P. Pathological changes in the vitreoretinal junction 1: Epiretinal membrane formation. Eye 2008, 22, 1310–1317. [Google Scholar] [CrossRef] [PubMed]
- Sakai, D.; Takagi, S.; Hirami, Y.; Nakamura, M.; Kurimoto, Y. Correlation between tangential distortion of the outer retinal layer and metamorphopsia in patients with epiretinal membrane. Graefe Arch. Clin. Exp. Ophthalmol. 2021, 259, 1751–1758. [Google Scholar] [CrossRef] [PubMed]
- Ueki, M.; Morishita, S.; Kohmoto, R.; Fukumoto, M.; Suzuki, H.; Sato, T.; Kobayashi, T.; Kida, T.; Oku, H.; Ikeda, T.; et al. Comparison of histopathological findings between idiopathic and secondary epiretinal membranes. Int. Ophthalmol. 2016, 36, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Bu, S.-C.; Kuijer, R.; van der Worp, R.J.; Huiskamp, E.A.; de Lavalette, V.W.R.; Li, X.-R.; Hooymans, J.M.M.; Los, L.I. Glial cells and collagens in epiretinal membranes associated with idiopathic macular holes. Retina 2014, 34, 897–906. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Choi, K.S. Quantitative analysis of macular contraction in idiopathic epiretinal membrane. BMC Ophthalmol. 2014, 14, 51. [Google Scholar] [CrossRef] [PubMed]
- Shimada, H.; Nakashizuka, H.; Hattori, T.; Mori, R.; Mizutani, Y.; Yuzawa, M. Double staining with brilliant blue G and double peeling for epiretinal membranes. Ophthalmology 2009, 116, 1370–1376. [Google Scholar] [CrossRef] [PubMed]
- Schechet, S.A.; DeVience, E.; Thompson, J.T. The effect of internal limiting membrane peeling on idiopathic epiretinal membrane surgery, with a review of the literature. Retina 2017, 37, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Azuma, K.; Ueta, T.; Eguchi, S.; Aihara, M. Effects of internal limiting membrane peeling combined with removal of idiopathic epiretinal membrane: A Systematic Review of Literature and Meta-Analysis. Retina 2017, 37, 1813–1819. [Google Scholar] [CrossRef] [PubMed]
- Rayess, N.; Vail, D.; Mruthyunjaya, P. Rates of Reoperation in 10 114 Patients with Epiretinal Membranes Treated by Vitrectomy with or without Inner Limiting Membrane Peeling. Ophthalmol. Retin. 2021, 5, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.H.; Park, S.J.; Woo, S.J.; Park, K.H. Correlation between inner-retinal changes and outer-retinal damage in patients with idiopathic epiretinal membrane. Retina 2018, 38, 2327–2335. [Google Scholar] [CrossRef] [PubMed]
- Duker, J.S.; Kaiser, P.K.; Binder, S.; de Smet, M.D.; Gaudric, A.; Reichel, E.; Sadda, S.R.; Sebag, J.; Spaide, R.F.; Stalmans, P. The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 2013, 120, 2611–2619. [Google Scholar] [CrossRef] [PubMed]
- Savastano, A.; Ripa, M.; Savastano, M.C.; De Vico, U.; Caporossi, T.; Kilian, R.; Rizzo, S. Comparison of novel digital microscope using integrated intraoperative OCT with Ngenuity 3D visualization system in phacoemulsification. Can. J. Ophthalmol. 2023, 58, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, J.P.; Modi, Y.S.; Pecen, P.E.; Goshe, J.; Dupps, W.J.; Rachitskaya, A.; Sharma, S.; Yuan, A.; Singh, R.; Kaiser, P.K.; et al. The DISCOVER Study 3-Year Results: Feasibility and Usefulness of Microscope-Integrated Intraoperative OCT during Ophthalmic Surgery. Ophthalmology 2018, 125, 1014–1027. [Google Scholar] [CrossRef] [PubMed]
- OpenCV. Find Homography. OpenCV Documentation. Available online: https://docs.opencv.org/3.4/d9/dab/tutorial_homography.html (accessed on 20 November 2023).
- OpenCV. Shi-Tomasi Corner Detection and Good Features to Track. OpenCV Documentation. Available online: https://docs.opencv.org/4.x/d4/d8c/tutorial_py_shi_tomasi.html (accessed on 20 November 2023).
- OpenCV. Optical Flow: Lucas-Kanade Method. OpenCV Documentation. Available online: https://docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html (accessed on 20 November 2023).
- Delyfer, M.; Legout, P.; Le Goff, M.; Blaizeau, M.; Rougier, M.; Schweitzer, C.; Korobelnik, J.; Delcourt, C. Prevalence of epiretinal membranes in the ageing population using retinal colour images and SD-OCT: The Alienor Study. Acta Ophthalmol. 2020, 98, e830–e838. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.G.; Song, S.J.; Lee, S.; Yu, H.G.; Kim, D.I.; Lee, K.M. A deep learning-based framework for retinal fundus image enhancement. PLoS ONE 2023, 18, e0282416. [Google Scholar] [CrossRef] [PubMed]
- Turgut, F.; Somfai, G.M.; Heussen, F.M.; Eberle, A.; de Smet, M.D.; Becker, M.D. Robot-Assisted Epiretinal Membrane Peeling: A Prospective Assessment of Pre- and Intra-Operative Times and of Surgeons’ Subjective Perceptions. J. Clin. Med. 2023, 12, 2768. [Google Scholar] [CrossRef] [PubMed]
- Eberle, A.; Turgut, F.; Somfai, G.M.; Saad, A.; de Smet, M.D.; Hasler, P.W.; Heussen, F.M.; Becker, M.D. Comparison of Surgical Times Between Manual and Robot-Assisted Epiretinal Membrane Peeling. Transl. Vis. Sci. Technol. 2024, 13, 27. [Google Scholar] [CrossRef] [PubMed]
Video ID | Number of Frames (n) | Success Rate (%) | Points Near Vascular Structures (%) |
---|---|---|---|
Video 1 | 1033 | 91.5 | 83 |
Video 2 | 1524 | 84.4 | 67 |
Video 3 | 2398 | 92.9 | 84 |
Video 4 | 746 | 95.4 | 76 |
Video 5 | 3367 | 96.1 | 88 |
Total | 9068 | - | - |
Mean ± Standard Deviation | 1813.6 ± 957.9 | 92.7 ± 4.2 | 79.6 ± 7.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turgut, F.; Ueda, K.; Saad, A.; Spitznagel, T.; von Felten, L.; Matsumoto, T.; Santos, R.; de Smet, M.D.; Nagy, Z.Z.; Becker, M.D.; et al. Real-Time Integration of Optical Coherence Tomography Thickness Map Overlays for Enhanced Visualization in Epiretinal Membrane Surgery: A Pilot Study. Bioengineering 2025, 12, 271. https://doi.org/10.3390/bioengineering12030271
Turgut F, Ueda K, Saad A, Spitznagel T, von Felten L, Matsumoto T, Santos R, de Smet MD, Nagy ZZ, Becker MD, et al. Real-Time Integration of Optical Coherence Tomography Thickness Map Overlays for Enhanced Visualization in Epiretinal Membrane Surgery: A Pilot Study. Bioengineering. 2025; 12(3):271. https://doi.org/10.3390/bioengineering12030271
Chicago/Turabian StyleTurgut, Ferhat, Keisuke Ueda, Amr Saad, Tahm Spitznagel, Luca von Felten, Takashi Matsumoto, Rui Santos, Marc D. de Smet, Zoltán Zsolt Nagy, Matthias D. Becker, and et al. 2025. "Real-Time Integration of Optical Coherence Tomography Thickness Map Overlays for Enhanced Visualization in Epiretinal Membrane Surgery: A Pilot Study" Bioengineering 12, no. 3: 271. https://doi.org/10.3390/bioengineering12030271
APA StyleTurgut, F., Ueda, K., Saad, A., Spitznagel, T., von Felten, L., Matsumoto, T., Santos, R., de Smet, M. D., Nagy, Z. Z., Becker, M. D., & Somfai, G. M. (2025). Real-Time Integration of Optical Coherence Tomography Thickness Map Overlays for Enhanced Visualization in Epiretinal Membrane Surgery: A Pilot Study. Bioengineering, 12(3), 271. https://doi.org/10.3390/bioengineering12030271